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Abstract

Despite recent advancements in out-of-distribution (OOD)
detection, most current studies assume a class-balanced in-
distribution training dataset, which is rarely the case in real-
world scenarios. This paper addresses the challenging task
of long-tailed OOD detection, where the in-distribution data
follows a long-tailed class distribution. The main difficulty lies
in distinguishing OOD data from samples belonging to the tail
classes, as the ability of a classifier to detect OOD instances is
not strongly correlated with its accuracy on the in-distribution
classes. To overcome this issue, we propose two simple ideas:
(1) Expanding the in-distribution class space by introducing
multiple abstention classes. This approach allows us to build a
detector with clear decision boundaries by training on OOD
data using virtual labels. (2) Augmenting the context-limited
tail classes by overlaying images onto the context-rich OOD
data. This technique encourages the model to pay more at-
tention to the discriminative features of the tail classes. We
provide a clue for separating in-distribution and OOD data by
analyzing gradient noise. Through extensive experiments, we
demonstrate that our method outperforms the current state-of-
the-art on various benchmark datasets. Moreover, our method
can be used as an add-on for existing long-tail learning ap-
proaches, significantly enhancing their OOD detection per-
formance. Code is available at: https://github.com/Stomach-
ache/Long-Tailed-OOD-Detection.

Introduction
Deep neural networks (DNNs) can achieve high performance
in various real-world applications by training on large-scale
and well-annotated datasets. Most supervised learning litera-
ture makes a common assumption that the training and test
data have the same distribution. However, DNNs in deploy-
ment often encounter data from an unknown distribution, and
it has been shown that DNNs tend to produce wrong predic-
tions on anonymous, or out-of-distribution (OOD) test data
with high confidence (Hendrycks and Gimpel 2017; Liang,
Li, and Srikant 2018; Hein, Andriushchenko, and Bitterwolf
2019), which can result in severe mistakes in practice.

Recently, OOD detection, which aims to reject OOD test
data without classifying them as in-distribution labels, has
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caught great attention. Existing state-of-the-art OOD detec-
tors achieve huge success by maximizing the predictive un-
certainty (Hendrycks, Mazeika, and Dietterich 2019; Meinke
and Hein 2020), energy function (Liu et al. 2020), and ab-
stention class confidence (Mohseni et al. 2020; Chen et al.
2021) for OOD data. However, these approaches assume that
the in-distribution data is class-balanced, which is usually
violated in real-world tasks (Van Horn and Perona 2017; Liu
et al. 2019; Cui et al. 2019; Wei and Li 2020; Wei et al.
2021b; Wei and Gan 2023). In this paper, we consider that
the in-distribution training data follows a long-tailed class dis-
tribution. Under this setup, directly combining existing OOD
detectors with long-tailed learning methods still leads to un-
satisfactory performance (Wang et al. 2022). So, a natural
question is raised:

Is it possible to effectively distinguish OOD data from
tail-class samples?

To answer this question, we propose a novel framework,
EAT, which is composed of two key ingredients: (1) dynamic
virtual labels, which expand the classification space with ab-
stention classes for OOD data and are dynamically assigned
by the model in the training process. EAT classifies OOD
samples into abstention OOD classes rather than imposing
uniform predictive probabilities over inlier classes such as
in OE (Hendrycks, Mazeika, and Dietterich 2019), Energy
(Liu et al. 2020), and PASCL (Wang et al. 2022). This step is
critical because inherent similar OOD samples can be pushed
closer if they are classified as an identical OOD class, and
the decision boundary between inlier data and OOD data will
be clearer. (2) tail class augmentation, which augments the
tail-class images by pasting them onto the context-rich OOD
images to force the model to focus on the foreground objects.
Precisely, given an original image from the tail class, it is
cropped in various sizes and pasted onto images from OOD
data. Then, we can create tail-class images with more diverse
contexts by changing the background. The generalization for
tail classes can be significantly improved.

To further enhance the classification of inlier data, we
propose a method that involves fine-tuning the classifiers ex-
clusively using inlier data. This fine-tuning process employs a
class-balanced loss function for a few iterations. Additionally,
we illustrate that our method can be seamlessly integrated
with existing long-tail learning approaches, leading to a sig-
nificant improvement in their OOD detection performance.
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This is evident from the results presented in Table 6, where
our method acts as a valuable plugin to boost the performance
of these approaches. These findings contradict the argument
put forth by previous work (Vaze et al. 2022) that a classifier
performing well on in-distribution data would automatically
excel as an OOD detector.

The key contributions of this paper are summarized as
follows: (1) We tackle the challenging and under-explored
problem of long-tailed OOD detection. This problem poses
unique difficulties and requires innovative solutions. (2) We
propose a novel approach to train OOD data using virtual la-
bels, presenting an alternative to the outlier exposure method
specifically designed for long-tailed data. Furthermore, we
provide insights into the impact of virtual labels by exam-
ining gradient noise, deepening our understanding of their
effectiveness. (3) Through extensive experiments conducted
on various datasets, we empirically validate the effectiveness
of our proposed method. Our results demonstrate an aver-
age boost of 2.0% AUROC and 2.9% inlier classification
accuracy compared to the previous state-of-the-art method.
(4) Our method serves as a versatile add-on for mainstream
long-tailed learning methods, significantly enhancing their
performance in detecting OOD samples. Importantly, our
findings challenge the notion that a strong inlier classifier
necessarily implies good OOD detection performance.

Related Work
OOD detection As a representative approach, Outlier Ex-
posure (OE) proposes maximizing the OOD data’s predic-
tive uncertainty as a complementary objective for the in-
distribution classification loss. Further, Energy (Liu et al.
2020) improves OE by introducing the energy function as
a regularization term and detects OOD samples according
to their energy scores. Conversely, SOFL (Mohseni et al.
2020) and ATOM (Chen et al. 2021) attempt to classify OOD
samples into abstention classes while in-distribution samples
are classified into their true classes. Then, OOD data can
be identified according to the model’s outputs on abstention
classes. Although existing OOD detectors can achieve high
performance, they are typically trained on class-balanced in-
distribution datasets and cannot be directly applied to long-
tailed tasks.

Long-tailed learning Existing approaches to long-tailed
learning can be roughly categorized into three types by modi-
fying: (1) the inputs to a model by re-balancing the training
data (He and Garcia 2009; Liu et al. 2019; Zhou et al. 2020);
(2) the outputs of a model, for example by posthoc adjustment
of the classifier (Kang et al. 2020; Menon et al. 2021; Tang,
Huang, and Zhang 2020) and (3) the internals of a model
by modifying the loss function (Cui et al. 2019; Cao et al.
2019; Jamal et al. 2020; Ren et al. 2020). Recently, (Yang
and Xu 2020) and (Wei et al. 2022) propose using OOD data
to improve the performance of long-tailed learning. However,
it is noted that these approaches are designed to boost the in-
distribution classification performance and cannot be directly
employed to detect OOD data.

Long-tailed OOD detection Recently, long-tailed OOD
detection has received more and more attention, and several

approaches have been proposed to tackle this challenging
problem. PASCL (Wang et al. 2022) optimizes a contrastive
objective between tail class samples and OOD data to push
each other away in the latent representation space, which can
boost the performance of OOD detection. Further, it min-
imizes the logit adjustment loss to yield a class-balanced
performance of inlier classification. HOD (Roy et al. 2022)
studies a long-tail OOD detection problem in medical image
analysis, which directly trains a binary classifier to discrim-
inate in-distribution data and OOD data. However, HOD
assumes that the OOD data is labeled, while we do not make
this assumption and only leverage unlabeled OOD data to aid
the detection performance. OLTR (Liu et al. 2019) formally
studies the OOD detection task in long-tailed learning. It de-
tects OOD inputs in the latent representation space according
to the minimum distance between them and the centroids of
in-distribution classes. Although OLTR outperforms several
OOD detectors such as MSP (Hendrycks and Gimpel 2017),
it is outperformed by the state-of-the-art OOD detection meth-
ods, suggesting that there remains room for improvement.

The Proposed Approach
Overview
We follow the popular training objective of existing state-of-
the-art OOD detection methods, which train the model using
both in-distribution data and unlabeled OOD data. Let Din
and Dout denote an in-distribution training set and an unla-
beled OOD training set, respectively. Note that Din follows a
long-tailed class distribution in our setup. The training loss
function of many existing OOD detection methods (e.g., OE,
EnergyOE, ATOM, and PASCL) is defined as follows:

Ltotal = Lin + λ · Lout, (1)

where Lin is the inlier classification loss, Lout is the outlier
detection loss, and λ is a trade-off hyperparameter. Typi-
cally, we choose to optimize the standard cross entropy loss
(denoted by ℓ) for the inlier classification task:

Lin = Ex∼Din [ℓ(f(x), y)]

= log[1 +
∑
y′ ̸=y

e(fy′ (x)−fy(x))] (2)

Here, fy(x) represents the predicted logit corresponding to
label y. For OOD detection, we propose using k abstention
classes. The training outlier data is assigned to abstention
classes by generating “virtual” labels by the model, and vir-
tual labels may change through training iterations. With this,
the training objective for outliers is defined as:

Lout = Ex̃∼Dout [ℓ(f(x̃), ỹ)]

= log[1 +
∑
y′ ̸=ỹ

e(fy′ (x̃)−fỹ(x̃))]

s.t. ỹ = arg max
c∈[C+1,C+k]

fc(x̃) (3)

where ỹ is the virtual label of outlier sample x̃. Note that
our treatment for training outlier data differs from existing
methods, including OE, Energy, and PASCL. They attempt to
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maximize the predictive uncertainties of outliers. We demon-
strate that our approach achieves significantly better results
in the experiments by introducing multiple abstention classes.
The proposed approach is detailed below.

OOD Samples with Dynamic Virtual Labels
The approach of using abstention OOD classes is motivated
by recent works (Abdelzad et al. 2019; Chen et al. 2021;
Vernekar et al. 2019) which propose to add a single absten-
tion class for all outlier data. Although this is shown to be ef-
fective compared to the outlier exposure method (Hendrycks,
Mazeika, and Dietterich 2019), fitting a heterogeneous out-
lier set to a single class is challenging and problematic. One
natural mitigation strategy here is to assign multiple absten-
tion classes as possible outputs, which essentially turns the
C-class classification into a (C+k)-class classification prob-
lem. Here, we denote C as the number of inlier classes and k
as the number of abstention classes added for outliers. Taking
CIFAR100-LT as an example, if we use an additional k = 30
classes for fitting outliers, the number of neurons in the final
fully-connected layer will be 130.

Ultimately, we want our model to classify unseen outliers
in the test set into those k abstention classes. This can be
achieved by encouraging the model to learn a structured
decision boundary for the inliers vs. outliers. However, the
ground-truth labels for training outlier data are not accessible.
Thus, we propose generating virtual labels for the outliers
so that the model learns to distinguish them from inliers.
Towards this end, we take the predictions of the immediate
model as the virtual labels at each training iteration, also
known as self-labelling. The model is trained to predict vir-
tual labels by minimizing the cross-entropy loss at the next
iteration. The generation of virtual labels coincides with the
self-training process, which is a popular framework in semi-
supervised learning. At test time, the sum of probabilities for
the k abstention classes indicating the OOD score is used.
This is because the abstention classes are meaningless and
virtual labels do not correspond to their ground-truth labels.

Mathmatical Interpretation Exploring the reason behind
OOD samples yielding higher scores than in-distribution sam-
ples is an intriguing endeavor. One way to comprehend the
impact of virtual labels is through the lens of noise in loss
gradients (Wei et al. 2021a). We define the trainable parame-
ter of model f as θ ∈ Rp. By calculating the gradient of the
loss function with respect to θ and updating the parameter ac-
cordingly, we gain insight into this phenomenon. Specifically,
we represent the output probabilities for an in-distribution
sample x and an OOD sample x̃ as z = Softmax(f(x)) and
z̃ = Softmax(f(x̃)) respectively.
Proposition 1. For the cross-entropy loss, Eq. (3) induces
gradient noise g = −∇θ z̃j

z̃j
on ∇θℓ(z, y), s.t., g ∈ Rp, j =

argmaxj∈[C+1,C+k] z̃. While each OOD sample in OE
(Hendrycks, Mazeika, and Dietterich 2019) induces gradient
noise g′ = − 1

C

∑C
j=1

∇θ z̃j

z̃j
on ∇θℓ(z, y), where ·

z̃j
denotes

the element-wise division.
Remark. The detailed proof for the following proposition can
be found in the supplementary material. We first draw the

conclusion that our proposed virtual labeling induces gradi-
ent noise of g = −∇θ z̃j

z̃j where j ∈ [C + 1, C + k] is the
virtual label for an OOD sample. On the contrary, previous
method OE induces gradient noise of g′ = − 1

C

∑C
i=1

∇θ z̃i

z̃i .
Therefore, the main advantage of our approach yields gradi-
ent noise with dynamic direction depending on the virtual
label of each OOD sample, which helps escape local minima
during optimization. However, OE induces constant gradient
noise so that the optimization of the model always follows the
direction of gradient descent. Furthermore, the gradient noise
induced by our approach helps the model to produce more
conservative in-distribution class (i.e., [1, C]) predictions on
OOD samples than OE. This is because of the nature of vir-
tual labels which encourages the model to produce confident
predictions on virtual classes, i.e., [C + 1, C + k].

Context-rich Tail Class Augmentation In our pursuit to
enhance generalization, we go beyond the utilization of vir-
tual labels to amplify the distinction between in-distribution
and OOD samples. We additionally harness OOD samples to
augment the tail classes, leading to improved performance.
Our approach involves the implementation of an image-
mixing data augmentation technique called CutMix (Yun
et al. 2019), which enables us to generate training samples
specifically tailored for the tail class. The core concept re-
volves around leveraging the context-rich nature of the head
class and outlier images as backgrounds to create diverse and
enriched tail samples. Given a tail-class image xf , we com-
bine it with a randomly selected head-class or OOD image
represented as xb. This merging operation is referred to as
the CutMix operator and is defined as follows:

xb⊙f = M⊙ xb + (1−M)⊙ xf (4)

In this context, we designate xb as the background image and
xf as the foreground image. A binary mask M ∈ 0, 1W×H

is employed to indicate the areas to preserve as background.
Correspondingly, (1 −M) selects the patch from the fore-
ground image to be pasted onto the background image. Here,
1 represents a matrix filled with ones, and ⊙ denotes element-
wise multiplication. In order to address the limited availability
of data for tail classes, we assume that the composite image
xb ⊙ xf carries the same label as the foreground image xf,
i.e., yb⊙f = yf. However, it is important to note that this ap-
proach can introduce label noise during training. Therefore,
we assign lower sample weights to the generated tail-class
images to mitigate the adverse impact.

Tailored CutMix offers two notable advantages for both
outlier detection and inlier classification. Firstly, by using
diverse OOD images as backgrounds, the model is encour-
aged to differentiate between tail-class images and OOD data
based on foreground objects rather than image backgrounds.
This aids in enhancing the model’s ability to identify and
distinguish outliers effectively. Secondly, the inclusion of
head-class and OOD data through mixing increases the fre-
quency of tail classes, leading to a more balanced training
set. This improved class balance contributes to enhanced
generalization capabilities.

It is worth noting that the study conducted by (Park et al.
2022) also incorporates CutMix to generate tail-class samples.
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Figure 1: Overview of EAT framework.

However, their approach differs in that they sample image
pairs from the original long-tailed data distribution and a tail-
class-weighted distribution. Furthermore, their study focuses
on improving inlier prediction accuracy rather than OOD
detection. As far as our knowledge extends, we are the first
to adapt CutMix specifically for long-tailed OOD detection,
distinguishing our work in this area.

Improving OOD Separation
To amplify both outlier detection and inlier classification
performance, we employ a mixture of experts by integrating
multiple classifiers that share a common feature extractor.
By training an ensemble of m members with random ini-
tializations, we optimize the sum of loss functions for these
classifiers, aiming to achieve superior results.

Ltotal =

m∑
i=1

(L(i)
in + λ · L(i)

out) (5)

Given an input x at test time, we use the average predictions
of ensemble members as the OOD score:

G(x) =
1

m

m∑
i=1

C+k∑
j=C+1

z
(i)
j , (6)

where z(i) = Softmax(f (i)(x)). We choose m = 3 in our ex-
periments. If x is not deemed as an OOD input, the prediction
will be argmax1≤c≤C

1
m

∑m
i=1 z

(i).
It is important to note that the performance improvement

achieved by deep ensembles relies on the diversity introduced
through random initialization of network parameters. In our
specific setup, since we employ a shared feature extractor,
random initialization is applied solely to the parameters of
the last layer. To enhance diversity further, we train ensemble
models with virtual labels generated by each classifier. This
means that the virtual label for a given sample x is obtained
by selecting ỹ = argmaxc∈[C+1,C+k] f

(i)
c (x) for the i-th

classifier. The overall framework of our approach is depicted
in Figure 1.

Model Fine-tuning
After training a multi-branch model, we proceed to fine-tune
the classifiers using training inlier data, aiming to enhance
the classification performance. It is worth mentioning that
the two-stage approach, involving representation learning
followed by classifier learning, is commonly employed in
the field of long-tailed learning. Prominent examples include
decoupling (Kang et al. 2020), BBN (Zhou et al. 2020), and
MisLAS (Zhong et al. 2021). In this article, we implicitly
explore the advantages of utilizing OOD data for represen-
tation learning by optimizing supervised objectives during
model training. Furthermore, we keep the feature extractor
fixed and refine the classifiers for a few iterations to improve
inlier classification performance. During the fine-tuning pro-
cess, we employ the logits adjustment (LA) loss (Menon et al.
2021) to guide the training.

ℓLA(y, f (x)) = log[1 +
∑

y′ ̸=y e
△yy′ · e(fy′ (x)−fy(x))] (7)

Here, the pairwise label margins △yy′ = log
πy

πy′
represents

the desired gap between predictive confidence for y and
y ′ depending on the number of each class. πy denotes the
class prior of class y in the training inlier data. We will
empirically show that fine-tuning can introduce not only large
improvements for the inlier classification task but also boost
the performance of OOD detection.

Experiments
Experiment Settings
We verify our approach on commonly used datasets in
comparison with the existing state-of-the-art. CIFAR10-LT,
CIFAR100-LT (Cao et al. 2019), and ImageNet-LT (Liu et al.
2019) are used as in-distribution training sets (Din). The stan-
dard CIFAR10, CIFAR100, and ImageNet test sets are used as
in-distribution test sets (Dtest

in ). Following (Wang et al. 2022),
we set the default imbalance ratio to 100 for CIFAR10-LT and
CIFAR100-LT during training. For evaluation measures, we
mainly use AUROC, AUPR, FPR95, ACC@FPRn, which
is ACC when n = 0, following (Hendrycks, Mazeika, and
Dietterich 2019; Mohseni et al. 2020; Yang et al. 2021; Wang
et al. 2022).

OOD datasets for CIFAR-LT We employ 300 thousand
samples from TinyImages80M (Torralba, Fergus, and Free-
man 2008) as the OOD training images for CIFAT10-LT and
CIFAR100-LT following (Hendrycks, Mazeika, and Diet-
terich 2019; Wang et al. 2022). Of those, 80 Million Tiny
Images is a large-scale, diverse dataset of 32 × 32 natural
images. The 300 thousand samples are selected from the 80
Million Tiny Images by (Hendrycks, Mazeika, and Dietterich
2019), not intersected with the CIFAR datasets. For OOD test
data, we use Textures (Cimpoi et al. 2014), SVHN (Netzer
et al. 2011), Tiny ImageNet (Le and Yang 2015), LSUN (Yu
et al. 2015), and Places365 (Zhou et al. 2017) as Dtest

out . We
use CIFAR-100 as a Dtest

out for CIFAR10-LT and vice-versa.

OOD datasets for ImageNet-LT We use a specifically
designed Dout called ImageNet-Extra following (Wang et al.
2022). ImageNet-Extra has 517, 711 images belonging to 500
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Dtest
out Method AUROC(↑) AUPR(↑) FPR95(↓)

Texture
OE 92.59 83.32 25.10

PASCL 93.16 84.80 23.26
Ours 95.44 92.28 21.50

SVHN
OE 95.10 97.14 16.15

PASCL 96.63 98.06 12.18
Ours 97.92 99.06 9.87

CIFAR100
OE 83.40 80.93 56.96

PASCL 84.43 82.99 57.27
Ours 85.93 86.10 54.13

Tiny
ImageNet

OE 86.14 79.33 47.78
PASCL 87.14 81.54 47.69

Ours 89.11 85.43 41.75

LSUN
OE 91.35 87.62 27.86

PASCL 93.17 91.76 26.40
Ours 95.13 94.12 19.72

Places365
OE 90.07 95.15 34.04

PASCL 91.43 96.28 33.40
Ours 93.68 97.42 26.03

Average
OE 89.77 87.25 34.65

PASCL 90.99 89.24 33.36
Ours 92.87 92.40 28.83

(a) OOD detection results.

Method ACC@FPRn (↑)
0 0.001 0.01 0.1

OE 73.54 73.90 74.46 78.88
PASCL 77.08 77.13 77.64 81.96

Ours 81.31 81.36 81.81 84.40

(b) In-distribution classification results in terms of ACC@FPRn.

Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)
ST (MSP) 72.28 70.27 66.07 72.34

OECC 87.28 86.29 45.24 60.16
EnergyOE 89.31 88.92 40.88 74.68

OE 89.77 87.25 34.65 73.84
PASCL 90.99 89.24 33.36 77.08

Ours 92.87 92.40 28.83 81.31

(c) Comparison with other methods.

Table 1: Results on CIFAR10-LT using ResNet18. The best
results are shown in bold. Mean over six random runs are
reported. “Average” means the results averaged across six
different Dtest

out sets.

classes randomly sampled from ImageNet-22k (Deng et al.
2009), but not overlapping with the 1, 000 in-distribution
classes in ImageNet-LT. For Dtest

out , we use ImageNet-1k-
OOD constructed by (Wang et al. 2022), which has 50, 000
OOD test images from 1, 000 classes randomly selected from
ImageNet-22k (with 50 images in each class). Considering
the fairness of OOD detection, it has the same size as the in-
distribution test set. The 1, 000 classes in ImageNet-1k-OOD

are not intersecting either the 1, 000 in-distribution classes in
ImageNet-LT or the 500 OOD training classes in ImageNet-
Extra. To ensure the rigor of the experiment, ImageNet-LT
Din

train, ImageNet-Extra Dout
train, ImageNet-1k-OOD Dout

test, and
ImageNet Din

test are orthogonal.

Model Configuration The current best long-tail OOD de-
tection method is PASCL, and before that it is OE, so we
mainly compare the experimental results with these two base-
line methods. For experiments on CIFAR10 and CIFAR100,
we use the ResNet18 (He et al. 2016) following (Yang et al.
2021). For experiments on CIFAR10-LT and CIFAR100-LT,
we train the model for 180 epochs using Adam (Kingma
and Ba 2014) optimizer with initial learning rate 1 × 10−3

and batch size 128. We decay the learning rate to 0 using
a cosine annealing learning rate scheduler (Loshchilov and
Hutter 2016). For fine-tuning, we fine-tune the classifier and
BN layers for 10 epochs using Adam optimizer with an initial
learning rate 5× 10−4. For experiments on ImageNet-LT, we
follow the settings in (Wang et al. 2021) and use ResNet50
(He et al. 2016). We train the main branch for 60 epochs
using SGD optimizer with an initial learning rate of 0.1 and
batch size of 64. We fine-tune the classifier and BN layers
for the 1 epoch using SGD optimizer with an initial learning
rate of 0.01. In all experiments, we set λ = 0.05, and the
weights for generated tail class samples are set to 0.05 for
EAT. For the number of abstention classes, we set k = 3 on
CIFAR10-LT, k = 30 on CIFAR100-LT and ImageNet-LT.
For other hyper-parameters in the baseline methods, we use
the suggested values in their original papers.

Main Results
Table 1, Table 2, and Table 4 report the results for CIFAR10-
LT, CIFAR100-LT, and ImageNet-LT datasets, respectively.
For fair comparisons, results of existing methods are directly
borrowed from (Wang et al. 2022). There are three sub-tables
in Table 1 and Table 2: since performance measures may dif-
fer across different Dtest

out datasets, we report AUROC, AUPR,
FPR95, and ACC95 on each Dtest

out as well as the average
values across six Dtest

out datasets in sub-table (a). In sub-table
(b), we compare ACC@FPRn with various n values that
are independent of Dtest

out . Finally, we put together four main
performance measures in terms of both outlier detection and
inlier classification in sub-table (c).

From the results, we can see that EAT significantly out-
performs OE, PASCL, and other baselines. For instance, on
CIFAR10-LT, EAT achieves 1.88% AUROC, 3.16% AUPR,
4.53% FPR95, 0.73% ACC95, and 4.23% in-distribution ac-
curacy improvement than PASCL on average. Likewise, on
CIFAR100-LT, our approach achieves 2.13% higher AUROC,
3.69% higher AUPR, 3.43% lower FPR95, and 3.13% higher
classification accuracy than PASCL on average.

On ImageNet-LT, our approach achieves the best results
in seven cases, while the previous state-of-the-art method
PASCL performs the best in only one case. Compared with
OE, our approach achieves 3.51% higher AUROC, 0.96%
higher AUPR, and 9.19% higher in-distribution accuracy.

Improvements on head and tail classes In Table 3, we
show the improvements of our method over OE on head and
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Dtest
out Method AUROC(↑) AUPR(↑) FPR95(↓)

Texture OE 76.71 58.79 68.28
PASCL 76.01 58.12 67.43

Ours 80.27 71.76 67.53

SVHN OE 77.61 86.82 58.04
PASCL 80.19 88.49 53.45

Ours 83.11 89.71 47.78

CIFAR10 OE 62.23 57.57 80.64
PASCL 62.33 57.14 79.55

Ours 61.62 55.30 77.97
Tiny

ImageNet
OE 68.04 51.66 76.66

PASCL 68.20 51.53 76.11
Ours 68.34 52.79 74.89

LSUN OE 77.10 61.42 63.98
PASCL 77.19 61.27 63.31

Ours 81.09 67.46 55.02

Places365 OE 75.80 86.68 65.72
PASCL 76.02 86.52 64.81

Ours 78.28 88.20 60.85

Average OE 72.91 67.16 68.89
PASCL 73.32 67.18 67.44

Ours 75.45 70.87 64.01

(a) OOD detection results.

Method ACC@FPRn (↑)
0 0.001 0.01 0.1

OE 39.04 39.07 39.38 42.40
PASCL 43.10 43.12 43.39 46.14

Ours 46.23 46.24 46.38 48.39

(b) In-distribution classification results in terms of ACC95.

Method AUROC (↑) AUPR (↑) FPR95 (↓) ACC (↑)
ST (MSP) 61.00 57.54 82.01 40.97

OECC 70.38 66.87 73.15 32.93
EnergyOE 71.10 67.23 71.78 39.05

OE 72.91 67.16 68.89 39.04
PASCL 73.32 67.18 67.44 43.10

Ours 75.45 70.87 64.01 46.23

(c) Comparison with other methods.

Table 2: Results on CIFAR100-LT using ResNet18. The best
results are shown in bold. Mean over six random runs are
reported. “Average” means the results averaged across six
different Dtest

out sets.

tail in-distribution classes. As we can see, our approach can
substantially benefit both the head and tail classes. Compared
with PASCL, it is highly biased towards the tail class and
the improvement on head classes is marginal, our method
achieves a good balance.

Why our method achieves low ACC@TPRn? We show
the failure cases. Table 4 shows several cases where the base-

Method ACC (↑)
Head classes Tail classes

OE 54.29 20.90
PASCL 54.73 (+0.44) 36.26 (+15.36)

Ours 59.46 (+5.17) 34.12 (+13.22)

Table 3: Results on ImageNet-LT.

line is better than our approach concerning ACC@TPRn. We
empirically find this is due to more in-distribution samples
preserved by our approach than the baselines when a percent-
age of OOD samples have been successfully detected. As a
result, the classification accuracy of the remaining samples
may be lower even though our approach correctly classifies
more in-distribution samples than baselines. We provide more
statistics in the supplementary.

Ablation Study
How do the key components of EAT affect the perfor-
mance? In Table 5, we study the effects of the four critical
components in our EAT approach: (1) virtual labels, (2) clas-
sifier fine-tuning, (3) CutMix, and (4) the mixture of experts
(MoE), on CIFAR10-LT and CIFAR100-LT datasets. Since
the performance of most approaches fluctuates on SVHN, we
choose SVHN as Dtest

out .
First, on both CIFAR10-LT and CIFAR100-LT datasets,

employing the virtual label strategy for OOD data signifi-
cantly improves OOD detection performance. It improves
the AUROC, AUPR, and FPR95 by an average margin of
10%. Note that, although without using virtual labels achieves
higher results of ACC95, it is because more in-distribution
samples are incorrectly deemed as OOD by the model.

Second, fine-tuning improves the inlier classification while
maintaining a competitive OOD detection performance. For
instance, the ACC@FPR increases by about 3% on average.
Moreover, since we fine-tune the classifiers for only one
iteration, it does not introduce much extra computational
cost.

Third, we study the role of CutMix. We find it beneficial
to use context-rich images as backgrounds to improve the
performance of OOD detection and inlier classification. For
OOD detection, it improves AUROC and FPR95 by about
4% and 8% on CIFAR100-LT, respectively. For inlier clas-
sification, the ACC@FPR is improved by an average of 2%
on CIFAR100-LT. Notably, we observe different results on
CIFAR100-LT and CIFAR10-LT concerning ACC@FPRn,
which is related to the in-distribution accuracy. This may be
related to the value of k because a larger k means that more
abstention class heads need to be learned, resulting in a little
effect on ID accuracy. Furthermore, Figure 2 illustrates the
distribution of OOD scores on the other two OOD datasets,
and our model distinguishes OOD data from in-distribution
data with a clear decision boundary.

A Good Closed-Set Classifier is All You Need? An inter-
esting finding from previous work (Vaze et al. 2022) suggests
that utilizing the maximum logit score rule with a highly
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Method AUROC (↑) AUPR (↑) FPR@TPRn (↓) ACC@TPRn (↑) ACC@FPRn (↑)
0.98 0.95 0.90 0.80 0.98 0.95 0.90 0.80 0 0.001 0.01 0.1

ST (MSP) 53.81 51.63 95.38 90.15 83.52 72.97 96.67 92.61 87.43 77.52 39.65 39.68 40.00 43.18
OECC 63.07 63.05 93.15 86.90 78.79 65.23 94.25 88.23 80.12 68.36 38.25 38.28 38.56 41.47

EnergyOE 64.76 64.77 94.15 87.72 78.36 63.71 80.18 74.38 67.65 59.68 38.50 38.52 38.72 40.99
OE 66.33 68.29 95.11 88.22 78.68 65.28 95.46 88.22 78.68 65.28 37.60 37.62 37.79 40.00

PASCL 68.00 70.15 94.38 87.53 78.12 62.48 95.69 89.55 80.88 69.60 45.49 45.51 45.62 47.49
Ours 69.84 69.25 94.34 87.63 77.30 57.81 83.22 77.80 70.84 61.49 46.79 46.79 46.83 48.30

Table 4: Results on ImageNet-LT. The best and second-best are bolded and underlined, respectively.

Din Virtual label Fine-tuning CutMix MoE AUROC (↑) AUPR (↑) FPR95 (↓) ACC95 (↑) ACC@FPRn (↑)
0 0.001 0.01 0.1

C
IF

A
R

10
-L

T

✗ ∗ ∗ ∗ 84.91 91.75 47.46 92.91 77.48 77.52 77.92 81.65
✗ ∗ ∗ ∗ 96.10 98.02 16.87 83.53 78.49 78.54 79.00 81.85

✗ ∗ ∗ ∗ 96.62 98.22 14.92 84.79 79.63 79.69 80.19 83.47
∗ 97.08 98.70 13.86 84.09 80.38 80.41 80.72 83.10
∗∗ 97.62 98.93 11.43 83.87 80.49 80.53 80.92 83.49

EAT 97.92 99.06 9.87 84.39 81.31 81.36 81.81 84.40

C
IF

A
R

10
0-

LT

✗ ∗ ∗ ∗ 74.04 84.99 63.58 73.98 46.68 46.70 46.91 49.50
✗ ∗ ∗ ∗ 81.77 89.67 54.53 64.47 43.34 43.36 43.59 46.00

✗ ∗ ∗ ∗ 79.52 88.11 55.89 64.30 43.93 43.94 44.10 46.24
∗ 80.70 88.27 52.86 64.30 45.82 45.84 45.97 47.94
∗∗ 82.13 89.01 50.51 63.18 46.32 46.32 46.48 48.57

EAT 83.11 89.71 47.78 61.67 46.23 46.24 46.38 48.39

Table 5: The impact of key ingredients for EAT. Experiments are conducted on CIFAR10-LT and CIFAR100-LT (ρ = 100).
SVHN is used as Dtest

out . The number of ∗ denotes the ensemble size.

Figure 2: Distribution of OOD scores from our model. The
CIFAR10 is used as the in-distribution dataset, and the other
two are OOD datasets. It shows that both in-distribution data
and OOD data naturally form smooth distributions.

accurate in-distribution classifier can outperform many well-
designed OOD detectors. However, we sought to investigate
whether this holds true in the context of long-tailed tasks. To
validate this, we conducted experiments involving two sophis-
ticated long-tail learning methods, namely RIDE (Wang et al.
2021) and GLMC (Du et al. 2023). We find that their OOD
detection performance lagged significantly behind that of our
proposed method, providing evidence that a strong classifier
alone is insufficient for effective long-tailed OOD detection.
Furthermore, when we combined our method with RIDE
and GLMC, as shown in Table 6, EAT achieves a substantial
improvement with minimal sacrifice.

Method ACC (↑) AUROC (↑) AUPR (↑) FPR95 (↓)
RIDE 48.49 66.18 62.13 77.73

RIDE+Ours 47.94 72.41 69.37 71.99
GLMC 54.51 65.01 62.01 79.65

GLMC+Ours 52.30 73.07 67.14 69.31

Table 6: Combining with other methods. The experiment is
conducted on CIFAR-100 (in-distribution) dataset and six
OOD datasets.

Conclusion

This paper proposes a novel framework (EAT) to tackle the
long-tailed OOD detection problem. Towards this end, EAT
presents several general techniques that can easily be applied
to mainstream OOD detectors and long-tail learning meth-
ods. First, the abstention OOD classes can be used as an
alternative to the outlier exposure method. Second, tail-class
augmentation can be employed as a universal add-on for ex-
isting methods. Third, the classifier ensembling technique
can further boost the performance without introducing much
additional computational cost. Finally, we evaluate the pro-
posed method on many commonly used datasets, showing
that it consistently outperforms the existing state-of-the-art.
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