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Abstract
The integration of Spiking Neural Networks (SNNs) and
Graph Neural Networks (GNNs) is gradually attracting atten-
tion due to the low power consumption and high efficiency
in processing the non-Euclidean data represented by graphs.
However, as a common problem, dynamic graph representa-
tion learning faces challenges such as high complexity and
large memory overheads. Current work often uses SNNs in-
stead of Recurrent Neural Networks (RNNs) by using bi-
nary features instead of continuous ones for efficient training,
which would overlooks graph structure information and leads
to the loss of details during propagation. Additionally, opti-
mizing dynamic spiking models typically requires propaga-
tion of information across time steps, which increases mem-
ory requirements. To address these challenges, we present
a framework named Dynamic Spiking Graph Neural Net-
works (Dy-SIGN). To mitigate the information loss problem,
Dy-SIGN propagates early-layer information directly to the
last layer for information compensation. To accommodate the
memory requirements, we apply the implicit differentiation
on the equilibrium state, which does not rely on the exact re-
verse of the forward computation. While traditional implicit
differentiation methods are usually used for static situations,
Dy-SIGN extends it to the dynamic graph setting. Extensive
experiments on three large-scale real-world dynamic graph
datasets validate the effectiveness of Dy-SIGN on dynamic
node classification tasks with lower computational costs.

Introduction
Graph Neural Networks (GNNs) (Scarselli et al. 2008)
have been widely applied in various fields to learn the
graph representation by capturing the dependencies of nodes
and edges, such as relation detection (Schlichtkrull et al.
2018; Chen, Li, and Tang 2020; Mi and Chen 2020; Xu
et al. 2019b) and recommendation (Wu et al. 2022). How-
ever, most GNNs are primarily designed for static or non-
temporal graphs, which cannot meet the requirement of dy-
namic evolution over time in practice. The established so-
lution is to extend the dynamic graphs into sequence mod-
els directly. Typically, these methods (Yin et al. 2023b; Shi
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et al. 2021; Kumar, Zhang, and Leskovec 2019; Yin et al.
2022a) utilize the Recurrent Neural Networks (RNNs) (Cho
et al. 2014) to capture the dynamic evolution of graphs for
numerous downstream tasks such as time series prediction
or graph property prediction (Yin et al. 2022b; Wieder et al.
2020; Yin et al. 2023a).
Despite the promising performance of dynamic graphs,

the majority of these approaches typically involve complex
structures that consume significant computational resources
during training and testing. Inspired by the way the brain
process information, Spiking Neural Networks (SNNs) rep-
resent the event or clock-driven signals as inference for up-
dating the neuron nodes parameters (Brette et al. 2007). Dif-
ferent from traditional deep learning methods, SNNs utilize
discrete spikes information instead of continuous features,
resulting in significantly lower power consumption during
model training. Considering the inherent characteristics of
SNNs (Maass 1997; Pfeiffer and Pfeil 2018; Schliebs and
Kasabov 2013), a few recent works (Zhu et al. 2022; Xu
et al. 2021; Li et al. 2023) have attempted to integrate SNNs
into the GNNs framework to tackle the issue of high compu-
tational complexity. These methods transform the node fea-
tures into a series of spikes with Poisson rate coding, and
follow a graph convolution layer with SNN neurons, which
employ a membrane potential threshold to convert continu-
ous features to spike information (Kim et al. 2020; Bu et al.
2022). Although Spiking Graph Networks (SGNs) are grad-
ually gaining attention, the use of SNNs in dynamic graphs
is still less explored, which is a more common scenario in
life. To address the gap, the work focuses on the problem
of spiking dynamic graph, which applies SNNs for dynamic
graph node classification.
However, the problem is highly challenging due to the

following reasons: (1) Information Loss. The representation
of GNNs includes the information on graph structure and
neighboring nodes, which are crucial for downstream tasks.
However, SNNs employ spike signals instead of continuous
features, leading to the loss of details regarding the struc-
ture and neighbors. Moreover, with the evolution of graphs
over time, the information loss issue may further deteriorate
the graph representation. (2) Memory Consumption. The
RNN-based dynamic graph methods typically require signif-
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icant memory resources to store the temporal node informa-
tion (Sak, Senior, and Beaufays 2014). Moreover, SNNs in-
herently operate with multiple time latencies (i.e., calculate
the spike signals with time latency steps in each SNN layer).
If we simply replace the GNN layer with the SNN layer on
each time step, we need to store the temporary spikes in SNN
layer and temporal information at each time step simultane-
ously, which further exacerbates memory consumption.
In this paper, we present a novel framework named

Dynamic Spiking Graph Neural Networks (Dy-SIGN) for
node classification. The primary insight of proposed Dy-
SIGN is to thoroughly explore how to apply SNNs to dy-
namic graphs, and address the challenges of information
loss and memory consumption by using the information
compensation mechanism and implicit differentiation on the
equilibrium state. On the one hand, the information com-
pensation mechanism aims to make up for the information
loss during forward propagation. However, implementing
the mechanism in each layer of SNNs would significantly
increase the model complexity. Thus, we propose to estab-
lish an information channel between the shallow and final
layers to incorporate the original information directly into
feature representations. This approach not only reduces the
model complexity but also mitigates the impact of informa-
tion loss. On the other hand, inspired by recent advances
in implicit methods (Bai, Koltun, and Kolter 2020; Xiao
et al. 2021) that view neural networks as solving an equi-
librium equation for fixed points and provide alternative im-
plicit models defined by the equation, we provide a variation
training method that is suitable for dynamic spiking graph
neural networks. Specifically, Dy-SIGN simplifies the non-
differentiable items in backpropagation, thus avoiding the
huge computational overhead of traditional SNNs due to the
use of surrogate learning techniques. In this way, the cal-
culation of the gradient would significantly reduce memory
consumption. We conduct extensive experiments to demon-
strate the effectiveness of proposed Dy-SIGN in comparison
to the state-of-the-art methods across various scenarios.
In summary, our contributions are as follows: (1)Motiva-

tion: From the perspective of practical application and data
analysis, we propose the Dy-SIGN, which is the first attempt
to introduce implicit differentiation into dynamic graph.
(2) Methodology: We propose a novel approach called Dy-
SIGN that incorporates SNNs into dynamic graphs to release
the information loss and memory consumption problem. (3)
Experiments: Extensive experiments validate the superiority
of the proposed Dy-SIGN over the state-of-the-art methods.

Related Work
SNN Training Methods
In the supervised training of SNNs, there are two primary
research directions. One direction focuses on establishing a
connection between the spike representations of SNNs, such
as firing rates, and equivalent Artificial Neural Networks
(ANNs) activation mappings. This connection enables the
ANN-to-SNN conversion (Diehl et al. 2015; Hunsberger and
Eliasmith 2015; Rueckauer et al. 2017; Rathi et al. 2020),
and the optimization of SNNs using gradients computed

from this equivalent mappings (Thiele, Bichler, and Dupret
2020; Wu et al. 2021; Zhou et al. 2021; Xiao et al. 2021;
Meng et al. 2022). These methods usually require a rela-
tively large number of time-steps to achieve performance
comparable to ANNs, suffering from high latency and usu-
ally more energy consumption. The other direction is to di-
rectly train SNNs with back-propagation (Bohte, Kok, and
La Poutre 2000; Esser et al. 2015; Bellec et al. 2018; Huh
and Sejnowski 2018), which typically employs the surrogate
gradients (Shrestha and Orchard 2018) method to overcome
the non-differentiable nature of the binary spiking functions
and direct train SNNs from scratch. This follows the back-
propagation through time (BPTT) framework. BPTT with
surrogate gradients can achieve extremely low latency, how-
ever, it requires large training memory to maintain the com-
putational graph unfolded over time.

Dynamic GNNs
Dynamic GNNs have achieved impressive performance in
various tasks. With the help of RNNs (Cho et al. 2014), static
GNNs can be extended to model dynamic processes by em-
ploying RNN architectures (Rossi et al. 2020; Pareja et al.
2020; Shi et al. 2021; Rossi et al. 2020; Xu et al. 2019a).
TGN (Rossi et al. 2020) and JODIE (Kumar, Zhang, and
Leskovec 2019) update the node hidden state by RNN units
for representation learning. EvolveGCN (Pareja et al. 2020)
uses the RNN to regulate the model parameters on each
time step. However, the RNN-based dynamic graph meth-
ods could save the historical information for graph represen-
tation, they typically require massive computational costs
and memory consumption. To effectively model the dynamic
evolution of graphs while minimizing computational and
memory requirements, we introduce the implicit models and
SNNs into dynamic GNNs.

Feedback Models
Implicit models are promising approaches to deep learning
that utilize implicit layers to determine the outputs. In con-
trast to explicit models, which typically require storing in-
termediate activations for backpropagation, implicit models
use the fixed-point solution (Bai, Kolter, and Koltun 2019;
Bai, Koltun, and Kolter 2020) to perform backpropagation
without saving these intermediate activations. This results
in constant complexity for the implicit models, which is a
significant advantage for large models. DEQ (Bai, Kolter,
and Koltun 2019) demonstrates the ability of implicit mod-
els in sequence modeling. MDEQ (Bai, Koltun, and Kolter
2020) incorporates multiscale modeling into implicit deep
networks, enabling tasks such as image classification and
semantic segmentation. To further enhance the efficiency of
implicit models, (Gu et al. 2020) extend the concept of im-
plicit fixed-point equilibrium to graph learning, to address
the problem of evaluation and training for recurrent GNNs.
(Liu et al. 2022) propose a multiscale graph neural net-
work with implicit layers to model multiscale information
on graphs at multiple resolutions. Although implicit mod-
els have shown promise in various areas, their application to
dynamic spiking graphs is still relatively unexplored.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16496



Preliminary
Spiking Neuron Models
SNNs utilize binary activations in each layer, which limits
the representation capacity. To address the issue, SNNs in-
troduce a temporal dimension, known as latency K. In the
forward pass of SNNs, inputs are presented as streams of
events and repeated forK time steps to produce the final re-
sult. The leaky-integrate-and-fire (LIF) model is commonly
used to describe the dynamics of spiking neurons. In LIF,
each neuron integrates the received spikes as the membrane
potential u⌧,i, which can be formulated as a first-order dif-
ferential equation,

LIF: �̄du⌧

d⌧
= �(u⌧ � urest)R · I(⌧), u⌧ < Vth , (1)

where I(⌧) is the input current, Vth is the spiking threshold,
and R and �̄ are resistance and time constant, respectively.
When u⌧ reaches Vth at time ⌧ , a spike is generated and u⌧

is reset to the resting potential u⌧ = urest, which is usually
taken as 0. The spike train is expressed by the Dirac delta
function: s⌧ =

P
tf �(⌧ � tf ). We consider a simple cur-

rent model I⌧,i =
P

j wijs⌧,j + b, where wij is the weight
from neuron j to neuron i. Then, the general form of LIF is
described as:⇢

u⌧+1,i = �(u⌧,i � Vths⌧,i) +
P

j wijs⌧,j + b,
s⌧+1,i = H(u⌧+1,i � Vth),

(2)

whereH(x) is the Heaviside step function, which is the non-
differentiable spiking function. s⌧,i is the binary spike train
of neuron i, and � < 1 is a leaky term related to the constant
⌧m and discretization time interval used in the LIF model.
The constant R, �̄, and time step-size are absorbed into the
weights wij and bias b. The training of SNNs follows the
process of BPTT, and the gradients with K time latency
steps are calculated with:
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(3)
where W l is the trainable matrix on l-th layer and L is the
loss. The terms @sl

⌧

@ul
⌧
are non-differentiable, and surrogate

derivatives are typically used instead.

Dynamic GNNs
Given the dynamic graph G = {G1, · · · , Gt, · · · , GT } with
T time steps. On each snapshot Gt = (At,Xt,Vt, Et),
where At is the adjacency matrix, Xt 2 R

N⇥d is N node
features with dimension d, Vt = {vt1, · · · , vtN} and Et are
the set of nodes and edges on time step t. Dynamic graph
methods typically extract the graph features on each time
step and then model the evolution over time, which is for-
mulated as:

ht,l
v = Ct,l

�
ht,l�1
v ,At,l

�
{ht,l�1

u }u2N (v)

��
,

ht+1
v = Evo(h1,L

v , · · · ,ht,L
v ),

(4)

where N (v) is the neighbors of v. At,l and Ct,l denote the
aggregation and combination operations at the l-th layer on
time step t, respectively. L is the number of layers of a graph
and Evo means the evolution operation over time 1 to t,
which is typically implemented with RNN (Cho et al. 2014)
or LSTM (Hochreiter and Schmidhuber 1997).

The Proposed Dy-SIGN
Overview
This paper introduces a novel approach named Dy-SIGN for
semi-supervised dynamic spiking graph node classification.
Recognizing that if the time latency ⌧ in SNN tends to in-
finity, models will retain the details information of input.
However, since the large ⌧ would cause the vanishing gra-
dient problem (Hochreiter 1998) and significantly increase
the complexity, we propose the information compensation
mechanism that bridges the feature from the beginning to
the last layer and includes the shallow representation in the
final embedding. Additionally, we propose a variation of the
training method in dynamic graph, which is proved to be
equivalent to the implicit differentiation. This method sim-
plifies the calculation of gradient, which relies on the equa-
tion of implicit differentiation rather than the forward proce-
dure, thereby reducing memory consumption. The detailed
illustration of our Dy-SIGN can be seen in Figure 1, and we
will introduce Dy-SIGN in detail.

Information Compensation Spiking Graph Neural
Network
Spiking Graph Network (SGN) (Zhu et al. 2022; Xu et al.
2021) usually applies the Bernoulli encoding to transform
the node representation to the spike signals for propagation.
Specifically, on time step t 2 [1, · · · , T ] with T denotes the
length of dynamic graph time window, we have the graph
Gt = (At,Xt), where At is the adjacency matrix of Gt

and Xt is the node features. SGN first encodes the initial
features into binary signals {X̃t,1, · · · , X̃t,⌧ , · · · , X̃t,K},
where ⌧ 2 [1, · · · ,K] means the time latency step in SGN,
and K is the length of SGN time latency window. Then, the
layer-wise (update on different layers) spiking graph propa-
gation is defined as:

slt,⌧ = �
�
Cov(A, sl�1

t,⌧ ), slt,⌧�1

�
, (5)

where Cov is the graph convolutional layer which is the
same as Equation 4, Sl

t,⌧ denotes the nodes spiking fea-
tures on time step t and time latency step ⌧ with l-th layer.
S1
t,1 = X̃t,1, �(·) is the non-linear function that combine

historical information Sl
t,⌧�1 into current state. After that,

the temporal-wise (update on each time latency in SGN)
membrane potentials and firing rate follows:
⇢

ul
t,⌧+1 = �ul

t,⌧ (1� slt,⌧ ) +
P

W lCon(A, sl�1
t,⌧+1),

slt,⌧+1 = H(ul
t,⌧+1 � Vth).

For the specific node representation xi = [xi1, · · · ,xid],
where xi denotes the i-th node features of graph, and d is
the feature dimension. The spiking signals are sampled with
Bernoulli distribution with K time latency in SGN, which
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Figure 1: An overview of the proposed Dy-SIGN. The Spiking Graph Neural Network (SGN) combines the SNNs and GNNs
for node representation learning. The information compensation mechanism transfers the information from the shallow layer to
the last to mitigate the information loss issue. The variation training method is applied to calculate the fix-point on each time
latency in SGN and is used for dynamic prediction.

is denoted as x̃i = {x̃1,i, · · · , x̃⌧,i, · · · , x̃K,i} with x̃⌧,i =
[x̃⌧,i1, · · · , x̃⌧,id]. Then we have P (x̃⌧,ij = 1) = xij and
P (x̃⌧,ij = 0) = 1 � xij . Assume the parameters of each
spike neuron are wi = [wi1, · · · , wid], the combined spike
input zi for the next SGN layer holds:

z⌧,i =
dX

j=1

wijx̃
⌧
⌧,ij ,

E(z⌧,i) =
dX

j=1

wijE(x̃⌧,ij) =
dX

j=1

wijxij .

(6)

According to (Chung and Lu 2002), the error bound of SGN
holds:

lim
⌧!1

P (z⌧,i < E(z⌧,i)� ✏)  e�✏2/2�,

lim
⌧!1

P (z⌧,i > E(z⌧,i) + ✏)  e�✏2/2(�+ŵi✏/3),
(7)

where ŵi = max{wi1, · · · , wid}. From Equation 7, we ob-
serve that as ⌧ ! 1, the difference between SGN and GNN
will be with the probability of p = e�✏2/2(�+ŵi✏/3) to ex-
ceed the upper and lower bounds. This reveals that the spik-
ing signals would preserve the details information of con-
tinuous features when ⌧ ! 1. However, with the increase
of ⌧ , SGN becomes difficult to train and may suffer from
the vanishing gradient problem due to the coefficient of �
in Equation 6. To address the issue, we design the informa-
tion compensation mechanism for SGN that directly trans-
fers features from the first layer to the last layer for node

embeddings. Formally:

⇢
u1
⌧ = �u1

⌧ � 1 +W 1sN⌧ + F 1x⌧ � Vths1⌧ ,
ul
⌧ = �ul

⌧�1 + F lsl�1
⌧ � Vthsl⌧ , l = 2, · · · , N,

where ul
⌧ denotes the neuronal membrane potential at time

⌧ on l-th layer. F l and W l are the trainable parameters
on the l-th layer, F 1 is the information compensation ma-
trix. In this way, the information compensation SGN follows
the form of multi-layer structures of feedback model (Bai,
Kolter, and Koltun 2019; Bai, Koltun, and Kolter 2020). This
type of structure has several potential advantages: (1) The
forward and backward procedures are decoupled, avoiding
the problem of non-differentiable spiking functions. (2) Us-
ing implicit differentiation in the equilibrium state, we can
compute the gradient without saving the exact forward pro-
cedure, thus reducing memory consumption.

Variation of Training SGN

The traditional training method of SGN follows BPTT,
which replaces the non-differentiable term @sl

⌧

@ul
⌧
with the sur-

rogate derivatives in Equation 3. However, BPTT relies on
multiple backpropagation paths, with would consume a large
amount of memory. Similarly to (Xiao et al. 2022), we set
the gradient of the Heaviside step function to 0, which is
formulated as @ul

⌧+1

@sl+1
⌧

@sl+1
⌧

@ul+1
⌧

= 0. Then, the gradient of pa-
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rameters W l is:

@L

@W l
=

KX

⌧=1

@L

@sl+1
⌧

@sl+1
⌧

@ul+1
⌧

0

@
X

k⌧

�⌧�k @u
l+1
k

@W l

1

A

=
KX

⌧=1

@L

@sl+1
⌧

@sl+1
⌧

@ul+1
⌧

0

@
X

k⌧

�⌧�kslk

1

A .

(8)

During the forward procedure is âl
⌧+1 = �âl

⌧ + sl⌧+1,
where the presynaptic activities can be denoted as âl

⌧+1 =
P

k⌧ �
⌧�kslk. By calculating the gradient of @L

@sl+1
⌧

@sl+1
⌧

@ul+1
⌧

,
we can directly compute the value of Equation 8 with-

out considering the backpropagation through @ul+1
⌧+1

@ul+1
⌧

, which
would decrease the complexity and memory consumption of
the model. On each time latency ⌧ , the output is denoted as
âl+1
⌧ , and the output of the SGN is {âl

1, · · · , âl
⌧ , · · · , âl

K}
on l-th layer.

Comparing with Feedback Model
Note that, in the spiking dynamic graph framework, t 2
[1, · · · , T ] stands for the time steps of each graph, and
⌧ 2 [1, · · · ,K] is the time latency in SGN. At each time
step t, we apply the information compensation SGN to ex-
tract the graph features as Equation 8. In the traditional
feedback model, the weighted average firing rate and in-
puts are denoted as at,K =

PK
⌧=1 �K�⌧st,⌧PK

⌧=1 �K�⌧ and x̄t,K =
PK

⌧=0 �K�⌧xt,⌧PK
⌧=0 �K�⌧ , where st,⌧ and xt,⌧ denote the firing rate

and input on time latency ⌧ in SGN and on time step t
of dynamic graph. The LIF model approximate an equilib-
rium point a?

t that satisfies a?
t = �

⇣
1

Vth
(Wa?

t + Fx?
t )
⌘
.

The characteristic is similar to the presynaptic activities
âl
t,⌧+1 =

P
k⌧ �

⌧�kslt,k. Considering the last time latency
K on layer l, we have âl

t,K =
PK

⌧=1 �
K�⌧slt,⌧ , which

equals to Cal
t,K with C =

PK
⌧=1 �

K�⌧ . In other words,
the fire rate â in at the last time latency stepK on layer l is
equivalent to the traditional feedback model. Thus, we prove
that the variation of training SGN is equivalent to the tradi-
tional feedback model, and we can calculate the gradient of
parameters with Equation 8 directly.

Dynamic Spiking Graph Neural Network
The proposed information compensation SGN is designed
for a fixed time step t. However, since the graphs may
change over time, it remains a challenge to integrate the
temporal dynamics of SGN with dynamic graphs. We pro-
pose a novel method by propagating the medium at,K =
{a1

t,K , · · · ,al
t,K , · · · ,aL

t,K} at different time steps. At time
step t+1, we set the initial membrane potential to ut+1,1 =
at,K , and the update process of membrane potentials is:

ut+1,K = �ut+1,K�1 +Wst+1,K�1

+ Fxt+1,K�1 � Vthst+1,K .
(9)

Algorithm 1: Learning Algorithm of Dy-SIGN

Input: Dynamic graph G = {G1, · · · , GT }; Label y;
Network parameters ✓; Network layers L; Time latency of
SGNK.
Output: Trained model parameters ✓.

1: Initialize ✓.
2: // Forward:
3: for t = 1, · · · , T do
4: for l = 1, · · · , L do
5: Calculate the average firing rate al

t,K with Equa-
tion 10;

6: Collect the fixed point representation a?
t on layer

L and time step t;
7: end for
8: end for
9: Calculate the output of Dy-SIGN ŷ and the loss L with

Equation 11;
10: // Backward:
11: for l = L, · · · , 1 do
12: Calculate the gradient of SGN with Equation 8;
13: Update the parameters ✓.
14: end for

The average firing rates is defined as at+1,K =
PK

⌧=1 �K�⌧st+1,⌧PK
⌧=1 �K�⌧ , the average inputs as x̄t+1,K =

PK
⌧=0 �K�⌧xt+1,⌧PK

⌧=0 �K�⌧ , and ut+1,1 = at,K , st+1,1 = 0. Then,
we have:

at+1,K =
1

Vth

 PK�2
i=0 �i

PK�1
i=0 �i

Wat+1,K�1 + F x̄t+1,K�1

� ut+1,KPK�1
i=0 �i

+
at,KPK�1
i=0 �i

!

=�
⇣ 1

Vth

⇣PK�2
i=0 �i

PK�1
i=0 �i

Wat+1,K�1

+ F x̄t+1,K�1

⌘⌘
� ut+1,K

Vth
PK�1

i=0 �i

+
at,K

Vth
PK�1

i=0 �i
,

(10)

where �(x) =

8
<

:

1, x > 1

x, 0  x  1

0, x < 0

. For each time step t, we

will first calculate the equilibrium point at,K ! a?
t , which

is fixed for time step t + 1. Therefore, the LIF model grad-
ually approximates the equilibrium point a?

t that satisfies
a?
t = �

⇣
1

Vth
(Wa?

t + Fx?
t )
⌘
with x̄t,K ! x?

t .

Finally, we have fixed point representation over time, i.e.,
a? = {a?

1, · · · ,a?
t , · · · ,a?

T }. We concatenate all the em-
beddings for the final node classification, which is formu-
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Methods DBLP Tmall Patent
40% 60% 80% 40% 60% 80% 40% 60% 80%

DeepWalk 67.08 67.17 67.12 49.09 49.29 49.53 72.32±0.9 72.25±1.2 72.05±1.1
Node2Vec 66.07 66.81 66.93 54.37 54.55 54.58 69.01±0.9 69.08±0.9 68.99±1.0
HTNE 67.68 68.24 68.36 54.81 54.89 54.93 - - -
M2DNE 69.02 69.48 69.75 57.75 57.99 58.47 - - -
DyTriad 60.45 64.77 66.42 44.98 48.97 51.16 - - -
MPNN 64.19±0.4 63.91±0.3 65.05±0.5 47.71±0.8 47.78±0.7 50.27±0.5 - - -
JODIE 66.73±1.0 67.32±1.1 67.53±1.3 52.62±0.8 54.02±0.6 54.17±0.2 77.57±0.8 77.69±0.6 77.67±0.4
EvolveGCN 67.22±0.3 69.78±0.8 71.20±0.7 53.02±0.7 54.99±0.7 55.78±0.6 79.67±0.4 79.76±0.5 80.13±0.4
TGAT 71.18±0.4 71.74±0.5 72.15±0.3 56.90±0.6 57.61±0.7 58.01±0.7 81.51±0.4 81.56±0.6 81.57±0.5
SpikeNet 70.88±0.4 71.98±0.3 74.64±0.5 58.84±0.4 61.13±0.8 62.40±0.6 83.53±0.6 83.85±0.7 83.90±0.6

Dy-SIGN 70.94±0.1 72.07±0.1 74.67±0.5 57.48±0.1 60.94±0.2 61.89±0.1 83.57±0.3 83.77±0.2 83.91±0.2

Table 1: Macro-F1 score comparisons on three dynamic graph datasets with different training ratios. The results are averaged
over five runs, and the best results are in boldface. - denotes time-consuming.

Methods DBLP Tmall Patent
40% 60% 80% 40% 60% 80% 40% 60% 80%

DeepWalk 66.53 66.89 66.38 57.11 57.34 57.88 71.57±1.3 71.53±1.0 71.38±1.2
Node2Vec 66.80 67.37 67.31 60.41 60.56 60.66 69.01±0.9 69.08±0.9 68.99±1.0
HTNE 67.68 68.24 68.36 54.81 54.89 54.93 - - -
M2DNE 69.23 69.47 69.71 64.21 64.38 64.65 - - -
DyTriad 65.13 66.80 66.95 53.24 56.88 60.72 - - -
MPNN 65.72±0.4 66.79±0.6 67.74±0.3 57.82±0.7 57.66±0.5 58.07±0.6 - - -
JODIE 68.44±0.6 68.51±0.8 68.80±0.9 58.36±0.5 60.28±0.3 60.49±0.3 77.64±0.7 77.89±0.5 77.93±0.4
EvolveGCN 69.12±0.8 70.43±0.6 71.32±0.5 59.96±0.7 61.19±0.6 61.77±0.6 79.39±0.5 79.75±0.3 80.01±0.3
TGAT 71.10±0.2 71.85±0.4 73.12±0.3 62.05±0.5 62.92±0.4 63.32±0.7 80.79±0.7 80.81±0.6 80.93±0.6
SpikeNet 71.98±0.3 72.35±0.8 74.86±0.5 63.52±0.7 64.84±0.4 66.10±0.3 83.48±0.8 83.80±0.7 83.88±0.9

Dy-SIGN 71.90±0.1 72.61±0.4 74.96±0.2 62.93±0.3 64.10±0.3 65.82±0.2 83.50±0.2 83.47±0.1 83.90±0.2

Table 2: Micro-F1 score comparisons on three dynamic graph datasets with different training ratios. The results are averaged
over five runs, and the best results are in boldface. - denotes time-consuming.

lated as:
ŷ = FC(||Tt=1a

?),L = �
X

r2yL

yrlnŷr, (11)

where || denotes the concatenation operation, FC is the fully
connect layer, ŷ is the nodes prediction, y is the ground-
truth labels, yL means the set of labeled nodes, and L is the
cross-entropy loss.
In summary, the proposed dynamic spiking graph neu-

ral network has several advantages. Firstly, a?
t is the fixed

point of each time step on different layers, which can be
considered as the hidden embeddings of time step t. Com-
pared to traditional RNN-based dynamic graph methods,
directly propagating a?

t over time would reduce the com-
putational cost of calculating the hidden states and lower
the model complexity. Secondly, traditional static feedback
models usually set the initial states to 0, which cannot meet
the requirement of dynamic graphs. By sending the previ-
ous state to the next time step, the model is able to capture
the long temporal dependency for prediction. The detailed
algorithm is shown in Algorithm 1.

Experiments
Experimental Settings
To verify the effectiveness of the proposed Dy-SIGN,
we conduct experiments on three large real-world graph
datasets, i.e., DBLP (Lu et al. 2019), Tmall (Lu et al. 2019)
and Patent (Hall, Jaffe, and Trajtenberg 2001). The statis-
tics and details introduction are presented in Appendix. We
compared Dy-SIGN with various competing methods, in-
cluding two static graph methods ( i.e., DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014) and Node2Vec (Grover
and Leskovec 2016)), seven dynamic graph methods (i.e.,
HTNE (Zuo et al. 2018), M2DNE (Lu et al. 2019), Dy-
Triad (Zhou et al. 2018), MPNN (Panagopoulos, Niko-
lentzos, and Vazirgiannis 2021), JODIE (Kumar, Zhang,
and Leskovec 2019), EvolveGCN (Pareja et al. 2020) and
TGAT (da Xu et al. 2020)), and one spiking method
SpikeNet (Li et al. 2023). The details are introduced in Ap-
pendix. As for the implementation, we follow the same set-
tings with (Li et al. 2023) and report the Macro-F1 and
Micro-F1 results under different training ratios (i.e., 40%,
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Figure 2: (a) The memory consumption of SpikeNet and Dy-SIGN on DBLP dataset. (b) The training time of different methods.
(c) Hyperparameter sensitivity analysis of �.

60%, and 80%). Besides, we use 5% for validation. The hid-
den dimension of all the methods is set to 128, and the batch
size to 1024. The total training epochs are 100 and the learn-
ing rate is 0.001.

Performance Comparison
Comparison of Performance. The classification results
on different datasets under various training ratios are pre-
sented in Table 1 and 2. From the results, we find that the
proposed Dy-SIGN achieves competitive performance com-
pared with other methods. From the results, we have the
following observations: (1) The static methods DeepWalk
and Node2Vec perform worse than the others, which indi-
cates that simply applying static graph methods to dynamic
graphs ignores the contribution of historical information for
representation. (2) The methods HTNE, M2DNE, DyTrid,
and MPNN fail to learn meaningful representations on the
large-scale Patent dataset. The potential reason behind this is
the high computational complexity of these models, leading
to extensive time consumption for both training and predic-
tion. This makes it impractical to achieve competitive per-
formance within an acceptable time frame. (3) Although the
spiking methods SpikeNet and Dy-SIGN apply the binary
information for representation learning, the performance is
still better than JODIE, EvolveGCN, and TGAT. This phe-
nomenon indicates that the spike-based learning method is
also competitive in both computational complexity and per-
formance compared to the traditional methods. (4) The pro-
posed Dy-SIGN outperforms SpikeNet in half of the set-
tings. However, as shown in Figure 2 (a), the memory con-
sumption of Dy-SIGN is about only half of SpikeNet under
the same experiment environment, demonstrating the superi-
ority of Dy-SIGN. We attribute this to the fact that by apply-
ing the variation training method, Dy-SIGN achieves more
efficient results.

Comparison of Runtime Complexity. We further com-
pare the runtime complexity between Dy-SIGN with
SpikeNet, JODIE, EvolveGCN, and TGAT, which is shown
in Figure 2 (b). From the results, we find that the SNN-based
methods are significantly more efficient than the ANNs
methods. The reason for this is attributed to the fact that

SNN-based methods use binary signals instead of continu-
ous features, allowing the matrix multiplication operation to
be replaced by an accumulation operation. Additionally, the
proposed Dy-SIGN is slightly more efficient than SpikeNet
method, the potential reason is that Dy-SIGN uses the sim-
ple form to calculate the gradient with Equation 8, ignoring
the time-consuming calculation of gradient in BPTT.

Sensitivity Analysis
In this section, we examine the impact of hyperparameters
on the performance of our proposed Dy-SIGN. Specifically,
the parameter � determines the amount of information re-
tained for the next time latency step representation. We test
the values of � in the range of {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2}
with other parameters fixed to determine the optimal value.
The results are depicted in Figure 2 (c). From the results, we
observe that as the value of � increases, the performance ini-
tially improves and then gradually declines. We attribute the
reason to the fact that the smaller � cannot provide sufficient
historical information for effective representation learning.
On the other hand, larger � may lead to worse performance
since the current time latency step representation may be in-
fluenced by too much historical information. Thus, we set
the default value of � to 1.

Conclusion
In this paper, we study the problem of combining SNNs with
dynamic graphs using implicit differentiation for node clas-
sification and propose a novel method named Dy-SIGN. To
tackle the issue of information loss on graph structure and
details during SNN propagation, we propose an informa-
tion compensation mechanism. This mechanism passes the
original structure and features to the last layer of the net-
work, which then participates in node representation learn-
ing. This structure is very similar to traditional feedback
models. Based on this, we use explicit differentiation and
a variation training method to address the issue of high
memory consumption in the combination of SNNs and dy-
namic graphs. Extensive experiments on real-world large-
scale datasets validate the superiority of the proposed Dy-
SIGN.
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