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Abstract

Dynamical systems are abstract models of interaction be-
tween space and time. They are often used in fields such
as physics and engineering to understand complex processes,
but due to their general nature, they have found applications
for studying computational processes, interaction in multi-
agent systems, machine learning algorithms and other com-
puter science related phenomena. In the vast majority of ap-
plications, a dynamical system consists of the action of a
continuous ‘transition function’ on a metric space. In this
work, we consider decidable formal systems for reasoning
about such structures. Spatial logics can be traced back to the
1940’s, but our work follows a more dynamic turn that these
logics have taken due to two recent developments: the study
of the spatial (or ‘topological’) u-calculus, and the integra-
tion of linear temporal logic with logics based on the Cantor
derivative. In this paper, we combine dynamic spatial logics
based on the Cantor derivative and the ‘next point in time’
operators with an expressively complete fixed point operator
to produce a combination of the spatial p-calculus with linear
temporal logic. We show that the resulting logics are decid-
able and have a natural axiomatisation. Moreover, we prove
that these logics are complete for interpretations on the Can-
tor space, the rational numbers, and subspaces thereof.

Introduction

Our planet is orbited by a myriad of man-made satel-
lites, whose movement must be predicted and controlled to
e.g. avoid collision with other objects. To this end, their po-
sition over time is modelled using our knowledge of physics,
and the mathematical structure governing this behaviour is
known as a dynamical system (Figure 1). Given the initial
position and momentum of a satellite, one may predict the
path it will take: it may be periodic, diverge into space or
crash into the earth. In such models, both space and time are
continuous, i.e. given by Euclidean spaces; however, they
can be approximated discretely for a better computational
treatment, or even be represented via finite relational struc-
tures (Example 1 and Figure 5). One can thus imagine satel-
lites moving one ‘tick of the clock’ at a time, for a suitably
small time interval.
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Figure 1: Orbits around a centre of gravity

Reasoning about dynamical systems is highly relevant to
Al We mention a few examples: Qualitative spatial reason-
ing is a branch of Al that aims to capture basic relations be-
tween regions in space in a way that is computationally effi-
cient and thus suitable for applications (see (Cohn and Renz
2008; Stell 2019) for overviews). The region connection cal-
culus (RCC8) (Egenhofer and Franzosa 1991; Randell, Cui,
and Cohn 1992) was introduced for geolocalisation appli-
cations, and is closely connected to modal logic (Wolter
and Zakharyaschev 2000). Modern-day applications such as
self-driving cars require the combination of dynamic and
spatial reasoning (for examples, see (Gabelaia et al. 2005)),
modelled via dynamical systems (see (Dickmanns, Mysli-
wetz, and Christians 1990; Hua et al. 2022)).

As models of ‘space’, we will work in the setting of met-
ric spaces, which are sets of points whose mutual distance is
measurable. These spaces generalise the plane, or other Eu-
clidean spaces, but also include some more unusual exam-
ples such as the Cantor set.! Formally, these are structures
X = (X, 0), where X isany setand §: X x X — [0,00) is
the ‘distance’ map satisfying d(z, z) = 0, é(x,y) = I(y, x)
and §(z, z) < d(z,y) + 0(y, 2).

A discrete time dynamical system is a metric space
equipped with a transition function, representing movement.
Two recent developments have taken spatial logic into a
more ‘dynamic’ direction. The first is the development of
the spatial (or ‘topological’) p-calculus (Baltag, Bezhan-
ishvili, and Ferndndez-Duque 2021; Goldblatt and Hodkin-

'One can work in the even more general class of topological
spaces, as in e.g. (Fernandez-Duque and Montacute 2023), but met-
ric spaces are normally more adequate for applications regarding
physical space.
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son 2017), which enriches the usual spatial operators with
fixed points and has applications in formal epistemology
(Baltag, Bezhanishvili, and Fernandez-Duque 2022). The
second, following a suggestion of Saveliev, is equipping
temporal logic with the Cantor derivative (Fernandez-Duque
and Montacute 2022), obtaining a more expressive version
of Dynamic Topological Logic (DTL) (Artemov, Davoren,
and Nerode 1997). If (X, d) is a metric space, the Cantor
derivative d(A) of a set A C X is its set of limit points,
i.e. z € d(A) if the distance between = and A \ {z} is zero.
This allows one to reason about e.g. dense-in-themselves
spaces, which are of relevance for example in chaos the-
ory (Devaney 2018). Our goal is to combine the expressive
power of these two proposals and produce DTLs with spa-
tial fixed points. We are specifically interested in dynamical
systems based on metric spaces, as these are the spaces used
in most applications.

Here we build on Fernandez-Duque and Monta-
cute (2022), who consider a bi-modal language with < in-
terpreted as Cantor derivative and O as ‘next point in time’.
In order to enrich this logic with spatial fixed points, we fol-
low Goldblatt and Hodkinson (2017), who utilised results of
Dawar and Otto (2009) to represent the spatial p-calculus
via its relatively simple but expressively complete rangled
fragment (Fernandez-Duque 2011a,b). The latter augments
modal logic with a polyadic modality <°°, in which &G>T
holds in the largest perfect subspace where each ¢ € T'is
dense. This grants us the full power of the spatial p-calculus
while working within a formal language that is relatively
tame from a combinatorial perspective. We thus obtain the
logic K4C™ (and various other extensions) which plays the
role of the standard dynamic spatial logic S4C (Kremer and
Mints 2005). Despite the additional expressive power due to
the Cantor derivative and definability of spatial fixed points,
we show that K4C enjoys the same desirable properties
of S4C: it is naturally axiomatisable and decidable over the
class of all metric spaces. Moreover, we extend a result of
Mints and Zhang (2005) which states that S4C is complete
for the Cantor space, by showing that K4DC (the exten-
sion of K4C®° with the ‘seriality’ axiom) is sound and com-
plete both for the Cantor set and for the set of rational num-
bers. We also consider the logics K4I°° and K4DI for
dynamical systems where the transition function is an im-
mersion (i.e. it preserves the Cantor derivative). All of these
logics are decidable, each logic with the D axiom is shown
to be complete for the Cantor space and for the rational num-
bers, and logics without D for subspaces of these two metric
spaces.

Working with the p-calculus is notoriously challenging,
and despite the simplicity gained by the tangled fragment,
there are still many hurdles. In order to deal with fixed
points, we follow techniques pioneered by Fine (1974) based
on final points, already shown by Bezhanishvili et al. (2021)
to be useful for working with the spatial p-calculus. In our
work, we further refine these techniques in order to deal
with the interactions between the metric and the transition
function. Completeness for the Cantor space and the ratio-
nal numbers is obtained via the technique of dynamic p-
morphisms. To apply it in our setting, we employ Kripke
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frames with limits, as used by Kremer and Mints (2007),
along with the world-duplication construction from deriva-
tional modal logic (see e.g. (Baltag, Bezhanishvili, and
Fernandez-Duque 2021)). Our general method uniformly
yields results for these two metric spaces and their closed
subspaces. The current work is essential for the axiomati-
sation of DTL with the Cantor derivative, which currently
has only been achieved in the setting of scattered spaces; see
(Fernandez-Duque and Montacute 2023).

Preliminaries

In this section we introduce the notation and definitions re-
quired for understanding this paper. We work with the gen-
eral notion of derivative spaces: Derivative spaces are a spe-
cial case of derivative algebras introduced by Esakia (2004),
where (X)) is replaced by an arbitrary Boolean algebra. We
moreover work with ‘transitive’ derivative algebras, so that
the definition is stronger than that of e.g. (Baltag, Bezhan-
ishvili, and Fernandez-Duque 2021).

When working with more than one metric space, we may
denote the Cantor derivative of the space (X,d) by dx.
Given subsets A, B C X, it is not difficult to verify that
d satisfies the following properties:

1. d(@) = 2 3. dd(A) Cd(A).
2. d(AUB)=d(A)Ud(B);

Definition 1. A derivative space is a pair X = (X, p), where
X isasetand p: p(X) — p(X) is a map satisfying prop-
erties 1-3 above, where d = p.

If X = (X, 0) is a metric space and d is the Cantor deriva-
tive on X, then (X, d) is a derivative space. However, there
are other examples of derivative spaces. The standard clo-
sure of a subset A of points in a metric space can be de-
fined as ¢(A) = AU d(A). Then, (X, ¢) is also a derivative
space, which satisfies the additional property A C c(A);
we call such derivative spaces closure spaces. More gen-
erally, if (X, p) is an arbitrary derivative space, we define
p(A) = AU p(A).

Another example of derivative spaces comes from tran-
sitive Kripke frames. For the sake of succinctness, we call
these frames derivative frames. Below and throughout the
text, we write 3 I y ¢ instead of Jz(y T z A ¢), and
adopt a similar convention for the universal quantifier and
other relational symbols.

Definition 2. A derivative frame is a pair § = (W, C) where
W is a non-empty set and [ is a transitive relation on W.
Denote the reflexive closure of [ by C.

We also write w = v if w C v and v C w; the equivalence
class of w under = is called the cluster of w and is denoted
C(w). Given A C W, we define |- asamap |- : p(W) —
p(W) suchthat | =(A) ={weW:3v Jw e A)}.

Lemma 1. [f (W, C) is a derivative frame, then (W, |=) is
a derivative space.

Dynamical derivative systems consist of a derivative
space equipped with a continuous function. Recall that if
(X,0x) and (Y,0x) are metric spaces and f: X — Y,
then f is continuous if for every x € X and every ¢ >
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0 there exists 7 > 0 such that dx(z,2’) < 7 implies
Oy (f(x), f(z")) < e. It is well known (and not difficult to
check) that £ is continuous iff cx f~1(A) C f~ley (A) for
all A C Y. We thus arrive at the following general defini-
tion.

Definition 3. Let (X, px) and (Y, py ) be derivative spaces.
We say that f: X — Y is continuous if for all A C Y,
pxfH(A) C f~1py(A). We say that f is an immersion if
it satisfies the stronger condition px f~1(A) C f~tpy (A).
Finally, f is a homeomorphism if it is a bijection satisfying
pxfTHA) = f"lpy (A).

We are particularly interested in the case where X =Y,
which leads to the notion of dynamic derivative system.

Definition 4. A dynamic derivative system is a triple & =
(X, p, f), where (X, p) is a derivative space and f: X — X
is a continuous map.

If & = (X, p, f) is such that p is the Cantor derivative
associated with a metric &, we say that & is a dynamic metric
system and identify it with the triple (X, 4, f). If p = |
for some transitive relation , we say that G is a dynamic
Kripke frame and identify it with the triple (X, C, f).

It will be convenient to characterise dynamic Kripke
frames in terms of .

Definition 5 (monotonicity and strict monotonicity). Let
(W,C) be a derivative frame. A function f: W — W is
monotonic if w T v implies f(w) C f(v), and strictly
monotonic if w C v implies f(w) C f(v).

Lemma 2. If (W, C) is a derivative frame and f: W — W,
then

1. if f is monotonic, then it is continuous with respect to |,
and
if f is strictly monotonic, then it is an immersion with

respect to | .

2.

Next we will discuss the fangle operators, which are im-
portant in spatial modal logic, as they are expressively equiv-
alent to the p-calculus over the class of transitive Kripke
frames, as shown by Dawar and Otto (2009). In the spatial
context, the tangled closure was introduced by Fernandez-
Duque (2011b) and the tangled derivative was introduced by
Goldblatt and Hodkinson (2017), who observed that Dawar
and Otto’s result holds for metric spaces as well.

Definition 6 (tangled derivative). Let (X, p) be a derivative
space and let S C p(X). Given A C X, we say that S is
tangled in Aif forall S € S, A C p(S N A). We define the
tangled derivative of S as

p>=(S) = U{A C X : Sistangledin A}.

The tangled closure is then the special case of the tangled
derivative where p is a closure operator, and we denote it by
p°° (or ¢* when working with a metric space).

Dynamic Topological Logics

In this section we discuss dynamic spatial (or ‘topological’)
logic in the general setting of dynamic derivative systems.
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Given a non-empty set PV of propositional variables, the
language L¢, . is defined recursively as follows:

pu=ploAe|-p|Op| 0| Op,

where p € PV and @ is a finite sequence of formulas in
E%Om. It consists of the Boolean connectives A and —,
the temporal modality O, the modality & for the deriva-
tive operator, and the tangled derivative modality &, As
usual, [0 := == is the dual of ©. The closure and in-
terior modalities may be defined by ¢®¢ = ¢ V O and
He := ¢ AQy. Following (Goldblatt and Hodkinson 2017),
we define &P : =S A\ DV O,

Definition 7 (semantics). A dynamic derivative model
(DDM) is a quadruple M = (X, p, f,v) where (X, p, f)
is a dynamic derivative system and v : PV — p(X) is a
valuation function assigning a subset of X to each proposi-
tional letter in PV. Given ¢, ¢ € ﬁ% ooor WE define the truth
set |||l € X of ¢ inductively as follows:

Pl = v(p);
=l = X\ llells
e Al = llell NIl

[Gell = p(llell);

[0 {e1s - @ntll = p={llealls-- - llenll});

0wl = £~ (llell)-

We write M,z = pif z € |||, and M E ¢ if ||¢|| = X.
We may write || - [|on or || - ||, instead of || - || when working
with more than one model or valuation.

The notion of validity is defined as usual; if X is a dy-
namic derivative system and ¢ is a formula, we write X = ¢
if (X,v) |= ¢ for every valuation v on X. Similarly, if 2 is a
class of dynamical systems or models, we write {2 = ¢ and
say  is valid on Q if 2 |= ¢ for every 2 € Q.

We define other connectives (e.g. VV, —) as abbreviations
in the usual way. The fragment of £Z, that includes only &
will be denoted by L. In order to align with the familiar
axioms of modal logic, it is convenient to discuss the seman-
tics of [J. Accordingly, we define the dual of the derivative,
called the co-derivative.

Definition 8 (co-derivative). Let (X, p) be a derivative
space. For each S C X we define 5(S) := X\p(X\S5)
to be the co-derivative of S.

It can readily be checked that for every dynamic derivative
model (X, p, f,v) and every formula ¢, ||Je| = 4(||¢||).
The co-derivative can be used to define the standard interior
of a set, given by i(A) = AN p(A) foreach A C X.

Let us list the axiom schemes and rules that we will con-
sider in this paper. Below, if ® = {¢1,...,¢,} is a set of
formulas then O® := {Op1,...,0p,}, and & € {O, O}

Taut := All propositional tautologies
K:=0O(p = 9¢) = (Op — Oy)

4:=Op — O0¢ Mp. PP
T:=Up = ¢ (pw
Nec := =
D:=oT O
Nee. i 2.
Next, := =Op <> Oy €Co = O
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Nextp := O(p A ) <> Op A OY

Ce := ®0p — Odyp

Fixgoo 1= O®P — /\@e@ Olp A OXD)

Indge == E(0 = Apeg O A ) = (6 = OFP)
CTang:= ¢>*0® — O™

The ‘base modal logic’ over L is given by K := Taut+
K + MP + Nec. However, we are mostly interested in
proper extensions of K. Let A, A’ be logics over languages
L and L'. We say that A extends A’ if £ C L and all the
axioms and rules of A’ are derivable in A. A logic over L
is normal if it extends K. If A is a logic and ¢ is a formula,
we denote by A + ¢ the least extension of A which contains
every substitution instance of ¢ as an axiom.

We write 5 ¢ when ¢ is a theorem of A, or simply F ¢
when A is clear from context. Recall that a logic A is sound
for Q if every theorem of A is valid on €, and complete if
whenever ) = ¢, it follows that -5 .

We then define K4 := K + 4, K4D = K4 + D, and
S4 := K4 + T. These logics are well known and char-
acterise certain classes of spaces and Kripke frames which
we review below. For a logic A, A® denotes the logic
A + FiXQOC + Ind<>oc over £<><>oo .

For a logic A over L, AF is the logic over £g, given
by AF := A + Next_, + Next, + Necg, i.e. by adding
axioms of linear temporal logic to A, which hold whenever
O is interpreted using a function. In order to reason about
continuous functions, we define

AC
Al

AC>
AI>

AF + Cg
AF + Co

A>*C + CTang
A>T + CTang.

As we will see, these correspond to derivative spaces with a
continuous function or an immersion, respectively; accord-
ingly, logics that include C are immersive.

Theorem 1. S4 is the logic of all closure spaces, the logic
of all transitive, reflexive derivative frames, and the logic of
the real line with the standard closure (McKinsey and Tarski
1944), and K4 is the logic of all (finite) derivative frames
(i.e., transitive Kripke frames) and of all (countable) metric
spaces (Bezhanishvili and Lucero-Bryan 2012).

Logics with the C axioms correspond to classes of dy-
namical systems.

Lemma 3. If A is sound for a class of derivative spaces ),
then:

1. AC is sound for the class of dynamic derivative systems
(X, p, f), where (X, p) € Q and f is continuous.

2. Al is sound for the class of dynamic derivative systems
(X, p, f), where (X, p) € Q and f is an immersion.

The above lemma is easy to verify from the definition of a
continuous function in the context of derivative spaces (Def-
inition 3). Note that G OP — OO ® is not valid over the
class of dynamic derivative spaces with a continuous func-
tion (see Example 3).
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Applications to Dynamical Systems

Our logical framework is designed for the specification and
formal reasoning about dynamical systems, especially those
based on metric spaces. In many applications, the spaces
used have the additional property that they are crowded, or
dense-in-themselves i.e., they have no isolated points. This
property is expressed by the axiom D, i.e. OT.

In the introduction, we mentioned an example involving
satellites orbiting a centre of gravity. Let us revisit this ex-
ample with our formal language in mind.

Example 1 (centre of gravity). In Figure 1, we illustrate a
model of bodies orbiting a centre of gravity on a plane. We
may model this as R? with a transition function f : R? —
R? corresponding to the movement of a body over a fixed
time interval of € seconds. We may then describe various
properties of this system using dynamic spatial logic.

First, observe the region P. Points in this region will re-
turn to P after completing a full orbit (say, in time n), but
not before that. This corresponds to the expression P —

O"P A= \/7Z O'P. Conversely, the region ( is a unsafe
zone which none of the three orbits indicated in the figure
intersect. Accordingly, @P — A", O" @ —Q holds in our
model for every m; note that [—() means that we are inside
the region —(, not on the boundary. This is important in a
spatial safety condition, since it means that we are guaran-
teed not to be in the unsafe region even if there is a small

error in measurement.

This is a basic example of a dynamical system arising
from a metric space which is influenced by a force, in this
case gravity. Such forces can initiate different phenomena
such as chaos in the system.

Given a dynamical system X = (X, 7, f), we say that
[ X — X istopologically transitive if for every nonempty
open sets U,V € 7 there exists n > 0 such that f*(U) N
V # . This is an important property that together with
the set of periodic points of f being dense implies that X
is a chaotic dynamical system (Devaney 2018); in a seminal
result, Banks et al. (1992) showed that such systems exhibit
sensitive dependence on initial conditions, i.e. the ‘butterfly
effect’.

Example 2. Consider the dynamical system in Figure 2.
Suppose that starting at each of the black points the func-
tion reaches the area P within n steps. Then the formula
S Vi, O'P captures the fact that each open neighbour-
hood of the red point contains a point reaching P after some
amount of time bounded by n. The existence of such n is
guaranteed by topological transitivity.

Figure 2: A system exhibiting topological transitivity, the
orbit of each open set intersects every other open set.
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Let us now turn our attention to spatial fixed points.
We denote the language of the p-calculus by £,,. Dawar
and Otto (2009) showed that the bisimulation-invariant frag-
ment of monadic second order logic (MSQO) is expressively
equivalent to Ly over the class of finite K4 frames.
As a corollary, we obtain that for every ¢ € L, there is
P> € Lo such that ¢ <+ > is valid over the class
of metric spaces (Goldblatt and Hodkinson 2017). Thus
no generality is lost when replacing £,, with L. When
enriched with O, we obtain a logic where all spatial fixed
points can be expressed, but not those defined in terms of
O, such as ‘until’. As an important special case, we con-
sider the unary tangle <&>°°{ P} which represents the perfect
core of P, i.e. the largest subset of v(P) without isolated
points (Baltag, Bezhanishvili, and Fernandez-Duque 2021).

Example 3. In Figure 3, we see two dynamical systems
based on linear transformations on the plane: on the left a
rotation, and on the right, a trivial system that maps the en-
tire plane to 0. The system on the left is an immersion (in
fact, a homeomorphism), but the one on the right is not.
Let P be the top square on the left-hand figure (including
both the interior and the boundary), and let () be the bot-
tom square. It should be clear that ||&>*°{P}|| = P, since
P = d(P) = d(P N P). In other words, P is perfect, i.e. it
is closed and contains no isolated points. Similarly, points
in @ satisfy &*°{OP}, since every point of @ satisfies OP
and @ is also perfect. Moreover, these points also satisfy
OO>®{P}, so O*{OP} — OO>{P} holds; this is an in-
stance of the axiom CTan..

In contrast, let us consider the figure on the right, and let
O be the singleton containing the origin; () is as above. As
before, we have that every point of @ satisfies OO, hence
since @ is perfect, then G>°{OO}. However, the origin is an
isolated point, i.e. not perfect, so it does not satisfy G>°{0}.
It follows that points of @ satisfy G°{00} A =0O*{0},
and CTang, fails. However, the map is still continuous, so
we expect CTang to hold; and, indeed, we observe that
®>{0} holds on the origin, since O C ¢(O). It readily
follows that {00} — O&>*{0} is true in the model
on the right, i.e. CTang, is valid.

Figure 3: Two dynamical systems on the plane.

Relational Completeness

In this section we show that the logics K4C>, K4DC®°,
K4I*, and K4DI* have the finite model property by con-
structing finite models and truth preserving maps from these
models to the canonical model.

The first step in our completeness proof is to define the
standard canonical model Smf} = (W, C, g,v). This is done
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in a standard way, based on the set of maximal consistent
theories, and has the following properties (see (Fernandez-
Duque and Montacute 2022)).

Lemma 4. 1. If A extends K4C, then the canonical model
of A is transitive and monotonic.

If A extends K41, then the canonical model of A is tran-
sitive and strictly monotonic.

If A extends K4D, then the canonical model of A is
serial with respect to C (i.e., for all w € W, there is
v Jw).

Unfortunately, the standard truth lemma fails for the
canonical model, so it is only a stepping stone in our proof
and we must consider some related finite structures called
‘moments’. To define these, if T is a transitive relation on
A, (A,C) is called tree-like if whenever a C cand b C ¢,
it follows that @ C b or b C a. Moments record the ‘static’
information at a point.

Definition 9 (moment). Fix A € {K4,K4D}. A A-
moment is a structure m (Im|, Cm, Vi, 7m), where
(|m|, Cw) is a finite tree-like A-frame with a root ry,, and
Vi 18 a valuation on |m|.

In order to also record ‘dynamic’ information, we stack
up several moments together to form a ‘story’. Below, | |
denotes a disjoint union and f[S] denotes the image of a set
S under f.

Definition 10 (story and immersive story). A story (with
duration I) is a structure & = (|&|,Cg, fs, Vs, Ts) such
that there exist I < w, moments &; = (|&,|, C;, v;, ;) for
each ¢ < I, and functions (f;);< such that:

L [6]= Uig[ 1&3ls

2. Ce=li<s Cis

3. ve(p) = |;<; vi(p) for each variable p;

4. rg =rg;

5. fe = Id; U], fi with f;: |&;] — [S;41] being a

monotonic map such that fg is

root preserving: f;(r;) = r;1 forall i < I,

almost injective: for every z,y € |S;|, if fg(x)
fe(y) then fg(x) is irreflexive,

cluster-preserving: for every x € |65|, C(fs(x))
fe[C(x)], and

stabilising: f; is the identity on |&;].

If moreover each f; is strictly monotonic and injective, we
say that & is an immersive story. If each G; is a A-moment
we say that G is a AC-story, and if S is immersive we say
that S is a AI-story.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

vy s

Figure 4: An example of a K4D-story. The squiggly arrows
represent the relation C g while the straight arrows represent
the function fg. Black points are reflexive with respect to
C . Each vertical slice represents a K4D-moment.

See Figure 4 for an example of a K4D-story. We often
omit the index m or & when this does not lead to confusion.
We may also assign different notations to the components
of a moment, so that if we write m = (W, C,v, z), it is
understood that W = |m|, C = Ty, etc.

In order to extract stories from the canonical model, we
define a ‘finitary’ accessibility relation g which selects
witnesses for & and & formulas.

Lemma 5. Let A extend K4 and let ® be a finite set of
formulas closed under subformulas. There is an auxiliary
relation Cg on the canonical model of A such that:

(i) Co is a subset of Ce.

(ii) For each w € W, the set Co(w) of Ce-successors of w
is finite.

(iii) If O € w N D, then there exists v € W, with w Co v
and ¢ € v.

(iv) If 0T € w N D, then there exists {vy : p € ¥} C W,
(not necessarily distinct) with w Eg vy, 1, OV € vy,
and vy, Cc vy forall ), o € ¥ (including ¢ = ¢).

(v) Ifw=¢ vthen Cg (w) = Cg (v).

(vi) Cg is transitive.

In the study of modal logic, it is often useful to work
with morphisms between structures preserving validity of
formulas. For Kripke semantics, such maps are called p-
morphisms. These morphisms can be defined and gener-
alised in the context of dynamic derivative spaces.

Figure 5: The map 7 in Figure illustrates a p-morphism,
where the centre of the circle on the left is mapped to the
root of the Kripke frame on the right, the rays in red are
mapped to the intermediate red points in the Kripke frame,
and the open regions in grey are mapped to the leafs of the
Kripke frame. The rotation dynamics of the circle are trans-
lated to cycles in the Kripke frame marked in dashed lines.
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The relation Cg will allow us to weaken the conditions

on p-morphisms and still obtain maps that preserve the truth
of (some) formulas.
Definition 11 (®-morphism). Fix a logic A. Let 92 =
(We, Ce, g, Ve) and let m be a moment. A map 7 : |m| —
W. is called a ®-morphism if for all x € |m| the following
conditions are satisfied:

1. £ € vn(p) < pen(z);

2. Ifz Ty y then w(x) Te m(y)s

3. If 7(z) Ce v for some v € W, then there exists y € |m|
such that Ty y and v = 7(y).

We say that 7 is distinguished if whenever z is reflexive,
then either m(z) is 6-final for some 6 € L o (not neces-
sarily in ®@), or else there is y =, « such that 7 (y) # 7(z).

We also need a dynamic variant of a ®-morphism which
takes the transition function into account.

Definition 12 (dynamic ®-morphism). Fix a logic A. Let
imé‘ = (W¢, Ce, g, V) and let & be a story of duration I.
A map 7 : |6 — W, is called a dynamic ®-morphism if
forall: < I, w | |&;]is a ®-morphism and if z € |&;] for
some i < I, then g.(7(z)) = n(fs(x)).

We say that 7 is a distinguished dynamic ®-morphism if
each 7 | |&;| is distinguished and for every reflexive y €
|&,]|, either 7(y) is O-final for some 6, or ¢ > 0 and y €
fel|Gill.

The key is that dynamic ®-morphism 7 preserves the truth
of formulas of suitable O-depth.

Lemma 6 (truth preservation). Let & be a story of duration
I and let x € |Sy|. Let 7 be a dynamic ®-morphism into the
canonical model of some normal logic A extending K4C>,
Suppose that p € ® is a formula of O-depth at most 1, and
either A and & are immersive or w is distinguished. Then,
pemn(z)ifeelele.

The final ingredient in our completeness proof is the fact
that every point in the canonical model is a dynamic ®-
morphic image of a suitable story.

Proposition 1. Let A be any of K4C*°, K4DC, K4I*,
or K4DI™. Given I < w and w € W, there is a story S of
duration I and a dynamic ®-morphism 7: |&| — W, with
w = m(rg), such that either A and & are immersive or T is
distinguished.

This proposition is proven via a ‘step-by-step’ construc-
tion. First, we build a story of duration 1 by constructing
the first moment. Then, we iteratively add a new moment in
such a way that the required transition function always ex-
ists between one moment and the next. It follows that every
satisfiable formula is also satisfiable on a finite story, hence
satisfiable on a finite model. We obtain Kripke completeness
for our logics, where soundness follows from Lemma 3.

Theorem 2. The logics K4C>, K4DC*™, K4I* and
K4DI™ are sound and complete for their respective classes
of finite dynamic Kripke frames.

From completeness and FMP, we obtain decidability.

Corollary 1. Each of the logics K4C™, K4DC>, K4I*
and K4DI® is decidable.
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Metric Completeness

Next we ‘lift” Theorem 2 to metric spaces. We first need to
prepare our stories for this procedure. First, we assume that
if w is any reflexive point then there is w’ # w such that
w = w’ and (w) = 7w(w'); i.e., there are at least two copies
of each reflexive point in each cluster. This is not a problem,
since every model is bisimilar to one with this property. Sec-
ond, following Kremer and Mints (Kremer and Mints 2007),
we need to add limits to our Kripke models.

Definition 13. Let § = (W,,g) be a finite dynamic
Kripke frame. A path through § is an infinite sequence
W= (w;)$2, such that w; T w;y1. A finite path is defined
similarly but has finitely many elements. The set of (infinite)
paths is denoted W,

For a path @ = (w;)$2,,, we define g(w) = (g(w;))5,.
A limit assignment is a function lim assigning to each & €
W an element lim @ € W such that lim @ occurs infinitely
often in ), and such that lim ¢(w) = §(lim ).

Every story admits a limit assignment. The key observa-

tion is then that the paths on a Kripke frame form a metric
space.
Definition 14. Let § = (W,C,g) be a finite dynamic
Kripke frame with a limit assignment. We define a metric
§ on W such that §(&,7) = 0 if @ = @, and otherwise
d(w, ) = 27™ for the least n such that w,, # v,,.

Proposition 2. Let § = (W, C, g) be a finite story such that
every reflexive cluster has at least two elements, and let lim
be a limit assignment on §. The structure § = (W,6,§) is

a dynamic metric system, and lim: W — W is a dynamic
p-morphism. Moreover, if g is immersive, then so is §.

We wish to show that 1 is in fact homeomorphic to a
subset of the Cantor space. For this we use the following
two results.

Theorem 3 (Brouwer, see e.g. (van Mill 2001)). A metric
space is a Cantor space if and only if it is non-empty, perfect,
compact, and totally disconnected.

In particular, it is well known that the set of branches on
the infinite binary tree is homeomorphic to the Cantor set.
It is not hard to see that this binary tree is of the form W,
where W is a two-element cluster. More generally, W is al-
ways a Cantor set, provided some mild conditions are sat-
isfied. Completeness for the Cantor space then follows (see
Theorem 4 below). Finally, we prove completeness for sub-
spaces of the rational numbers, using the following.
Proposition 3 (Sierpinski 1920). Every two perfect count-
able metric spaces are homeomorphic to each other.

For this, we focus our attention on a countable subspace
of W; namely, those sequences that are eventually constant.
Given a frame (W, C), define Wy, to be the set of all @ € W
such that there is n € N such that w,, = w,, for all n >
m. Clearly, Wy is countable if W is finite, and it inherits
the metric (which we denote dp) from W. The space WO is

always homeomorphic to a subset of QQ, and completeness
for the rationals follows.
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Theorem 4. Let X be either Q or the Cantor set.

1. K4C™ is complete for the class of dynamic metric sys-
tems based on a closed subspace of X.

KA4I* is complete for the class of immersive dynamic
metric systems based on a closed subspace of X.
K4DC®™ is complete for the class of dynamic metric
systems based on X.

KA4DI™ is complete for the class of immersive dynamic
metric systems based on X.

2.

Conclusion

We have developed dynamic spatial logics based on the spa-
tial p-calculus, in its tangled presentation, and introduced
various axiomatic systems that are sound and complete for
their intended interpretations over dynamical systems based
on a metric space. We showed that these completeness re-
sults in particular apply to the Cantor space and the rational
numbers — two ‘canonical’ metric spaces.

One may also consider interpretations based on the
real line, or on Euclidean spaces in general. Ferndndez-
Duque (2007) showed that S4C is complete for the plane,
but we cannot expect similar results for K4DC, in view
of results by Lucero-Bryan (2013) and Shehtman (1990).
However, it may well be possible to define extensions of
K4DC* that are complete for Euclidean spaces. Determin-
ing the dynamic derivational logics of Euclidean spaces re-
mains a challenging direction for future research. Even in
the setting of closure semantics, the dynamic spatial logic
of the real line is a long-standing open problem (Nogin and
Nogin 2008).

Finally, there is the issue of extending our language to in-
clude the ‘henceforth’ operator. It is our expectation that the
Cantor-derivative logic of all dynamic metric systems may
be axiomatised using the tangled derivative, much as the tan-
gled closure was used to provide an axiomatisation of the
closure-based DTL (Fernandez-Duque 2012). Fernandez-
Duque showed how the tangled closure is essential in ax-
iomatising DTL with the ‘henceforth’ operator, and in fu-
ture work we plan to show how the same can be done for
DTL with the Cantor derivative. This follows the work of
Ferndndez-Duque and Montacute who provided a complete
axiomatisation for DTL with the Cantor derivative and
‘henceforth’ for the class of scattered spaces (Fernandez-
Duque and Montacute 2023). In this context, we are specifi-
cally interested in axiomatising the class of chaotic systems.
We believe that the present work is an important step to-
wards achieving this goal.

References

Artemov, S.; Davoren, J.; and Nerode, A. 1997. Modal Log-
ics and Topological Semantics for Hybrid Systems. Techni-
cal Report MSI 97-05.

Baltag, A.; Bezhanishvili, N.; and Ferndndez-Duque, D.
2021. The Topological Mu-Calculus: completeness and de-
cidability. 1-13.

Baltag, A.; Bezhanishvili, N.; and Ferndndez-Duque, D.
2022. The Topology of Surprise. In Kern-Isberner, G.; Lake-



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

meyer, G.; and Meyer, T., eds., Proceedings of the 19th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2022, Haifa, Israel. July 31 -
August 5, 2022.

Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; and Stacey,
P. 1992. On Devaney’s Definition of Chaos. Am. Math.
Monthly, 99(4): 332-334.

Bezhanishvili, G.; and Lucero-Bryan, J. 2012. More on d-
Logics of Subspaces of the Rational Numbers. Notre Dame
J. Formal Log., 53(3): 319-345.

Cohn, A.; and Renz, J. 2008. Qualitative Spatial Represen-
tation and Reasoning. In van Harmelen, F.; Lifschitz, V.;
and Porter, B., eds., Handbook of Knowledge Representa-
tion, volume 3 of Foundations of Artificial Intelligence, 551—
596. Elsevier.

Dawar, A.; and Otto, M. 2009. Modal characterisation the-
orems over special classes of frames. Ann. Pure Appl. Log.,
161(1): 1-42.

Devaney, R. L. 2018. An introduction to chaotic dynamical
systems. CRC press.

Dickmanns, E.; Mysliwetz, B.; and Christians, T. 1990.
An integrated spatio-temporal approach to automatic visual
guidance of autonomous vehicles. [EEE Transactions on
Systems, Man, and Cybernetics, 20(6): 1273—-1284.

Egenhofer, M.; and Franzosa, R. 1991. Point-set topologi-
cal spatial relations. International Journal of Geographical
Information Systems, 5(2): 161-174.

Esakia, L. 2004. Intuitionistic logic and modality via topol-
ogy. Ann. Pure Appl. Log., 127(1-3): 155-170.

Fernandez-Duque, D. 2011a. On the Modal Definability
of Simulability by Finite Transitive Models. Stud Logica,
98(3): 347-373.

Fernandez-Duque, D. 2011b. Tangled Modal Logic for Spa-
tial Reasoning. In Walsh, T., ed., IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial In-
telligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
857-862. ICAI/AAAL

Fernandez-Duque, D.; and Montacute, Y. 2022. Dynamic
Cantor Derivative Logic. In Manea, F.; and Simpson, A.,
eds., 30th EACSL Annual Conference on Computer Science
Logic, CSL 2022, February 14-19, 2022, Gottingen, Ger-
many (Virtual Conference), volume 216 of LIPIcs, 19:1—
19:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

Fernandez-Duque, D.; and Montacute, Y. 2023. Untangled:
A Complete Dynamic Topological Logic. In Williams, B.;
Chen, Y.; and Neville, J., eds., Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence, AAAI 2023, Thirty-Fifth Con-
ference on Innovative Applications of Artificial Intelligence,
IAAI 2023, Thirteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, 6355-6362. AAAI Press.

Ferndndez-Duque, D. 2007. Dynamic Topological Com-
pleteness for R%. Logic Journal of the IGPL, 15(1): 77-107.

Fernandez-Duque, D. 2012. A sound and complete axiom-
atization for Dynamic Topological Logic. The Journal of
Symbolic Logic, T7(3): 947-969.

10516

Fine, K. 1974. Logics containing K4. 1. J. Symbolic Logic,
39: 31-42.

Gabelaia, D.; Kontchakov, R.; Kurucz, A.; Wolter, F.; and
Zakharyaschev, M. 2005. Combining Spatial and Temporal
Logics: Expressiveness vs. Complexity. J. Artif. Intell. Res.,
23: 167-243.

Goldblatt, R.; and Hodkinson, I. 2017. Spatial logic of tan-
gled closure operators and modal mu-calculus. Annals of
Pure and Applied Logic, 168(5): 1032 — 1090.

Hua, H.; Li, D.; Li, R.; Zhang, P.; Renz, J.; and Cohn, A.
2022. Towards Explainable Action Recognition by Salient
Qualitative Spatial Object Relation Chains. Proceedings of
the AAAI Conference on Artificial Intelligence, 36(5): 5710-
5718.

Kremer, P.; and Mints, G. 2005. Dynamic Topological
Logic. Annals of Pure and Applied Logic, 131: 133-158.

Kremer, P.; and Mints, G. 2007. Dynamic Topological
Logic. In Aiello, M.; Pratt-Hartmann, I.; and van Benthem,
J., eds., Handbook of Spatial Logics, 565-606. Springer.

Lucero-Bryan, J. G. 2013. The d-logic of the real line. J.
Log. Comput., 23(1): 121-156.

McKinsey, J.; and Tarski, A. 1944. The algebra of topology.
Annals of Mathematics, 2: 141-191.

Mints, G.; and Zhang, T. 2005. Propositional logic of con-
tinuous transformations in Cantor space. Arch. Math. Log.,
44(6): 783-799.

Nogin, M.; and Nogin, A. 2008. On Dynamic Topological
Logic of the Real Line. Journal of Logic and Computation,
18(6): 1029-1045.

Randell, D.; Cui, Z.; and Cohn, A. 1992. A Spatial Logic
Based on Regions and Connection. In Proceedings of the
Third International Conference on Principles of Knowledge
Representation and Reasoning, KR’92, 165-176. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc.
Shehtman, V. B. 1990. Derived sets in euclidean spaces and
modal logic. ILLC Preprints and Publications, X-1990-05.
Sierpinski, W. 1920. Sur une propriété topologique des en-
sembles dénombrables denses en soi. Fund. Math., 1: 11-16.
Stell, J. 2019. Qualitative Spatial Representation for the
Humanities. International Journal of Humanities and Arts
Computing, 13(1-2): 2-27.

van Mill, J. 2001. The infinite-dimensional topology of func-
tion spaces. Amsterdam.

Wolter, F.; and Zakharyaschev, M. 2000. Spatial Reasoning
in RCC-8 with Boolean Region Terms. In Horn, W., ed.,
ECAI, 244-250. 10S Press.



