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Abstract

In today’s online advertising markets, a crucial requirement
for an advertiser is to control her total expenditure within
a time horizon under some budget. Among various budget
control methods, throttling has emerged as a popular choice,
managing an advertiser’s total expenditure by selecting only
a subset of auctions to participate in. This paper provides a
theoretical panorama of a single advertiser’s dynamic budget
throttling process in repeated second-price auctions. We first
establish a lower bound on the regret and an upper bound
on the asymptotic competitive ratio for any throttling algo-
rithm, respectively, when the advertiser’s values are stochas-
tic and adversarial. Regarding the algorithmic side, we pro-
pose the OGD-CB algorithm, which guarantees a near-optimal
expected regret with stochastic values. On the other hand,
when values are adversarial, we prove that this algorithm also
reaches the upper bound on the asymptotic competitive ratio.
We further compare throttling with pacing, another widely
adopted budget control method, in repeated second-price auc-
tions. In the stochastic case, we demonstrate that pacing is
generally superior to throttling for the advertiser, supporting
the well-known result that pacing is asymptotically optimal
in this scenario. However, in the adversarial case, we give an
exciting result indicating that throttling is also an asymptot-
ically optimal dynamic bidding strategy. Our results bridge
the gaps in theoretical research of throttling in repeated auc-
tions and comprehensively reveal the ability of this popular
budget-smoothing strategy.

Introduction

In recent years, the online advertising market has experienced
significant growth, driven by the rise of new social media plat-
forms such as short videos. When a user submits an ad query
to the market, an auction is held among all interested adver-
tisers, and the winner is awarded the opportunity to display
their ad. Owing to the vast market volume, it is common for
advertisers to set a budget to regulate their expenditure over
a specified period. Correspondingly, advertising platforms
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provide advertisers with various budget control methods to
choose from.

This work studies one of these methods, called throttling
(a.k.a. probabilistic pacing), which is widely adopted by
major advertising platforms including Facebook (Facebook
2017), Google (Karande, Mehta, and Srikant 2013), LinkedIn
(Agarwal et al. 2014) and Yahoo! (Xu et al. 2015). Under this
method, an advertiser’s accumulated payment is controlled
by being excluded from a fraction of auctions throughout the
entire period (e.g., a day, a week, or a month). Compared to
other budget management strategies (Balseiro et al. 2021),
such as pacing (a.k.a. bid-shading), an essential feature of
throttling is that an advertiser’s bid is never altered in any auc-
tion instance. As revealed in the literature (Karande, Mehta,
and Srikant 2013; Chen, Kroer, and Kumar 2021), this fea-
ture attracts a large number of advertisers to use the throttling
strategy due to two primary reasons. (a) Some advertisers
do not permit the platform to modify their bids, forcing the
platform to exclude them from some auctions to control their
budget, i.e., adopting the throttling strategy. (b) Strategies
that modify bids, such as pacing, may allocate an advertiser
to those auctions where she is superior to other advertisers,
and could be detrimental for the advertiser to exploit other
parts of the market. In contrast, with unmodified bids compet-
ing, the throttling strategy provides advertisers with a more
straightforward and unbiased observation of various users,
enabling them to gain a clearer understanding of their com-
petitiveness in different market sectors. For instance, under
pacing, a small budget on some market sectors to be explored
would lead to a small pacing multiplier on the advertiser’s
bid, which would cause the advertiser to win nothing in this
sector, considering other advertisers who are superior. In
comparison, under throttling, even with a small budget, the
advertiser has a chance to have a competitive bid (as the bid
is not modified) and win in some auctions, thus helping the
advertiser to explore the new market sector with a small cost.
These phenomena illustrate the importance of throttling as a
popular budget control method.

The throttling strategy has been extensively explored in
the literature, primarily from an empirical perspective evalu-
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ating the performance of specific algorithms (Agarwal et al.
2014; Karande, Mehta, and Srikant 2013; Xu et al. 2015).
Some work has also considered the theoretical equilibrium
problem when multiple buyers simultaneously adopt the throt-
tling strategy (Balseiro et al. 2021; Chen, Kroer, and Kumar
2021). However, there is currently no literature that takes
the perspective of the advertiser and concentrates on how to
theoretically optimize their accumulated revenue through a
throttling strategy in repeated auctions. The aim of this pa-
per is to address this problem and design dynamic throttling
algorithms that achieve good performance in various input
models. In practice, such a throttling strategy is implemented
through an auto-bidding service that receives the advertiser’s
values and makes binary choices on behalf of the advertiser
in each auction. However, to simplify the terminology and
description, this work shifts the throttling control to the ad-
vertiser as a subjective strategy that takes objective values as
inputs, which is equivalent to the real-world scenario.

Our Contributions

This work gives a theoretical panorama of an advertiser’s
dynamic throttling strategy in repeated second-price auctions.
Specifically, our contributions are three-wise along the fol-
lowing lines.

Formalization, bounds, and impossibility results. We for-
malize the problem of dynamic throttling in repeated second-
price auctions from the perspective of a single advertiser
in two value input models; namely, where private values v
are stochastic and adversarial, respectively. To model other
bidders’ bids, we assume the highest competing bids p to
be stochastic and following an unknown 1i.i.d. distribution.
When v are stochastic, we measure the performance of a
throttling strategy by considering its regret and establish an
Q(V/T) lower bound on the expected regret (Theorem 1).
On the other hand, when v are adversarial, we measure the
performance of a throttling strategy by considering its asymp-
totic competitive ratio and demonstrate that any throttling
strategy’s asymptotic competitive ratio cannot exceed the
advertiser’s regularized average budget (Theorem 2), i.e., the
average budget divided by the maximum value. Note that the
i.i.d. assumption on p is a common practice in the literature.
In fact, effective learning could be impossible for the bidder
without this assumption, as we show in the full version of
this work (Chen et al. 2022b) that any throttling strategy can
behave arbitrarily poorly when p are adversarial.

Our OGD-CB algorithm and analysis. Following the
above bound results, we combine the online optimization
method and the distribution estimation technique and pro-
pose an algorithm that is oblivious to the value input model.
More technically, it is based on online gradient descent and
confidence intervals, referred to as the OGD-CB algorithm
(Algorithm 1). Practically, the ability to observe a sample
of the highest competing bid affects the algorithm’s estima-
tion accuracy of the distribution of p, and we consider our
algorithm’s performance under two information models in
order: (a) full information feedback, where the advertiser can
observe the highest competing bid in each round; (b) partial
information feedback, where the advertiser can only acquire
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the highest competing bid when she participates in an auction.
The latter information structure presents greater difficulty in
distribution estimation but is more practical for auto-bidding
services in the industry, especially if the platform announces
the highest bid to all participants after an auction (Google Ad
Exchange 2022).

Theoretically, we prove that with either full or partial in-
formation feedback, our OGD-CB algorithm achieves an
O(v/TlogT) regret with probability 1 — O(1/T) for the
stochastic value input model (Theorems 3 and 5). This result
implies a near-optimal O (/T log T') expected regret. For the
adversarial value input model, we show that it also possesses
an optimal asymptotic competitive ratio with either full or
partial information feedback (Theorems 4 and 6). We summa-
rize these performance guarantees together with the bound
results in Table 1.

In addition to its high performance, our algorithm has two
additional advantages. Firstly, it is computation-friendly, as
the decision and update process only takes constant time in
each round. Second, compared with other algorithms, our
solution does not rely on any particular structure of the dis-
tribution of the highest competing bid. Notably, our solution
does not require the (interim) reward/cost function to be lin-
ear, convex/concave, or even continuous. In particular, our
solution even works for discrete distributions.

Comparison between throttling and pacing. Subse-
quently, we compare the throttling strategy with the cele-
brated pacing strategy (Balseiro and Gur 2019) in repeated
second-price auctions. It is worth noting that the latter is
known to be asymptotically optimal when v and p are si-
multaneously stochastic or adversarial. When v and p are
stochastic, we show that, in general cases, throttling results
in a ©(T") loss compared to pacing on the advertiser’s ex-
pected revenue (Theorem 7). We also give special conditions

under which these two strategies exhibit only an O(v/T) dif-
ference under full/partial information feedback (Theorem 8),
for completeness. Excitingly, when v is adversarial and p is
stochastic, we demonstrate that throttling is an asymptotically
optimal bidding strategy under full/partial information feed-
back. Furthermore, our OGD-CB algorithm is also optimal
in this case. This result reveals the importance of throttling
as a budget-smoothing method in advertising, and fills the
gaps in research on dynamic bidding strategies with adver-
sarial values and stochastic competing bids under repeated
second-price auctions.

Related Work

In this part, we will review two popular budget management
strategies in repeated auctions: throttling and pacing, further
discussion on technically related works.

Previous work on dynamic throttling mainly centers on ex-
perimental investigations. Among them, Karande, Mehta, and
Srikant (2013) explore the concept of fair allocation in gener-
alized second-price (GSP) auctions, wherein they present an
optimal throttling algorithm for diverse objectives. Agarwal
et al. (2014) also focus on GSP auctions from an advertiser’s
side and implements their algorithm in LinkedIn’s ad serving
system. Xu et al. (2015) evaluate a practical online throttling
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Value Input Model

Stochastic

Adversarial

Information Structure Full

Partial Full Partial

Bounds

OGD-CB

Q(VT) regret
(Theorem 1)

O(V/TlogT) regret
(Theorems 3 and 5)

(p/v)-asymptotic
competitive ratio
(Theorem 2)

(p/v)-asymptotic

competitive ratio
(Theorems 4 and 6)

T: Number of auctions.

p: Average budget.

v: Maximum value.

Table 1: The bounds and the performance of OGD-CB under different value input models and information structures.

algorithm on the demand-side platform. Recently, Gui, Nair,
and Niu (2022) show how to conduct causal inference of
online advertising effects in the budget throttling market. On
the theoretical side, some work (Balseiro et al. 2021; Chen,
Kroer, and Kumar 2021) focuses on the market equilibrium
when all advertisers simultaneously follow a random throt-
tling strategy from either a continuous or discrete view. In
contrast, our work examines the dynamics of throttling in
the repeated advertising market. Additionally, Charles et al.
(2013) study the regret-free allocation for advertisers’ ROI,
and shows that such a heuristic outperforms the random throt-
tling strategy for advertisers. Meanwhile, other work looks
into a similar problem for Internet keyword search, known
as the AdWords problem (Mehta et al. 2007, 2013) in the
framework of online matching. However, this line of work
concentrates on the platform’s side rather than the advertiser’s
side.

Pacing is another well-studied budget control strategy, in
which an advertiser shades her value by a constant factor
on her bid. Existing work studies this strategy from both
dynamic view (Balseiro and Gur 2019; Borgs et al. 2007;
Gaitonde et al. 2023; Celli et al. 2022; Lee, Jalali, and Das-
dan 2013) and equilibrium perspectives (Balseiro, Besbes,
and Weintraub 2015; Conitzer et al. 2022a,b). Among these,
the result of Balseiro and Gur (2019) is highly correlated
with our solution, which also considers the dual space. Nev-
ertheless, the analysis of their algorithm depends on the con-
tinuity of the distribution function, which is not necessary for
our algorithm. Some papers compare various budget control
methods and explore their relationships from the equilibrium
view (Balseiro et al. 2021; Chen et al. 2022a; Balseiro, Kroer,
and Kumar 2023). In particular, Balseiro et al. (2021) show
that in the symmetric system equilibrium, throttling yields
a higher profit for the platform than pacing under certain
assumptions. A part of our results extends the comparison
between throttling and pacing from an advertiser’s viewpoint
from a dynamic view.

Technically, our problem is closely related to the net-
work revenue management (NRM) problem (Gallego and
Van Ryzin 1994, 1997) and the contextual bandits with knap-
sacks (CBwK) problem. However, there are significant differ-
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ences between our work and the existing literature. In contrast
to NRM, our agent’s reward and cost are random with the
highest competing bid, while such randomness is not present
in NRM problems. Moreover, our setting diverges from the
literature on CBwK in multiple ways. Firstly, early work in
CBwK (Agrawal, Devanur, and Li 2016; Badanidiyuru, Lang-
ford, and Slivkins 2014) assumes that the context set is finite,
whereas we do not make such assumptions. Secondly, some
work in CBwK (Agrawal and Devanur 2016; Sivakumar, Zuo,
and Banerjee 2022; Han et al. 2023; Slivkins, Sankararaman,
and Foster 2023) assumes a specific relationship between the
expectation of reward/cost and the context, i.e., requires a
specific distribution of the highest competing bid. However,
our work sets no such limitation on this distribution. Finally,
other work (Wu et al. 2015; Balseiro, Besbes, and Pizarro
2023; Liu and Grigas 2022; Ai et al. 2022) supposes that
the context is drawn stochastically i.i.d. from some distribu-
tion. In contrast, our solution is oblivious to the context input
model, allowing it to deal with adversarial context inputs.
This is particularly important for auto-bidding services, as
the value for an ad slot can be affected by multiple features
and could vary over time. Therefore, it is crucial to design
algorithms that can handle different value input models si-
multaneously. At last, our problem is also correlated with the
bandits with knapsacks (BwK) problem (e.g., (Castiglioni,
Celli, and Kroer 2022)). However, in that problem, the action
in each round is chosen without any context, and the optimal
action mode is universal. In contrast, in our problem, the
optimal action is relevant to the value observed at the start of
each auction.

Model

Basic settings. In this work, we consider the repeated
second-price auction market, where an advertiser with a
budget constraint competes against other advertisers. The
market comprises 7' rounds of auctions, and in each round
te[T)={1,2,---,T}, anitem is to be sold to a buyer via
a second-price auction. Here, we suppose that 7" > 1. To
match the more prevalent terminology in the literature, we
refer to the “advertiser” as the “buyer” in the remaining parts.

This work adopts the perspective of a fixed buyer. In each
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round ¢t € [T, she obtains a personal value for the item,
represented by v; € [0, U], where ¥ is a constant upper bound
on v;. We denote the highest competing bid against the buyer
as py, which is assumed to be i.i.d. sampled from an unknown
distribution G with a support of [0, ©]. This assumption comes
from the mean-field approximation (Balseiro, Besbes, and
Weintraub 2015) and is commonly used in the literature. We
use v to represent the buyer’s value vector across 7' rounds,
i.e., v == (vg)se[ry; similarly, p == (pi)e[7)-

We assume the buyer has a total budget of B across all
T rounds, with the maximum average expenditure being
p = B/T per round. In this paper, we suppose that p < ©
is a constant. This assumption comes from the practice in
which the buyer is always asked to set a budget for a fixed
period, with relatively fixed rounds of auctions. In each round
t, the buyer makes a decision z; € {0, 1} based on the value
v¢. The binary selection of the buyer reflects the nature of
throttling, where x; = 1 denotes participation in the auction,
and z; = 0 means saving the budget and not participating in
the auction'. After the decision, the buyer receives a reward
of x;7; and incurs a cost of x;¢; in this round, where r; and
¢; are defined as:

)t

re=(ve—pe)", ¢ =plfve > pyl.

In the above, (v; — p;)™ in the expression for r; stands for
the positive part of (v; — p;). Thus, the buyer can obtain a
positive reward and cost in round ¢ only by opting to “enter”
(i.e., x;y = 1) and wins (i.e., vy > p¢). In this case, her cost is
p¢, and her reward is v, — p; for a second-price auction. Once
again, we mention here that in the literature on throttling, it
is commonly assumed that the buyer bids truthfully as long
as she enters an auction.

Information structure. We consider two different infor-
mation models in this work:

1. [Full information feedback.] The buyer observes p; at
the end of any round ¢.

[Partial information feedback.] The buyer observes p;
at the end of round ¢ only if she chooses to participate in
the auction in this round, i.e., if x; = 1.

In comparison to the full information feedback model,
it is evident that the partial information feedback model is
more challenging to manage since the buyer can access less
information. Additionally, a natural model with even less
information than the two we discuss is the bandit feedback
model, in which the buyer only sees r; and ¢; in round ¢ in-
stead of p;. Recently, some research (Slivkins, Sankararaman,
and Foster 2023; Han et al. 2023) has investigated this model
in the problem of contextual bandits with knapsacks (CBwK),
which is a generalization of our problem. Nevertheless, this
line uses online regression techniques and has specific re-
quirements on E[r¢, ¢; | v¢] as a function of vy, e.g., being
linear. In other words, their method has strong assumptions
on the distribution G of p; in our problem. As far as we know,
these assumptions are necessary in the literature for bandits
information feedback. In contrast, in this work, we do not

't is required in throttling that the buyer truthfully bids. The
motivation here is discussed in the Introduction.
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impose any restriction on the distribution G. Our solution is
oblivious to the distribution GG, and thus model-free. In this
respect, our information feedback model is comparable to
existing works.

We generally use H; to denote the history that the buyer
can access at the start of round ¢. For the full information
feedback model, we use H} = (v;, T+, pr)1<r<: to denote
the buyer’s view at the start of round ¢. We should note
that in this model, p; is always available to the buyer at the
end of each round 7, and r, and ¢, can be inferred from
vr, &, and p,. For the partial information feedback model,
since p, is disclosed to the buyer if and only if =z, = 1,
we accordingly define the history available at round ¢ as
HY = (v, Tr, T+ Dr)1<r <. Itis worth noting that p, cannot
be deduced from x, and x.p, when z, = 0. Likewise, 7
and c; can also be derived using v,, xr and x.p, in this
information model.

The throttling strategy. With the above notation, we now
formally define the buyer’s throttling strategy. Prior to making
a decision, the buyer can see H; and v; in each round t.
Denoting the buyer’s single-round strategy in round ¢ by
B : [0,9]%7 x {0,1}t71 x ' — {0, 1}, we have

@y = Be (He, ve,7e) -

Here, v, € T is sampled from a probability space to depict
the potential randomness involved in calculating x;. Let v =
(¢ )terr)- As aresult, 3 == (3;);e[r) encompasses the buyer’s
single-round strategy for all 7" rounds and represents her
overall throttling strategy.

With v, p and randomness =y given, we denote the stopping
time of strategy /3 by Toﬁ(v,p, ) < T, i.e., the last round
with z; = 1. When the context is clear, we abbreviate this as
Ty. Consequently, the total revenue of S with inputs v and p
is given by:

To
U/B(vap,PY) = Z LTt
t=1

Value Model and Benchmark

As previously suggested, this work examines two distinct
input models for the values (v¢)¢c|7): the stochastic model
and the adversarial model.

Stochastic values and regret. Concerning the stochastic
value model, it is assumed that for each ¢, v; is drawn i.i.d.
from some unknown distribution F' with a support on [0, 7].
We additionally suppose that I and G are independent. In this
case, the performance of a throttling strategy is assessed by
comparing its reward with the fluid adaptive throttling bench-
mark. The latter represents the optimal expected revenue of
any random strategy given the value without exceeding the
budget in expectation. Specifically,

OPT =T

max
:[0,0]—[0,1]

Eonrpac [m(v) - pLlv = p]] < p.

vaF,pNG [ﬂ'(’U) ’ (’U 7p)+] ’
s.t.
(1)

It is known that OPT provides an upper bound for the ex-
pected total reward of any throttling strategy with stochastic
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values (Balseiro, Besbes, and Pizarro 2023). Consequently,
we can define the regret of strategy [ in relation to OPT
given v, p and randomness ~y. That is,

R@gB(’U,IL 7) = OPT — Uﬂ(’U,IL’)’)

Clearly, under stochastic values, our goal is to design a
throttling strategy /3 that results in a low expectation of
Reg®(v,p, ). A stronger requirement is to ensure a small
Reg® (v, p,~) with high probability on samples (v, p) and
randomness .

Adversarial values and asymptotic competitive ratio.
We also consider the scenario that the inputs of (v;)c[7y
are adversarial on [0, 7], which accounts for the situations
where the buyer lacks confidence in the item distribution. In
this regard, we first define the hindsight throttling benchmark,
which is the optimal performance advertiser could attain with
the benefit of hindsight on v and p. Specifically,

Extvt pt ,

max

Un ('U p wE{O l}T

@)

T

> wmpedfo > pi] < Tp.
t=1

Evidently, Ug (v, p) bounds U? (v, p,~) for any strategy
[ and randomness «y. We then define a throttling strategy
B to be asymptotically p-competitive for p1 € (0, 1], if the
following condition holds:

liminf inf
T—o0,B=pT v,G

(% Epct o U (0,2,7) — 1 UH(”’p)D

> 0.

Bounds on Dynamic Throttling

In this section, we explore the optimal performance attainable
by any throttling strategy in the presence of either stochastic
or adversarial values. In the case of stochastic values, we ob-
tain a regret lower bound of (v/T'). On the other hand, with
adversarial values, we give an asymptotic competitive ratio
upper bound of p/v. In the full version of this work (Chen
et al. 2022b), we additionally derive an impossibility result
indicating that any throttling algorithm could achieve arbitrar-
ily small reward facing adversarial p even when {v; }c are
constant. This result underscores the necessity of presuming
stationary highest competing bids in the context of throttling.

Stochastic values. The following theorem gives our pri-
mary result for the regret lower bound with stochastic values:

Theorem 1. There exists an instance tuple (F', G) and some
constant C; > 0, such that for any online throttling strategy
B and 4|T (i.e., T is a multiple of 4), we have

E’UNFT,pNGT,’)' [Regﬁ ('U, Db, 7)] > Cl \/T

Similar results have been documented in Vera and Baner-
jee (2021); Bumpensanti and Wang (2020); Arlotto and Gur-
vich (2019) in the literature of network revenue management.
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However, in that problem, there is no randomness in the
reward and cost given the request (value), which is a simpli-
fication of our situation. The central idea of our proof is to
give an appropriate problem instance with a degenerate fluid
solution, where even the optimal throttling strategy with the
hindsight of v and p cannot avoid a regret of Q(+/T).

Note that the performance of an online throttling strategy
may only be inferior with partial information. As a result,
Theorem 1 implies that no online throttling strategy can al-
ways guarantee an 0(\/T) regret with partial information
feedback.

Adversarial values. With adversarial values, we settle an
upper bound on the asymptotic competitive ratio of any throt-
tling algorithm. In fact, we have the following theorem stating
that such an upper bound is p/7.

Theorem 2. For any u > p/7,

o ) 1 s
pAminf - inf (; “Epor 4 [U (v,p,7) — - UH(v,p)])
< 0.

Here, the lim inf notation stands for the limit inferior. The
proof of Theorem 2 follows Balseiro and Gur (2019). More
specifically, we first apply Yao’s principle (Yao 1977) and
change our problem into constructing a “hard” problem in-
stance with stochastic p and half-stochastic v that follows
some vector distribution. Here, the “hard” instance should
ensure that the asymptotic competitive ratio of any determin-
istic (rather than random) algorithm is no more than p/v. We
further let p be fixed across time. Therefore we are further
reduced to constructing a vector distribution of (v — p)™ that
blocks any deterministic throttling strategy.

The OGD-CB Algorithm and Performance

In this section, we introduce an online throttling strategy
called OGD-CB that is oblivious of the value model (stochas-
tic or adversarial value) and works under either full or partial
information feedback. For stochastic values, the regret of the
algorithm is upper-bounded by O (/T log T'), which is near
optimal based on the lower bound (Theorem 1). For adversar-
ial values, the OGD-CB algorithm is asymptotically (p/v)-
competitive regardless of the information model, matching
the upper bound given in Theorem 2.

The algorithm. Our OGD-CB algorithm is presented in
Algorithm 1. The algorithm starts with a one-round explo-
ration to make an appropriate initialization (Line 3-Line 5).
In each of the following rounds, after observing the value, the
algorithm chooses the action based on a dynamically updated
pricing parameter A\, (Line 9), which is updated to control
the rate of budget expenditure (Line 10). The update of \;
follows an online gradient descent (OGD) procedure for a
series of proper online reward functions, with step size 7.
Intuitively, a large )\, indicates that the budget is being spent
too quickly, and the algorithm reduces the frequency of en-
tering the market. Conversely, an average expenditure below
the ideal p in past rounds will result in a descent of \; and
encourage the algorithm to participate in the auction. This
intuition has been inspired by Balseiro, Lu, and Mirrokni
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Algorithm 1. The OGD-CB Algorithm.

Input: p, 7.
Initialization: 7, < (), B; «— B, \; « 0.

1 fort+ 1to7 do

2 Observe v;;
/+ A single round of
exploration. =/
if ¢t = 1 then
‘ @ 1, A1 < g
5 end
6 else

/* Estimate the revenue and
cost with a confidence

bound. */
7 e + /(log2 +2log T)/(2|Z:));
8 re(ve) ¢ O ez, (Ve — po) )/ Ti| + €vvr,

cr(ve) ez, prifve =

D))/ Te| — 2€pve;

/* Choose the action
according to the
estimates. */

9 Ty < l[ﬁ(vt) Z )\ta(vt)];

/+ Online gradient descent on
the pricing variable. x/

< 1/(0V1),
Arg1 — (A + me(xeCe(ve) — P))+§

10

11 end

*/

/* Observe the sample.

12 if (FULL-INFO) V (PARTIAL-INFO Nz; = 1)
then
13 | Observe py, Ty 1 + I, U {t};
14 end
15 else
16 ‘ It+1 — It;
17 end
/+ Update the remaining budget.
*/
18 Bt+1 — By — xic4;
19 if B;+1 < v then
20 | break;
21 end
22 end

(2023). However, a crucial distinction between our setting
and that work is that the buyer is unaware of the (expected)
revenue and cost given the value. To address this issue, we
employ the distribution estimation method and the confidence
bound (CB) technique. Specifically, at the start of each round,
the algorithm first provides estimates of the expected revenue
and cost based on the history (Line 8) and incorporates a
bias using the confidence bound, parameterized by ¢;, and
then makes the decision and updates according to the biased
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estimation. As the observation on the highest competing bid
p accumulates, the estimation of the reward and the cost
becomes more precise, and the bias value reduces to zero.

Stochastic values with full information feedback. We
now analyze the performance of the OGD-CB algorithm with
stochastic values and full information feedback. We show that
in this scenario, OGD-CB achieves an O(+/T log T') regret
bound against OPT, as given in the following theorem.

Theorem 3. With full information feedback, when {v; }¢er
are sampled i.i.d. from some distribution F on [0, ), there is
a constant CF, such that with probability at least 1 — 4T,
the OGD-CB algorithm guarantees

Reg?(v,p) < CF\/TlogT.

Adversarial values with full information feedback. We
further investigate the scenario where the value input could
be adversarial. In this case, we establish that the OGD-CB
algorithm attains a p/v asymptotic competitive ratio, which
matches the upper bound provided in Theorem 2.

Theorem 4. With full information feedback, the OGD-CB
algorithm guarantees

liminf inf
T—o0,B=pT v,G

<% “Epogr [Uﬁ(v,p) — g . UH(v,p)}) > 0.

Partial information feedback. In the partial information
setting, the buyer can only observe p; if she chooses to enter
the round ¢. As a result, the main obstacle here is that the
algorithm may not gather sufficient historical data to pro-
vide accurate estimates of 7(v;) and ¢(v). In other words,
we need to simultaneously limit the failure probability and
the estimation error. We overcome this issue by bounding
the entering frequency. More precisely, we use an induction
method to show that |Z;|, the entering frequency before round
t, increases linearly with ¢. The result is expressed in the fol-
lowing important lemma.

Lemma 1. Let C, := min{(1/2) - (p/)?, (v/2/4) - (p/0)}.
In the partial information setting, for any t > 2, the OGD-CB
algorithm guarantees that |I;| > C, - (t — 1).

Utilizing Lemma 1, we can revisit Theorems 3 and 4 and

obtain their corresponding versions under partial information.
Specifically, we have the following results.
Theorem 5. With partial information feedback, when
{vt }rer are sampled i.i.d. from some distribution F on [0, ¥],
there is a constant C*, such that with probability at least
1 —4/T, the OGD-CB algorithm guarantees

Regﬁ('v,p) <CP\/TlogT.

Theorem 6. With partial information feedback, the OGD-CB
algorithm guarantees

liminf inf
T—o0,B=pT v,G

(% ‘Epgr [U’B(v,p) — g -UH(v7p)]) > 0.

‘We notice that in Theorems 3 and 5, the difference between
CP and CF satisifies that

C’PCFO<T)-\/max{
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In other words, the difficulty of partial information feedback
highly correlates with the ratio ¥/ p. When this ratio increases,
i.e., the buyer’s average budget p becomes smaller, the partial
information feedback becomes more challenging. Intuitively,
with smaller p, the buyer has fewer chances to participate in
auctions and thus learns less information on the distribution
of the highest competing bid p with partial feedback, which
leads to an increase in regret.

Comparison between Throttling and Pacing

In this section, we aim to compare two popular budget con-
trol approaches in the dynamic setting: throttling and pacing.
Throttling, which is the focus of this work, involves limiting
the frequency of entering the auction, while pacing (Balseiro
and Gur 2019), involves shading the buyer’s value by an
adaptive multiplier and bid the shaded value in each round.
The latter approach has been extensively studied in the liter-
ature and widely adopted in the industry, as it is known to
be the asymptotically optimal bidding strategy when both v
and p are stochastic or adversarial. Specifically, we are most
interested in comparing the two dynamic strategies. This part
extends the result in Balseiro et al. (2021), which compares
these two strategies in system equilibrium, i.e., when the
dynamic process converges.

We now compare the two strategies under stochastic and
adversarial values, and restrict ourselves to full or partial
information feedback model. We denote by U™ (v, p, ) the
revenue of the optimal throttling strategy?® given v, p, and ~.
For comparison, we use UF (v, p) to represent the revenue
of the adaptive pacing strategy given in Balseiro and Gur
(2019).

Stochastic values. With stochastic values, we begin by
giving the following two assumptions.

Assumption 1. G is a continuous distribution on [0, 7] with
density strictly no less than some constant L > 0.

Assumption 2. For any A > 0, the measure that 7(v) /c(v) #
A is positive concerning distribution F'.

Under these two assumptions, we have the following theo-
rem.

Theorem 7. Under Assumptions 1 and 2, when E,, ,,[pl[v >
p]] > p, we have

Eop [UF(0,D)] —Evp~ [UT(v,p,7)] =O0(T).

We should emphasize that Assumptions 1 and 2 are not par-
ticularly strong. In fact, Assumption 1 holds for most parame-
terized continuous distribution families, while Assumption 2
holds true unless G has a special form, e.g., being a uni-
form distribution on [0, 7]. As a result, we can conclude that
under stochastic values, dynamic pacing (Balseiro and Gur
2019) would generally outperform even the optimal online
throttling strategy by a linear term on the buyer’s expected
revenue.

>The “optimality” here concerns the expected total revenue.
When v is stochastic, the expectation is taken on v, p and the
algorithm randomness <. When v is adversarial, the expectation is
only on p and ~.
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Nevertheless, for the completeness of this part, we also
mention some special cases in which these two strategies
have asymptotically similar performances.

Theorem 8. Let 8 be the OGD-CB algorithm. When (a) the
highest competing bid p is fixed, or (b) E,, p[p1[v > p]] < p,
then under full or partial information feedback, we have

[Evpry [UT(0.2,%)] ~ Eup [U(0,p)]| = O (VT) .
[Evp [U°(0.9)] ~ Eup [UT (v,p)] | = O (VT).

These results conclude our discussions on the comparison
of the two dynamic methods under stochastic values.

Adversarial values. Under adversarial values, we first re-
call the result of Balseiro and Gur (2019) on the performance
of dynamic pacing in this scenario.

Proposition 2 (From Balseiro and Gur (2019)). We have the
following:

liminf inf
T—o00,B=pT v,p

(:1r (UP(v,p) - g : UH(”?I’))) > 0.

A crucial point in Proposition 2 is that the adaptive pac-
ing algorithm can handle the case when both v and p are
adversarial and reaches optimality in this case (Balseiro and
Gur 2019). However, by our further results in the full ver-
sion (Chen et al. 2022b), this is impossible for any throttling
strategy.

Nevertheless, when only v is adversarial and p is stochas-
tic, notice that Theorem 2 can be extended to arbitrary bid-
ding strategies (which certainly includes throttling and pac-
ing) without any modification on the proof. Therefore, com-
bining our positive result on the OGD-CB algorithm (Theo-
rems 4 and 6), we conclude that OGD-CB is asymptotically
optimal under this scenario.

Concluding Remarks

This work provides a comprehensive discussion on the dy-
namic throttling strategy in repeated second-price auctions
from a buyer’s viewpoint. More specifically, we investigate
the optimal performance of any throttling algorithm when the
buyer’s values and the highest competing bids are stochas-
tic or adversarial. On top of that, we propose an OGD-CB
algorithm that achieves (near) optimality under both full and
partial information structure, regardless of the value input
model when the highest competing bid is stochastic. Further-
more, we compare the dynamic throttling strategy to dynamic
pacing under different settings. When the values are stochas-
tic, dynamic throttling strategy generally exhibits a linear
gap in comparison to dynamic pacing concerning the buyer’s
revenue. However, with adversarial values, we demonstrate
that OGD-CB is asymptotically the best bidding strategies
with full or partial information feedback.
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