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Abstract

Multi-Domain Face Anti-Spoofing (MD-FAS) is a practical
setting that aims to update models on new domains using
only novel data while ensuring that the knowledge acquired
from previous domains is not forgotten. Prior methods uti-
lize the responses from models to represent the previous do-
main knowledge or map the different domains into separated
feature spaces to prevent forgetting. However, due to domain
gaps, the responses of new data are not as accurate as those
of previous data. Also, without the supervision of previous
data, separated feature spaces might be destroyed by new do-
mains while updating, leading to catastrophic forgetting. In-
spired by the challenges posed by the lack of previous data,
we solve this issue from a new standpoint that generates hal-
lucinated previous data for updating FAS model. To this end,
we propose a novel Domain-Hallucinated Updating (DHU)
framework to facilitate the hallucination of data. Specifically,
Domain Information Explorer learns representative domain
information of the previous domains. Then, Domain Informa-
tion Hallucination module transfers the new domain data to
pseudo-previous domain ones. Moreover, Hallucinated Fea-
tures Joint Learning module is proposed to asymmetrically
align the new and pseudo-previous data for real samples via
dual levels to learn more generalized features, promoting the
results on all domains. Our experimental results and visual-
izations demonstrate that the proposed method outperforms
state-of-the-art competitors in terms of effectiveness.

Introduction
Face anti-spoofing (FAS) is becoming increasingly impor-
tant in preventing presentation attacks (PA) on face recog-
nition (FR) technology such as photo, and video replay. To
address this issue, researchers distinguish between real peo-
ple and presentation attacks via deep learning-based meth-
ods (Feng et al. 2016; Li et al. 2016; Yang et al. 2014).
Nevertheless, they tend to experience performance degrada-
tion in more complex real-world scenarios due to domain
shifts. To promote performance in the new environment,
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Figure 1: (a) Response regularization-based methods utilize
responses of new data on the prior model. (b) Some methods
map varied domains’ features into different sub-space. (c)
Our method hallucinates the previous domain feature and
aligns the feature from pseudo-previous and new domain.

researchers have incorporated domain generalization (DG)
techniques into FAS to learn features that are applicable
across different domains. However, DG FAS (Jia et al. 2020;
Zhou et al. 2022b, 2023; Liu et al. 2021a) approaches only
utilize the seen data during the training stage, which means
they do not effectively utilize the information from novel
data. As a result, they often exhibit unsatisfactory perfor-
mance when applied to new domains. Therefore, in order to
improve the performance of FAS on novel domains in real-
world scenarios, it is necessary to update the models using
collected novel data. The common approach is to retrain the
model using both old and new data, such as domain adapta-
tion (DA) methods (Jia et al. 2021; Wang et al. 2021; Zhou
et al. 2022a). However, concerns about data privacy policies,
particularly for Personally Identifiable Information (PII) like
facial images, may prevent access to data from the previous
domain during model updating, which might fail DA meth-
ods. On the other hand, solely updating models with new
data may result in overfitting, causing the model to forget the
knowledge acquired from the previous data. Consequently,
this might lead to poor generalization performance, which
is important for practical FAS applications. Therefore, the
preservation of FAS knowledge while updating solely with
new data poses significant challenges in model updating,
commonly called the plasticity-stability dilemma. This as-
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pect is crucial for the practical deployment of FAS and has
been explored in initial studies (Guo et al. 2022), referred to
as Multi-Domain Face Anti-spoofing (MD-FAS).

To address this issue, researchers have proposed
two categories of methods: response regularization-based
methods and feature-space-divided methods. Response
regularization-based methods utilize responses from the
models, such as logits (Li, Hoiem et al. 2016; Dhar et al.
2019), grad-CAM (Selvaraju et al. 2017; Aljundi et al.
2018), or estimated spoof cues (Guo et al. 2022), to main-
tain performance on the previous domain, as Figure 1 (a).
However, due to domain gaps, the responses of new data
from the prior model are not as accurate as those of the pre-
vious data, which might inhibit learning effective features
from the new domain (Aljundi, Chakravarty, and Tuyte-
laars 2017). While feature-space-divided methods, as Fig-
ure 1 (b), leverage isolated parameters (Rebuffi, Bilen, and
Vedaldi 2017, 2018; Rusu et al. 2016; Mallya and Lazeb-
nik 2018) or prompts (Wang, Huang, and Hong 2022; Xie,
Yan, and He 2022) to continuously map different domains
into separate space for updating to novel domains. Neverthe-
less, without the supervision of previous data, shared param-
eters in the model may overfit the new data. Consequently,
this might compromise the preservation of knowledge of the
previous domain (Kanakis et al. 2020). In general, previous
methods primarily focus on model improvements to address
the challenges. However, none of them adequately compen-
sate for the impact of missing previous data, leading to un-
satisfactory results in the previous or new domains.

Considering the unavailability of previous data in MD-
FAS, we attempt to address these issues from a novel stand-
point. Our approach involves generating hallucinated fea-
tures of the previous domain during FAS model updating
to alleviate the plasticity-stability dilemma more efficiently,
as depicted in Figure 1 (c). To this end, we propose a novel
Domain-Hallucinated Updating (DHU) framework to facili-
tate the generation of the hallucinated features. Specifically,
to create the pseudo-previous features, Domain Information
Explorer is first designed to learn representative domain in-
formation from the previous domain for live and spoof data
separately. During the updating stage in the new domain,
we put forth Domain Information Hallucination module to
transfer the features from the new domain to hallucinated
features of the previous domain, utilizing the stored domain
information. Additionally, in conjunction with asymmetrical
supervision on real data, Hallucinated Features Joint Learn-
ing module aligns the features of both the new and pseudo-
previous domains for real samples at dual levels to learn
more generalized features, promoting the results on all do-
mains. Extensive experiments and analysis demonstrate the
superiority of our method over the state of the competitors.

The main contributions are summarized as follows:

• We tackle the MD-FAS issue from a new standpoint that
generates hallucinated features, alleviating the plasticity-
stability dilemma in a more efficient manner.

• We propose a novel framework Domain-Hallucinated
Updating (DHU) to learn previous information for live
and spoof data separately and then transfer the features

from the new domain to hallucinated previous ones. Fur-
thermore, we asymmetrically align the real features of
new and pseudo-previous domains to learn more gener-
alized features, promoting the results on all domains.

• Our method achieves promising performance on the
FASMD benchmark and extensive experiments demon-
strate the effectiveness of our approach.

Related Work
Face Anti-spoofing
Face Anti-spoofing task aims to distinguish between real
people and presentation attacks. Previous studies exploit
deep-learning-based features (Li et al. 2016; Yang et al.
2014) to capture the spoof cues. Then several auxiliary tasks
are introduced to enhance the performance (Zhang et al.
2021a,b), e.g. depth map, reflection map, and rPPG signal.
Some methods devise novel operators for extracting effec-
tive information like CDCN (Yu et al. 2020b) and BCN (Yu
et al. 2020a). However, these methods failed in scenarios
with domain shifts. To promote the performance on new do-
mains, Domain Generalization (DG) based methods (Chen
et al. 2021; Liu et al. 2021b; Wang et al. 2022a) and Domain
Adaption (DA) methods (Wang et al. 2021; Li et al. 2018)
are proposed. However, DG methods are unable to handle all
unseen domains, resulting in subpar performance. DA meth-
ods necessitate source data during updating, but accessing
this data is not always feasible due to concerns surrounding
data privacy policies, which might fail DA methods. Such
practical issue has been studied in initial work (Guo et al.
2022), which is called Multi-Domain Learning Face Anti-
spoofing (MD-FAS) However, the estimated spoof cues in
(Guo et al. 2022) of the new data are still not efficient to
prevent forgetting due to the domain gap, which might in-
hibit learning effective features from the new domain.

Anti-forgetting Learning
Anti-forgetting learning updates models only with novel
data to enhance the performance on the new domain while
preserving the knowledge acquired from previous domains,
which alleviates the plasticity-stability dilemma. Response
regularization-based methods utilize responses from the
prior model, such as logits (Li, Hoiem et al. 2016; Dhar
et al. 2019), grad-CAM (Selvaraju et al. 2017; Aljundi et al.
2018), and estimated spoof cues (Guo et al. 2022), to prevent
forgetting. However, due to the domain gap, the responses
of new data may not be as accurate as those of previous
data, which might inhibit learning effective features from
the novel domain. Feature-space-divided methods separate
the feature space for different domains to prevent forgetting
via isolated parameters (Rebuffi, Bilen, and Vedaldi 2017,
2018; Rusu et al. 2016; Mallya and Lazebnik 2018) and
prompts (Wang, Huang, and Hong 2022; Xie, Yan, and He
2022). But, without the supervision of previous data, shared
parameters might overfit new domain data, which inevitably
causes catastrophic forgetting. Inspired by the impact of pre-
vious data, we alleviate this dilemma from a novel stand-
point that hallucinates the previous domain feature on new
domains to prohibit forgetting in a more efficient way.
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Figure 2: The overall structure of proposed Domain-Hallucinated Updating (DHU) framework. First, we propose Domain
Information Explorer to learn effective domain information in shallow layers. Also, we first propose Domain Information
Hallucination module to hallucinate the previous domain feature to prevent the forgetting issue. After obtaining the pseudo-
previous and new domain feature, we design Hallucinated Features Joint Learning to align the real input features from sample-
based view and distribution-based view for generalizability.

Method
In this section, we introduce the proposed Domain-
Hallucinated Updating (DHU) framework in detail. As de-
picted in Figure 2, we first devise Domain Information Ex-
plorer to learn representative domain information from the
current training domain. Then, Domain Information Hallu-
cination module is proposed to generate the pseudo-previous
features via stored domain information and utilize the hal-
lucinated feature to tackle the catastrophic-forgetting issue.
Furthermore, to take advantage of novel and hallucinate pre-
vious features, Hallucinated Features Joint Learning mod-
ule is presented to align features in an asymmetrical manner
from the sample-based view and distribution-based view to
improve the generalizability.

Domain Information Exploration
Definition of Domain Information. Given the input x ∈
Rc×h×w, we utilize a feature extractor F (x, θF ) to extract
the multi-layer feature as {fi ∈ Rci×hi×wi | i ∈ [0, l]},
where fi is the output feature from i-th layer. ci, hi, wi are
the feature’s channel number, width, and height. Since shal-
low layers tend to contain more domain-specific information
compared to deep layers, we focus on features from the first l
layers to collect relevant domain information. Following the
work (Wang et al. 2022b), we define the domain information
of a feature based on its mean and variance.

µi =
1

hi · wi

∑
hi

∑
wi

fi, σ2
i =

1

hi · wi

∑
hi

∑
wi

(fi − µi)
2,

(1)

where µi ∈ Rci , σi ∈ Rci . The domain information of the
feature is defined as the concatenation of its mean and vari-
ance from all shallow layers:

s = concat([µ0, σ0, · · · , µl, σl]) ∈ Rds , (2)

where concat(·) is the concatenation operation, ds =
2
∑

i ci is the dimension of the domain information.
Domain Information Explorer. To obtain the represen-
tative domain information from training data, we propose
Domain Information Explorer to capture such information.
First, we define a learnable buffer as B = {Bi ∈ RNBi

×ds |
i ∈ [0, 1]}, to extract and store domain information, where
i is the task-related label (0 as real, 1 as fake), NB =
NB0 + NB1 is the buffer size. Then we simultaneously op-
timize the model θF and buffer B via two steps: assign-
ing, and optimizing. Once the training is completed, the
learned buffer B already captures the current domain infor-
mation. Finally, we introduce the merging step to combine
the learned buffer B with the previous domain buffer Bprv,
resulting in more comprehensive domain information buffer.
Assigning step. First, we assign the domain information of
each sample, extracted by θ′F , to a corresponding item sBk in
buffer B. The assign function is:

s = argmax
k

P (sBk | sx, y; θ′F )

= argmax
k

P (sx | sBk , y; θ′F )P (sBk | y)∑NB
i=1 P (sx | sBi , y; θ′F )P (sBi | y)

= argmax
k

ŝ⊤x ŝ
By

k ,

(3)

where sx is calculated via Eq. 1, 2, sBk is the k-th item in
buffer B. ŝ = s

∥s∥2
is the normalized domain information.
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The assigned item sBk has the highest similarity with the
domain information of the sample. To implement the as-
sign function as a forwarding procedure, we utilize Gumbel-
Softmax (Jang, Gu, and Poole 2016) to ensure that Do-
main Information Explorer selects only one item sBk from
the buffer B while still allowing gradient backpropagation.
The procedure is formulated as:

ŝ = GumbelSoftmax(ŝ⊤x ŝ
By ) · ŝBy

= GumbelSoftmax(Mask(y) · ŝ⊤x ŝB) · ŝB

= GumbelSoftmax(Mask(y) · Q⊤K) · V,

(4)

Mask(y) is a boolean function to mask off stored domain
information with different labels. Finally, the assign function
is formulated using the attention module, where the query is
ŝx, and the key and value are ŝB.

Optimizing step. Based on the assignment of each sample,
we optimize the buffer B. First, to ensure the buffer B could
represent the overall domain information of training data,
we optimize each assigned item sBk in buffer B to ensure the
selected item is representative to corresponding sample:

Ld-info = E(x,y)∼DP (sBk |sx, y; θ′F )

=
1

N

N∑
i=1

log
e
κ·ŝ⊤xi

ŝBk∑NB
j=1 e

κ·ŝ⊤xi
ŝBj

,
(5)

where N is the batch size, κ is the temperature.

However, the learned buffer B may drop into a trivial so-
lution. For instance, only one item sBk in the buffer B is se-
lected and assigned with all input samples. To prevent trivial
solutions, we utilize entropy loss to assign the samples to the
buffer evenly:

Lentropy =
1

NB

NB∑
i=1

(ŝ⊤ · ŝBi ) log(ŝ⊤ · ŝBi ). (6)

Moreover, to enhance the initialization of buffer B for
capturing more comprehensive domain information, we uti-
lize the domain information from all samples and apply the
K-means (Hartigan and Wong 1979; Arthur and Vassilvitskii
2007) algorithm to obtain the centroid, which serves as the
initial value of the buffer B.

Merging step. Once updating to a novel domain, we get one
new buffer B of novel data. It’s impractical to save all the
domains buffer B since limited space during deployment.
Hence we apply K-means algorithm to select representative
buffers from the previous buffer Bprv and new buffer B.

Algorithm 1: Training Procedure of DHU

Input: Datasets {D1,D2, · · · ,Dn}
1 Initialize the buffer Bprv;
2 for i = 1 : n do
3 Initialize the buffer B;
4 while Training Steps do

// Assign step:
5 Compute s of x ∼ Di with extractor θF by

Eq. 1, 2;
6 Assign si to one item in buffer B via Eq. 3;

// Optimize Domain
Information Explorer:

7 Compute the total loss to optimize B:
LB = Ld-info + Lentropy;

8 B′ ← B −∇BLB;
// Hallucinated Features

Joint Learning:
9 Select one item in buffer Bprv for x ∼ Di

via Eq. 7;
10 Generate pseudo-previous features via

Eq. 8;
11 Compute the total loss:

Lθ′
F
= Lcls + Lhal + Lsmp + Ldist;

12 θ′F ← θF −∇θFLθF ;
13 end

// Merging Domain Information:
14 Bprv ← Kmeans(Bprv,B)
15 end

Domain-Hallucinated Feature Learning
Domain Information Hallucination. Domain Information
Hallucination module generates the pseudo-previous feature
(denoted as prv) by combining new features (denoted as
new) with stored buffer Bprv. Specifically, to synthesize the
previous-domain feature efficiently, we select a style item
s
Bprv

y

k from the buffer Bprv according to the similarity be-
tween the domain information of new samples and buffer.
The higher the similarity, the easier the style conversion be-
comes, and the less information is lost.

sprv = argmax
k

cos(snew, s
Bprv
y

k ), (7)

where snew are the domain information of novel data, sprv are
the selected item from the buffer Bprv, cos(·) is to calculate
cosine similarity. After obtaining the most similar previous
item sprv, we generate the feature in the initial layer:

f
prv’
0 =

fnew
0 − µnew

0

σnew
0

· λσ · σprv
0 + λµ · µprv

0 , (8)

where f prv’
0 is the simulated previous domain feature, λσ =

|σnew
0 |/|σ

prv
0 |, λµ = |µnew

0 |/|µ
prv
0 |. Since we select items

based on normalized features, it is necessary to rescale the
selected item to match the scale of the new feature. Then
the hallucinated feature of the previous domain f prv’

0 is fed
into the extractor θF , getting features {f prv’

i |i ∈ [1, l]}. For
each f prv’

i , we calculate domain information sprv’ via Eq. 1,
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Method
Spoof (A→B) Ethnicity (A→C) Age (A→D) Illumination (A→E) Average

A B avg A C avg A D avg A E avg A B-E avg
Joint 94.0 86.9 90.5 94.1 71.8 83.0 94.1 69.5 81.8 97.6 95.5 96.1 95.0 80.9 88.0
Source 97.4 - - 97.4 - - 97.4 - - 97.4 - - 97.0 - -
Finetune 74.2 82.1 78.2 79.2 73.9 76.6 86.6 67.6 77.1 88.4 89.0 88.7 82.1 78.2 80.1
LwF (2016) 86.6 77.6 82.1 86.2 73.6 79.9 89.3 57.1 73.2 89.1 90.0 89.6 87.8 74.5 81.2
LwM (2019) 94.4 72.4 83.4 92.3 66.4 79.3 90.3 59.3 74.8 94.9 89.6 92.3 93.1 71.8 82.5
MAS (2018) 90.1 82.1 86.1 82.5 74.7 78.6 91.8 67.8 79.8 92.0 83.7 87.9 89.1 77.1 83.1
FAS-wrapper† (2022) 89.7 70.7 80.2 91.2 73.9 82.6 92.2 66.2 79.2 93.2 90.7 92.0 91.6 75.4 83.5
ER (2019) 92.8 80.0 86.4 91.9 71.4 81.7 90.2 67.6 78.9 90.9 90.3 90.6 91.5 77.3 84.4
DER (2020) 88.4 70.0 79.2 93.4 61.8 77.6 90.1 61.5 75.8 94.4 85.3 89.8 91.5 69.6 80.6
GEM (2017) 95.3 75.2 85.3 90.7 71.8 81.2 91.9 66.8 79.3 95.1 89.9 92.6 93.3 75.9 84.6
A-GEM (2019) 95.5 76.5 86.0 92.9 73.0 83.0 92.3 66.3 79.3 94.4 90.4 92.4 93.8 76.6 85.1
Seri. Adapter (2017) 86.8 77.6 82.2 89.6 70.6 80.1 89.8 67.2 78.5 90.5 88.5 89.5 89.2 77.2 83.2
Para Adapter (2018) 88.5 82.6 85.6 90.3 70.6 80.5 90.2 68.3 79.3 90.4 84.0 87.2 89.9 76.4 83.1
Ours 90.2 83.1 86.7 96.2 74.7 85.5 96.9 68.9 82.9 95.2 92.6 93.9 94.6 79.8 87.2

Table 1: The performance reported in TPR@FPR=0.5%. The model first trains on the source dataset (A) and then train on other
datasets (B-E). avg indicates the average performance on two datasets. Bolded scores indicate the best performance. †: We
re-implement FAS-wrapper with ResNet-18 by inserting stacked CNN models as Discriminator into every ResNet layer.

2. Then, we encourage the shadow layers of extractor θF ex-
tract the features containing similar domain information sprv’

with assigned item sprv to preserve knowledge from previous
domains, which is formulated as:

Lhal = 1− cos(sprv’, sprv). (9)
Hallucinated Features Joint Learning. Considering that
utilizing pseudo previous feature jointly learning with the
new domain might overfit these data and hinder the gener-
alizability, we propose Hallucinated Features Joint Learning
module to tackle this issue. With the concern of larger do-
main distribution discrepancies in presentation attacks (Jia
et al. 2020), we only align the features of real samples in an
asymmetrical manner. On the one hand, the pseudo-previous
feature and corresponding novel feature should be close in
the feature space of deep layers. On the other hand, the
whole distribution from different domains should be con-
sistent. Therefore we align the real features from dual views
including sample-based and distribution-based views. First,
we align the real sample features in deep layers (i.e. from the
l-th layer to the last layer) that contains more task-related in-
formation in sample-based view via contrastive learning:

Lsmp = − 1

N

∑
yi=0

log
e
κ·(fprv’

xi
)⊤fnew

xi∑
yj=0 e

κ·(fprv’
xi

)⊤fnew
xj + e

κ·(fprv’
xj

)⊤fnew
xi

,

(10)
where f new

xi
, f prv’

xi are the l-th to last layer features from in-
put xi of new domain and pesudo-previous feature, κ is the
temperature. Then, to ensure consistency in the overall dis-
tribution of the real input, we utilize Jensen-Shannon Di-
vergence to constrain logits from different domains from a
distribution-based view:

Ldist = JSDyi=0(z
prv’
i ∥znew

i ), (11)

where JSD(·||·) is Jensen-Shannon Divergence, zprv’
i and

znew
i are the logits from the real input features. Also, the

pseudo-previous features should have the same prediction
as the new domain feature:

Lcls =− yi log(BC(znew
i ))− yi log(BC(zprv’

i )). (12)

Method AUC↑ ACER↓
Mean Forget Mean Forget

Joint 86.8 - 17.2 -
Finetune 83.0 15.7 21.0 16.1
LwF (2016) 84.2 15.3 21.6 14.6
LwM (2019) 84.1 15.1 21.2 10.1
MAS (2018) 83.2 13.9 22.4 11.7
ER (2019) 84.0 5.3 22.1 6.3
DER (2020) 81.4 11.2 22.2 10.4
GEM (2017) 81.3 15.0 24.4 12.4
A-GEM (2019) 83.5 11.3 21.2 12.6
Ours 84.6 10.9 20.8 9.6

Table 2: The performance reported in AUC and ACER
on long sequence CASIA→OULU→Idiap→MSU. Bolded
scores show the best performance. Underlined scores show
the second best performance.

Training Procedure
The overall training procedure is shown in Algorithm 1. In
each training stage, we learn the representative domain in-
formation buffer B via Domain Information Explorer and
train the model via Domain-Hallucinated Feature Learning.

Experiments
Experimental Setup
Databases. Following the previous work (Guo et al.
2022), we utilize the FASMD dataset based on SiW (Liu,
Jourabloo, and Liu 2018), SiW-Mv2 (Liu et al. 2019) and
OULU-NPU (Boulkenafet et al. 2017) to evaluate the pro-
posed methods. The dataset is divided into five parts, includ-
ing the source dataset (A), dataset with new spoof type (B),
with new ethnicity distribution (C), with new age distribu-
tion (D), and with new illumination (E). Strictly following
the setting (Guo et al. 2022), we begin by training on the
source dataset (A) and subsequently on other datasets with
varying domain distributions (B-E). There are four proto-
cols in place: namely A→B, A→C, A→D, A→E. Besides,
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Method TPR↑ ACER↓
C D E avg C D E avg

Joint 19.9 46.9 54.6 40.5 18.6 20.6 11.1 16.8
Source 65.6 18.2 91.4 58.4 6.8 10.5 3.0 6.8
Finetune 44.8 31.2 91.4 55.8 18.2 10.3 3.3 10.6
LwF 80.2 37.1 95.2 70.8 6.7 7.5 2.8 5.7
LwM 79.8 42.9 94.7 72.5 6.6 6.6 2.8 5.3
MAS 41.5 43.9 75.8 53.7 13.7 10.6 9.0 11.1
FAS-warpper 59.3 45.6 85.2 63.5 8.3 6.2 4.2 6.2
ER 51.9 68.8 96.0 82.4 8.4 6.6 2.5 5.8
DER 58.9 37.4 72.4 56.2 8.8 16.2 6.1 10.4
GEM 58.1 47.0 83.9 66.3 9.3 7.6 3.5 6.8
A-GEM 66.8 37.9 85.3 63.3 10.9 10.8 4.2 8.6
Seri. Adapter 52.3 35.7 87.2 58.4 9.6 10.7 4.6 8.3
Para Adapter 56.1 33.2 86.6 58.6 9.1 10.9 4.3 8.1
Ours 80.5 70.9 97.5 83.0 8.5 6.0 1.4 5.3

Table 3: The performance on unseen domains in
TPR@FPR=0.5% and ACER. The model first trains
sequentially with datasets A and B and tests on C-E. The
result in Serial, and Parallel Res-Adapter is the average
result with different adapters.

to evaluate the adaptation abilities of models in the context
of continuous domain changing, we conduct the experiment
on long sequences using four datasets including OULU-
NPU (Boulkenafet et al. 2017), CASIA-FASD (Zhang et al.
2012), Idiap Replay-Attack (Chingovska, Anjos, and Mar-
cel 2012) and MSU-MFSD (Wen et al. 2015) in sequence
CASIA→OULU→Idiap→MSU. Furthermore, we evaluate
the generalization capabilities of methods based on the
aforementioned setting. This involves training on datasets
A and B sequentially and testing on unseen datasets C-
E. We apply Attack Presentation Classification Error Rate
(APCER), Bona Fide Presentation Classification Error Rate
(BPCER), Average Classification Error Rate (ACER), Area
Under Curve (AUC), and True Positive Rate at False Posi-
tive Rate = 0.5% (TPR@FPR=0.5%) as metrics.

Implementation Details. The input is detected face re-
gion normalized to size 256× 256 with RGB channels. The
extractor used is ResNet18 (He et al. 2016) with 4 layers.
The size of buffer NB is 200 with NB0 : NB1 = 1 : 1 and the
dimension of domain information is ds = 512 from the first
2 layers. The batch size is 16, and the ratio of the real and
fake images is 1 : 1. Strictly following (Guo et al. 2022), the
ratio of the images from OULU-NPU, SiW, and SiW-Mv2
is set to 1 : 1 : 2. We set l = 2, κ = 1/0.7. The learning
rate is 1e-2 and we train each dataset for 50,000 steps. We
use the public Pytorch (Paszke et al. 2017) framework with
32G Tesla V100 on Linux OS to implement our framework.

Comparison Results
Performance on Anti-forgetting Setting. We follow the
previous work (Guo et al. 2022), and test our methods with
the following methods: “Joint” trains on the source and tar-
get together; “Source” only trains on the source; “Finetune”
first trains on the source and simply updates on the target,
which is the upper bounding for simultaneous training on
both source and target. The compared methods include re-

Lcls Lhal Lsmp Ldist A C avg
! 90.2 67.6 78.9
! ! 93.0 71.8 82.4
! ! ! 95.2 73.4 84.3
! ! ! 94.8 73.9 84.4
! ! 92.2 71.3 81.8
! ! 91.0 71.7 81.4
! ! ! 92.6 71.2 81.9
! ! ! ! 96.2 74.7 85.5

Table 4: Ablation study on loss functions under A→C.

Learning Strategy A C avg
Random 68.3 73.9 71.1
Kmeans (1979) 82.7 75.1 78.9
DeepCluster (2018) 89.5 74.3 81.9
DHU(Ours) 93.1 75.5 84.3

Table 5: Ablation Study on different methods to obtain do-
main information in the previous training stage.

sponse regularization-based methods like LwF (Li, Hoiem
et al. 2016), LwM (Dhar et al. 2019) and MAS (Aljundi
et al. 2018), FAS-warpper (Guo et al. 2022). Also, we com-
pared with some parameter isolation methods like Serial
and Parallel Res-Adapter (Rebuffi, Bilen, and Vedaldi 2017,
2018). Extensively, we compare with replay-based methods
which store a small size of source data in the buffer. We se-
lect ER (Riemer et al. 2019), DER (Buzzega et al. 2020),
GEM (Lopez-Paz and Ranzato 2017), A-GEM (Chaudhry
et al. 2019) with the buffer size 200. Table 1 shows the
performance of TPR@FPR = 0.5% on four protocols. We
have the following observations: 1) Response regularization-
based methods show worse performance because the re-
sponse is untrustworthy due to the domain gap. 2) Replay-
based methods have better performance but suffer an over-
fitting issue for small buffer data. Also, they need to store
many exemplars from the previous dataset. 3) Parameter-
isolated methods that shares parameters may overfit the new
domain which would hinder source domain performance.
4) Our method shows the best result, which indicates that
DHU framework has a better ability to tackle plasticity-
stability dilemma. Especially, our methods surpass the best
previous methods with 0.3%, 2.5%, 3.1%, 1.3%, and 2.1%
on average. Also, we provide the performance of long se-
quence updating in Table 2. Our method shows the best per-
formance compared to previous methods in average perfor-
mance and demonstrates comparable results with memory-
based methods in forgetting. Different from such methods,
like ER (Riemer et al. 2019), storing previous images to
prevent forgetting, we only store some effective buffers to
achieve the comparable effect of preservation on previous
knowledge, which verifies the effectiveness of our method.

Performance on Generalization Setting. To verify the
generalization ability, we extensively generate three proto-
cols. We first sequentially train the model with datasets A
and B, then test on datasets with unseen different domains C-
E, with the metrics TPR@FPR=0.5% and ACER. In Table 3,
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Figure 3: The t-SNE visualization of the feature from dif-
ferent layers. (a) shows the previous, hallucinated previous,
and new feature in the shallow layer (f2) (b) shows the pre-
vious and new feature in the deep layer (f4).

our method indicates the best performance compared to pre-
vious methods. Our method proposed Hallucinated Features
Joint Learning module to align real input features from dif-
ferent domains that improve generalizability. However, pre-
vious methods do not contain a special design to tackle the
generalizable issue. For instance, response regularization-
based methods failed to generalize due to the domain gap
which cause responses meaningless to the novel domain
and obstacles to the model learning generalizable features.
Replay-based methods with the limited data size may cause
the overfitting issue and degrade model generalizability.

Ablation Study
Study on Different Loss Functions. We verify the effec-
tiveness of different loss functions on A→C task. As shown
in Table 4, we have the following observations: 1) Replaying
the domain information with Lhal significantly enhances the
preservation of knowledge of the previous domain. 2) Lsmp
and Ldist improve the average performance on two domain
datasets which reflects that joint feature alignment indeed
improves the performance on both domains. 3) With all loss
functions, our method shows the best performance, which
verifies that all loss functions benefit the performance and
play important roles in the proposed network.

Study on Domain Information Learning Strategy. In
this section, we explore the influence of different domain in-
formation exploration strategies on A→C setting. In “Ran-
dom” strategy, we randomly store the domain information of
200 samples. In “Kmeans” strategy, we extract the domain
information from all data and run K-means algorithm to ob-
tain the 200 centroids. In “DeepCluster” (Caron et al. 2018)
strategy, we run the K-means every epoch to assign the do-
main information with pseudo label and train a classifier to
predict the pseudo label. As shown in Table 5, each method
exhibits similar performance on new domain C. However,
compared with DHU, all of them experience a significant
drop in performance on the previous domain A. Our method
learns better bufferB through Domain Information Explorer,
which shows the best performance on the previous domain.

Figure 4: The t-SNE visualization of the previous domain
information distribution. The right pictures show examples
from different domain information groups.

Visualization and Analysis
Analysis of the Feature Distribution. To verify the ef-
fectiveness of Domain Information Hallucination module
and Hallucinated Features Joint Learning module, we vi-
sualize the feature distribution from different layers via t-
SNE (Maaten and Hinton 2008) in Figure 3. (a) shows the
inferred shallow features f2 of the model. Due to the con-
straints of the Lhal, the network still generates features simi-
lar to the original previous ones, which avoids the forgetting
problem. (b) shows the deep features f4. There is a clear
boundary between real and fake samples, and the distribu-
tions of real samples in different domains are more consis-
tent than presentation attacks, which indicates the generaliz-
ability of the Hallucinated Features Joint Learning module.

Visualization of Domain Information. We visualize the
learned buffer B in the feature space with previous domain
data to gain insights into domain information that is learned
in buffer B. As shown in Figure 4, the learned buffer B cov-
ers the whole domain information distribution of previous
domain data. Also, we display some samples assigned to the
same buffer, demonstrating a high level of consistency. For
example, in Domain Information Group 1, the samples con-
tain a higher brightness, while the samples in Domain Infor-
mation Group 3 contain a lower brightness.

Conclusion
In this paper, we propose a novel Domain-Hallucinated Up-
dating (DHU) framework to address the challenging task
of Multi-domain Face Anti-Spoofing (MD-FAS). First, we
introduce Domain Information Explorer in the previous
training stage that learns representative domain information
buffer B. Then, Domain Information Hallucination module
is designed in the new training stage to generate pseudo-
previous domain information to prevent forgetting. Addi-
tionally, we devise Hallucinated Features Joint Learning
module to utilize pseudo-previous and new domain features,
which aligns real samples’ features from sample-based and
distribution-based views to improve model’s generalizabil-
ity. The experimental results and visualizations demonstrate
that the proposed method outperforms other competitors.
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