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Abstract

We formulate the problem of eliciting agents’ preferences
with the goal of finding a Kemeny ranking as a Dueling Ban-
dits problem. Here the bandits’ arms correspond to alterna-
tives that need to be ranked and the feedback corresponds to
a pairwise comparison between alternatives by a randomly
sampled agent. We consider both sampling with and without
replacement, i.e., the possibility to ask the same agent about
some comparison multiple times or not.

We find approximation bounds for Kemeny rankings depen-
dant on confidence intervals over estimated winning proba-
bilities of arms. Based on these we state algorithms to find
Probably Approximately Correct (PAC) solutions and elabo-
rate on their sample complexity for sampling with or without
replacement. Furthermore, if all agents’ preferences are strict
rankings over the alternatives, we provide means to prune
confidence intervals and thereby guide a more efficient elici-
tation. We formulate several adaptive sampling methods that
use look-aheads to estimate how much confidence intervals
(and thus approximation guarantees) might be tightened. All
described methods are compared on synthetic data.

1 Introduction

Decision making based on the preferences of a group of
individuals® is tackled in various settings by Al systems.
To ensure a good societal outcome, the fair aggregation of
the society members’ preferences over alternatives plays a
central role. Many such aggregation functions for agents’
or voters’ preferences have been proposed by politicians,
mathematicians, economists and computer scientists. Re-
search in the area of Social Choice and more specifically
Voting Theory analyses and develops such aggregation func-
tions algorithmically and axiomatically (Brandt et al. 2016).
While impossibility results force all such functions to be
flawed by computational complexity or violation of fairness
guarantees, e.g. (Arrow 1950; Satterthwaite 1975), many
are well researched and applied in practise. However, it is
usually assumed that voters specify their preferences com-
pletely before the desired aggregation can be determined.
This can be excessively time consuming or costly for voters,
especially for large numbers of alternatives as in movie or
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online-shopping platforms. Next we describe our contribu-
tions for efficiently eliciting aggregated rankings under Ke-
meny’s rule, related work and outline of this paper.

Contributions and Related Work

We formulate the problem of eliciting voter preferences as a
Dueling Bandit problem (Bengs et al. 2021) in which arms
of bandits correspond to alternatives, and the bandit feed-
back for pulling two arms corresponds to a random voter’s
preference over the two arms. This feedback is then sum-
marised in a matrix of winning probabilities over arms. Our
goal is to elicit an aggregated ranking of voter preferences
based on some voting rule. Here, the duelling bandit formu-
lation is applicable for any voting rule that is a C2 function
according to Fishburn’s classification of preference aggrega-
tion functions (Fishburn 1977). That is, functions that only
require the margin of voters that prefer one alternative over
another as input, and not the exact combinations of pairwise
preferences the voters have. For such functions, we can thus
assume the input to be a preference matrix indicating the
fraction of voters preferring an alternative over another for
all pairs of alternatives. The results by (Boehmer et al. 2022)
imply that it is NP-hard to decide whether a given matrix
corresponds to a set of voters’ preference orders (i.e., linear
orders) over the alternatives. It follows that it is not possi-
ble to find a characterisation of such matrices that can be
checked in polynomial time. Nevertheless, we identify prop-
erties of such matrices.

Contribution 1: In Section 2, we connect the vote elicita-
tion and dueling bandit frameworks for C2 functions, and
propose three properties of preference matrices, which will
help devising adaptive elicitation strategies: Completeness,
Triangle Inequality and Realisable Borda Scores.

Next, we focus our attention on the voting rule devised
by John Kemeny in 1959 (Kemeny 1959), which is a prefer-
ence aggregation function with compelling properties such
as monotonicity and Condorcet winner consistency (Young
and Levenglick 1978). The output of this rule is a set of
rankings over the alternatives which minimise the Kemeny
score. The Kemeny score measures voter disagreement in
terms of pairwise disagreement over the ranked alternatives,
i.e., Kendall’s tau distance (Kendall 1938). In general, it
is NP-hard to compute Kemeny rankings (Bartholdi, Tovey,
and Trick 1989) but polynomial time solvable for specific
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types of preferences, such as single-peaked ones (Brandt
et al. 2015). A perk of Kemeny’s rule, as a C2 function, is
that it can be readily applied to any matrix. That is, even
when voters only specify parts of their preferences, i.e., an
incomplete order over the alternatives, or when their prefer-
ences are non-transitive. The corresponding matrix in that
case only contains fractions of voters that specified their
preference over two alternatives. This enables us to compute
an approximate Kemeny ranking even when not all prefer-
ences have been elicited yet. Our goal then is to sample pairs
of arms (i.e., query voters to compare two alternatives) such
that the approximate Kemeny ranking based on the sample
means is close (for some distance measure) to an optimal
Kemeny ranking. Note that while approximation algorithms
exist for Kemeny rankings, e.g., (Betzler et al. 2008), the
approximation bounds usually concern the approximation
w.r.t. a given instance. Contrarily, we consider the approx-
imation of Kemeny rankings w.r.t. a similar instance while
applying an exact method.
Contribution 2: In Section 3, we formulate approximation
bounds for (1) Kendall tau distance and (2) Kemeny Score
difference, between the true Kemeny ranking of a matrix of
winning probabilities and the Kemeny ranking of an approx-
imate matrix. These bounds are based on confidence inter-
vals around sample means for the winning probabilities.
Note that bandit problems with the goal of finding a rank-
ing over the arms (as opposed to one or several winning
arms) have been analysed for the C2 functions Borda and
Copeland, see e.g. (Busa-Fekete, Szorényi, and Hiillermeier
2014; Falahatgar et al. 2017; Lin and Lu 2018), and other
winner concepts such as von Neumann winners (Balsubra-
mani et al. 2016). These works establish probably approx-
imately correct (PAC) algorithms and analyse their sample
complexity. To the best of our knowledge such considera-
tions do not exist for Kemeny rankings. In fact, (Bengs et al.
2021) propose Kemeny rankings for future work. Also, no
related work considers sampling from a fixed population
without replacement (as would be reasonable when given a
set of voters which shall not be queried twice about the same
pair of alternatives). What is more, approximations of rank-
ings w.r.t. Kemeny scores (i.e., agents’ disagreement) have
not been considered under any aggregation function so far.
Contribution 3: In Section 4, we formulate PAC algo-
rithms for Kemeny rankings w.r.t. Kemeny scores of a ma-
trix of winning probabilities for two distinct cases of sam-
pling methods: (1) sampling bandit feedback from voters
u.a.r., i.e., sampling with replacement, (2) sampling bandit
feedback from a hypergeometric distribution, i.e., sampling
without replacement, meaning that voters cannot be asked
multiple times about the same pair of alternatives. These
PAC algorithms are based on our approximation results (see
Contribution 2) and do not assume any properties for the ma-
trix of winning probabilities. We give concrete sample com-
plexities for desired approximation values and probabilities.
Contribution 4: In Section 5 we show how to prune con-
fidence intervals for winning probabilities of arms based on
the properties of preference matrices (see Contribution 1),
i.e., for the case that the matrix originates from a set of (lin-
ear) preference orders. We discuss several adaptive sampling
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methods that use look-aheads to anticipate possible effects
of pruning. Finally, we analyse the sample complexity ex-
perimentally on synthetic data for all developed methods.

An extended version of this paper including more details,
experimental results and all proves of results marked with %
can be found under https://arxiv.org/abs/2312.11663.

2 Voting and Bandits

In a voting setting, we assume to have a set NV of voters and
a set C = [k] of k candidates or alternatives. Let £L(C') be
the set of all linear orders or rankings over C. We usually
consider the preferences of the voters over the alternatives
to be linear orders >,€ L(C) for v € N. A typical goal
in this setting is to aggregate the preferences of voters into
an outcome ranking or to determine a winner. A social pref-
erence function is a function that maps a preference profile
P = {>,] v € N} to one or several output rankings. One
example of such a rule is Kemeny’s rule, which aims to min-
imise the disagreement of the voters with the output ranking.
In a duelling bandits setting, we have a set C' = [k] of k
arms of bandits. In every time step, we pull two arms yield-
ing feedback of which one is better. That is, when pulling
arms ¢ and j we get feedback ¢ > j with some (unknown)
probability ¢;; and feedback j > ¢ with inverse probabil-
ity ¢;; = 1 — ¢;;. The winning probabilities can be sum-
marised in a matrix Q € [0,1]*** where by convention
qi; = 0.5 for all i € [k]. Let Q(k) = {Q € [0, 1]k |
gjs = 1 —g;; and ¢;; = 0.5 Vi, j € [k]} be the set of such
matrices. We assume the true matrix of winning probabili-
ties is unknown and must be approximated, with the ultimate
goal of finding a good ranking of the arms. This goal can be
expressed by a measure of regret and literature in this field
usually analyses regret bounds in the number of samples.
To connect the two settings, we make the following obser-
vation: A preference profile P € £(C)™I of voters N over
alternatives C' = [k] can be translated to a preference matrix

Q € Q(k) by defining g;; = L=t and g;; = 0.5
for all 4,5 € [k]. Thus, the alternatives are seen as arms of
bandits and the winning probabilities g;; are equal to the
fraction of voters preferring alternative 7 over j. We denote
the set of such preference matrices that are originating from
preference profiles by P(k, n), where k is the number of al-
ternatives and n the number of voters. Because voters’ pref-
erences are linear orders, and transitive, P(k,n) ¢ Q(k).
We show further properties of such matrices.

Lemma 1 (). Let P = {>,€ L([k]) | v € [n]} be a
profile of n voters and k alternatives. Then Q € P(k,n)
with qij = = |{v € [n] | i = j}| and q;; = 0.5 satisfies:
1. g;j -n € [n] and q;; + q;; = 1 for all distinct i, j € [k].
(Completeness)
2. qij + qji > qu for all distinct i, j,1 € [k].
(Triangle Inequality)
A
3. ZiGA Zje[k]\{i} qij < % Al (k- HTH)
Sorall A C [k]. (Realisable Borda Scores)

The next example shows that mapping preference profiles
to preference matrices is not injective.
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Example 1. Consider the two preference profiles Py, P>
over three alternatives below.

P={1>2>31>2>3,3>2>1}
P={1>2>32>1»>3,3>1>2}.
The two profiles map to the same preference matrix Q:

Q=

[N ST TN

W=

3 Kemeny’s Rule

Kemeny’s Rule outputs (after applying some tie-breaking)
a strict ranking of alternatives / arms that minimises the
disagreement of the voters. To measure disagreement of
voters with a ranking we can apply Kendall’s tau distance
(or “inversion distance”). The Kendall-tau distance between
two preference orders >, >, € L£(C) is defined as follows
(where I is the indicator function):

th(>‘m >‘w) = Z{i jrce ]I(i I’ ]) ]I(.] ~w Z)

= Z(me»v I(j = 9).
The Kemeny score of a ranking € L(C) given the prefer-
ence rankings of voters N is defined as KS({>, }ven, =) =
> wen dxi(=, =) and the set of Kemeny rankings (before
tie-breaking) is K({>=,}ven) = argmin_c,\KS({>»
Yven, >=). In the same spirit of measuring disagreement, we
can define the Kemeny rankings for a given matrix Q) €
[0, 1]k, where ¢;; is the probability that arm i beats arm
j. The Kemeny score of a ranking >=€ £(C') with C' = [k] is
proportional to the probability that the outcome of any ran-
dom sample of a pair of arms is not aligned with >, i.e.,
KS(Q,>) = > (i j)e~ )i and the set of Kemeny rankings

isK(Q) = argmin>€£(C)KS(Q, =).

In general, Kemeny’s rule is not resolute, i.e., the mini-
mum Kemeny score may be assumed by several rankings. A
tie-breaking rule allows to choose one among the rankings
that minimise the Kendall-tau distance. In this paper, we as-
sume to break ties deterministically whenever necessary.

Given only an approximation of a preference matrix @),
we can also only approximate its Kemeny ranking. To mea-
sure the quality of such an approximation, two natural
distance measures for such rankings can be applied: the
Kendall-tau distance between the true and the approximate
ranking, or the difference in their Kemeny scores w.r.t. the
true matrix @. In the following, we analyse approximation
guarantees based on both measures. While Kemeny’s rule is
NP hard to compute, there exist polynomial time approxi-
mation algorithms (Betzler et al. 2008). For an approximate
Kemeny ranking of an approximate matrix, we can simply
combine the approximation bounds. Assume matrix ) has
Kemeny ranking 7 and its approximation matrix Q has Ke-
meny ranking 7 that is a p-approximation w.r.t. Kemeny-
scores, i.e., KS(Q,7) < KS(Q,7) + p. Then an additive o~
approximation 7 of 7, i.e., KS(Q, 7) < KS(Q, #)+a, yields
KS(Q,7) < KS(Q, 7)+ p+«. Similarly, a multiplicative A-
approximation 7 with KS(Q, 7) < (1 + A)KS(Q, 7) yields
KS(Q,7) < (1 + MKS(Q,7) + (1 + A)p.
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Kendall-tau Distance of Approx. Kemeny Rankings

Consider two rankings 7,7 € L(C) with |C| = k. If
the two rankings are equal, their Kendall-tau distance is
0; if they are reversed, their Kendall-tau distance is maxi-

mal, i.e., (k_;)k. More generally, the Kendall-tau distance
of any two rankings 7,7 € L(C) with |C| = k, is an in-
teger in {0, ..., ¥=U%} The following lemma shows that
the Kendall-tau distance of the Kemeny rankings K(Q) and

K(Q) of a preference matrix @) and a close approximation ()
of () can be maximal. This is proven by construction of an
example with values in () that are very close to 0.5. Thus,
no matter the number of samples, when considering the Ke-
meny ranking based on the sample means, we cannot guar-
antee any improvement in terms of Kendall-tau distance.

Lemma 2 (%). For any small' € > 0, there exist matrices

Q,Q € Q) with |Q — Q|1 = eand 7 = K(Q) and
7 = K(Q) such that dx,(1,7) = (kgl)k.

If the matrix of winning probabilities is indeed a prefer-
ence matrix, i.e., reflecting fractions of n voters, then a rea-
sonable restriction is to ask every voter at most once about
their preference over a pair of arms. Disregarding inference
reached through transitivity of voter preferences, a total of
n- (kgl)k queries is necessary to recover the true preference
matrix. However, if values in the preference matrix are close
to 0.5, even asking (n — 1) - @ queries can still lead to
an approximate Kemeny ranking with maximal Kendall-tau
distance to the true Kemeny ranking.

Lemma 3 (). For any number of arms k > 2 and num-
ber of voters n > 2, there exist preference profiles with

corresponding preference matrices Q € P(k,n) and Q S

Plk,n — 1) with |Q = Q| = =25 and = K(Q) and

7 = K(Q) such that dx,(1,7) = (kgl)k.

This shows that especially for large numbers of voters,
the approximation error for approximating matrix ¢ could
be very small, while the Kendall-tau distance is maximal. A
similar result can be obtained when querying voters about
all but one pair of alternatives. Consider a Condorcet cycle
for which q12 = ga3 = ¢31 = 2/3. Then the tie-breaking
rule, e.g., 1 > 2 > 3, coincides with the Kemeny ranking
with a score of 4/3. When eliciting all preferences over all
pairs of arms but (2, 3), and initialising go3 = g32 = 0.5, the
approximated Kemeny ranking is 3 > 2 > 1, independent
of tie-breaking, yielding a maximal KT-distance.

The results in this section are based on examples for
which Kemeny rankings have very high Kemeny scores.
Thus, while yielding very different Kemeny rankings, the
matrices in the proofs also yield similar voter satisfaction. In
the next section, we concentrate on bounds of Kemeny score
differences between Kemeny rankings of similar matrices.

Kemeny Score of Approx. Kemeny Rankings

We can bound the difference of Kemeny scores for two Ke-
meny rankings of similar matrices.

"For the construction of our proof, we require € < (I(_Tl)k
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Lemma 4 (). Let Q,Q € Q(k) with |Q — Q|1 < e. Fur-
thermore, let T be a Kemeny ranking of QQ and 7 a Kemeny
ranking of Q. Then KS(Q,7) — KS(Q,7) < e

Note that because 7 is a Kemeny ranking w.r.t. @, the dif-
ference of Kemeny scores of 7 and 7 cannot be negative.
Lemma 4 shows that with a close approximation of a ma-
trix we can gain a Kemeny ranking that approximates the
Kemeny score, i.e., minimal voter disagreement, well.

When sampling preferences, or more specifically feed-
back from dueling bandits, we can express the value of our
approximation of the winning matrix by confidence intervals
for matrix entries. For this type of uncertainty quantification,
we can adjust the approximation bounds from Lemma 4.

Corollary 1. Ler Q, Q € Q(k). Consider Kemeny rankings
T of Q and 7 of Q. Suppose qi; € [Gij — cjirdij + cij]
for some matrix C € ]Rk;Ok holds for all i,j € [k],i # j
with probability (1 — §). Then KS(Q,7) — KS(Q, )
23 1 <icj<p max(cij, cj;) with probability (1 — 6).

We can, in fact, refine this approximation bound for a Ke-
meny ranking 7 of Q + C, with confidence bounds C.

Lemma 5 (k). Let Q,Q € Q(k) and C € R¥* be matri-
ces such that q;; € [Gi; — ¢ji, Gij + cij| holds for all i, j €
[k],% # j with probability (1 — §). Consider Kemeny rank-
ings 7 of Q and # of Q + C. Then KS(Q,7) — KS(Q,7) <
> 1<icj<ilCij + ¢ji) with probability (1 — §).

Thus, to construct a good ranking in terms of Kemeny
score, we can choose a Kemeny ranking w.r.t. upper confi-
dences of an approximated matrix of winning probabilities.

The above described approximation bounds for Kemeny
scores are dependent on the quality of the approximation of
winning probabilities for all pairs of arms. This is unsurpris-
ing, since the Kemeny score itself takes all winning proba-
bilities into account with equal weight. In the next section,
we discuss concrete confidence bounds and PAC algorithms
for Kemeny rankings w.r.t. Kemeny scores.

4 PAC Algorithms for Kemeny Rankings
w.r.t. Kemeny Scores

To approximate a Kemeny ranking, we determine a se-
quence of pairs of arms to pull. We first consider strategies
for the setting where we draw samples with replacement
from Bernoulli distributions with the winning probabilities
as means. Thus, voters are drawn uniformly at random from
an unknown population and we might ask the same voter the
same query twice. We then investigate the setting in which
the population of voters is known and every voter may only
be asked the same query once (sampling from a finite popu-
lation without replacement).

Sampling With Replacement

Consider a matrix @ € Q(k) of winning probabilities be-
tween arms such that every sample (i,j) of two arms re-
turns 7 >~ j with probability g;;. Because confidence interval
sizes are usually monotonically decreasing with the num-
ber of samples, Lemma 5 suggests that for symmetric confi-
dence bounds and without taking any further inference into

12167

account a uniform sampling strategy minimises the Kemeny-
score-approximation error. More concretely, it follows from
the next proposition that Algorithm 1 is a PAC algorithm for
approximating Kemeny rankings w.r.t. Kemeny scores.

Algorithm 1:
KemenyEl(Q, p, §): Sampling with Replacement from @) €

(k)

Q + {1/2}xk o> Estimate of @
Ti= k'(kfjl) ,y:=In k(k(;_l) > Constants
t= [*%IZM €= *iy > Sample Size and

Confidence Bound
for arms ¢, j € [k] do

51, St ~ Bernoulli(g;;)
qW — 1/t Zz 1,..,t5i
Gji < 1= Gij

end for

return K(Q + 1 -¢)

Proposition 1 (). Let Q € Q(k) be the matrix of sam-
ple averages approximating some QQ € Q(k) after t sam-

\/%y with y =

—lnﬁ > 1. Then, with probability (1 — §) we have
KS(Q,7) — KS(Q,7) < k- (k—1) - c for Kemeny ranking

7 of Q and Kemeny ranking 7 of Q + 1 - ct.

ples of each pair of arms, and let c§

Given a desired approximation rate p, we can reformulate
Proposition 1 and obtain the necessary number of samples.

Corollary 2. For k > 2 arms, Q € Q(k) with Kemeny

ranking T, fixed approximation guarantee 0 < p < k(k )

and probability 0, Algorlthm 1is a (4,p)-PAC algorlthm
That is, after t < a: y samples of each pair of arms, Algo-
rithm 1 returns ranking 7 such that with probability (1 — 0),

we have KS(Q,7) — KS(Q, 7) < p. Here x := k'(kp_l)
y =

and

[

Sampling Without Replacement

Suppose that, while sampling voters uniformly at random,
none of the voters v € N can be asked twice about their
preferences over a pair of arms. Then the number s out of
t asked voters that prefer ¢ to 5 follows a hypergeometric
distribution: s ~ Hypergeometric(n,n - g;;, t). In this case,
we can refine the confidence bounds of our sampled estima-
tion of the true fractions of voters ¢;; preferring i to j. This
leads to better approximation for a fixed number of samples,
or reversely, a lower sample complexity for a fixed approxi-
mation goal, compared to sampling with replacement. More
concretely, it follows from the next propositions that Algo-
rithm 2 is a PAC algorithm for Kemeny rankings w.r.t. Ke-
meny scores when sampling without replacement.

Proposition 2 (%). Consider n > 1 voters with preference
matrix Q € P(k,n) over k > 2 alternatives. Let 6 < 0.5

be the approximation probability and y :== — In W%D > 1.
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Algorithm 2:
KemenyEl(Q, p, §): Sampling w/o Replacement from @) €
Pk,n)

Q + {1/2}kxk > Estimate of Q
= @, y:=—1In k(kéi—n > Constants
2
if n < 4= then
. —2n+z’yn L (n—t)(t+1)
L= 2n+w25 » €= 2t2n Y
> Sample Size and Confidence Bound (small n)
else
. 2?y(n+1) L n—t+1
L= 2711!+z2y » €= 2;;{ Y
> Sample Size and Confidence Bound (large n)
end if

for arms i, j € [k] do
s ~ Hypergeometric(n,n - ¢;5,t)
inj — S/t
Gji < 1—Gij

end for

return K(Q +1 -¢)

Furthermore let Q € Q(k) be the matrix of sample averages
after t uniformly random samples from the population for
each pair of arms (without replacement).

n—t4+1

sy is a (1 — d)-confidence bound for

all entries in Q. Furthermore, with probability (1 —20) we
have KS(Q,7) — KS(Q, ) < k- (k— 1) - ¢}, for Kemeny

t
Then cg ,,

ranking T of QQ and Kemeny ranking 7 on +1- Cfs,w
For given p, we can guarantee an approximation
KS(Q,7) — KS(Q,7) < p with probability (1 — 6) after

t = z2y(n+1)
— 2n+tax2y

arms, where x© :=

samples (without replacement) of each pair of
k- (k—1)

P

For the case that we have more samples than half of the
population size, i.e., ¢ > n/2, and a limited population size,
we can apply better bounds on confidences over the winning
probabilities. This leads to the following result.

Proposition 3 (). Assume a fixed voter population of size
n > 1 with preference matrix Q € P(k,n) over k > 2
alternatives. Let § < 0.5 be the approximation probability

andy := —In ﬁ > 1. Furthermore, let Q € Q(k) be the
matrix of sample averages after t > n/2 uniformly random

samples for each pair of arms (without replacement).

Then cj,, = 1/ %y is a (1 — d)-confidence bound

for all entries in Q. Furthermore, with probability (1 — &)
we have KS(Q,7) —KS(Q,7) < k- (k—1)-cj,, for Kemeny
ranking T of Q and Kemeny ranking 7 of Q +1- Cg,n'

z2y74

For given p and if the population is of size n < , we
can guarantee an approximation KS(Q,7) — KS(Q, 1) < p

with probability (1 — ) after t = I:ﬁ::f; samples (without
replacement) of each pair of arms, where T := @
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Comparison

Note that Proposition 2 and 3 use improved confidence
bounds for the estimated winning probabilities compared to
Proposition 1. This is not surprising, since we are sampling
from a fixed population without replacement, and expect the
confidence bound to be dependent on the relation between
the number of samples and the population size. Furthermore,
unsurprisingly, this improves the sample complexity. We can
quantify the advantage as follows.

_ k(=1

Corollary 3. Let x : andy = —1In ﬁ > 1.
Consider the confidence bounds after t samples from

Proposition 1, Proposition 2 and Proposition 3:

[r n—t+1
C = — CcC = _— cC =
2t o%n 2t2n
—t+1 _ =+
n=-=cand Y G e,

tighter confidence bounds when sampling without replace-
ment. Furthermore, ¢ > " if and only if t > n/2.

For fixed approximation guarantee kk=1) > p >0, con-
sider the sample complexities from Proposition 1, 2, 3:

(n—t)(t+1)

Then we have ¢’ =

{ = 1332 r_ x2y(n +1) = z’yn + 2n
27 7 o2n + z2y 2n + 2%y
Then we have t' = ;ii;%t and t'" = %ﬁﬁy)t. For

the reasonable assumption that 2/n < p, k > 2 andn > 2
this means that fewer samples are needed when sampling
without replacement than with replacement. Furthermore,

2
forn < %74 we have t' > t".

This comparison also shows that the more samples are
taken, the starker the difference between confidence bounds
when sampling with and without replacement. Furthermore,
in order to reach an approximation of p, the smaller p and 6,
the fewer samples we need when sampling without replace-
ment compared to sampling with replacement.

5 Pruning of Confidence Intervals

In Section 4 we estimated the confidence intervals of the
winning probabilities ¢;; by the use of some known con-
centration inequalities. This treatment delivered symmetric
bounds that, given the same number of samples, are the same
for all pairs of arms 4, j € [k]. However, the values ¢;; of a
preference matrix @ € P(k, n) are not independent. In fact,
Lemma 1 implies that ¢;; +¢;; = 1, forall 4, j € [k]. We can
restrict confidence intervals to comply with this constraint.

Lemma 6 (). Assume that the sampled means §;; after
some samples from a preference matrix Q € P(k,n) have
(possibly asymmetric) confidence intervals:

Gij € [dij — ;5 Qij + Cij

forall arms i, j € [k] with probability (1 — §). Define matrix
C € [0, 1] by ¢;; := min(€y;, ¢;;). Then with probability
(1=296) forallarms i,j € [k]:

)

4ij € [Gij — ¢ji» Gij + cij)-
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Lemma 1 also implies that for a preference matrix ) €
P(k,n) a triangle inequality must hold for all triples of
arms: q; + q;; > qu for all 4,5,1 € [k]. We can comply
with this constraint by pruning confidence intervals further.

Lemma 7 (). Assume that the sampled means §;; after
some samples from a preference matrix Q € P(k,n) have
(possibly asymmetric) confidence intervals:

ij € [Qij — cjis Gij + cigl
Sorall arms i, j € [k] with probability (1 — §). Define matrix
C € [0, 1]k py

¢;j = min (¢, ?Eli[lf]ldil + cit + Qi + ey — ig)-
Then with probability (1 — 0) for all arms i, j € [k]:
Gij € Gij — i, Gij + Cij)- 2)

An example of pruning confidence intervals can be found
in Appendix D of (George and Dimitrakakis 2023).

After pruning intervals once, it might be feasible to prune
the new confidence intervals even more. This procedure is
described by Algorithm 3. Note that Lemma 7 allows ¢;;
to be negative, indicating that the sample mean §;; overesti-
mates the actual winning probability g;;. This does not influ-
ence the approximation result given in Lemma 5. However,
we require that 1 > ¢;;+q;; > 0 which is expressed in Algo-
rithm 3 in the 4th and 10th line. Algorithm 3 converges, be-
cause in every iteration of the repeat-loop at least one value
¢i; strictly decreases and values never increase while main-
taining a lower bound of —¢;;. Furthermore, the values of
initial confidence bounds and sample averages build a dis-
crete set of values such that there are countably many com-

binations that can build the minimum for the updates.
‘We can now refine the elicitation methods from Section 4.

Algorithm 3: PruningCI(Q, C, C)
Pruning Confidence Intervals q;; € [§ij — ¢;;,di; + Ciz] for all
i,7 € [K] of preference matrix @ € P(k,n)

¢ij < min(¢;;, ¢j;) forall ¢, j € [k]
> Upper/Lower Confidence Bounds based on Lemma 6
¢;j < min(c;;, 1 — §;;) forall 4,5 € K]
o> Upper/Lower Confidence Bounds based on ¢;; € [0, 1]
C+«C
repeat

C«C

for arms i, j € [k] do

¢ij < min(c;;,  min - Gy + ca + qij + ¢y — Giz)

lE[K], 4,7
¢y < max (—Gij, ¢ij)
end for
until C == C
return C'

Adaptive Sampling Strategies

Recall that our approximation bounds for Kemeny rankings
from Section 3 are determined by the confidence intervals’

12169

sizes. Furthermore, the confidence bounds for sampling with
or without replacement given in Section 4 can only be in-
fluenced by the number of pulls of the pairs of arms. Thus
uniform sampling guarantees to always sample from a pair
of arms with the largest confidence interval. However, when
pruning confidence intervals after every new sample, the
’most uncertain” pair of arms, i.e., one with the largest con-
fidence interval, might not necessarily be one with the lowest
number of pulls so far. We can also estimate the outcome and
effect of the next ¢ samples. To simplify notation and com-
putational complexity, we concentrate on such look-aheads
with [ = 1. This allows the following sample strategies:

» Uniform: Sample a pair with minimal number of pulls.

* Opportunistic: Sample a pair with maximal confidence
interval size.

Optimistic: Sample a pair which, for the best case out-
come, gives a maximal reduction in the sum of all confi-
dence interval sizes.

Pessimistic: Sample a pair which, for the worst case out-
come, gives a maximal reduction in the sum of all confi-
dence interval sizes.

Bayesian/Realistic: Sample a pair which, in expecta-
tion w.r.t. the current estimation of winning probabilities,
gives a maximal reduction in the sum of all confidence
interval sizes.

Note that if in one round no pruning is possible for any
sample outcome for any pair of arms, all sampling strategies
collapse to opportunistic sampling. If additionally all pairs
have been pulled equally often, this is the same as uniform
sampling as any sample outcome will give same reduction.

Experiments

Setup: We generate preference matrices @ € P(k,n) for
n = 10 voters uniformly at random for up to k = 9 arms. We

set an approximation value of p = 0.1X6=1) e 10% of
the worst case difference in approximated and optimal Ke-
meny score, and approximation probability (1 — ¢) = 0.95.
For better comparison, we compare all sampling methods
on the same preference matrices. Furthermore, we average
all our results over runs on several instances. Note that the
computational complexity for sampling with replacements
only allows us to conduct experiments on 10 instances and
for few arms, while for sampling without replacement we
use 100 instances for experiments with up to 9 arms. To
compare Kemeny scores at every sampling step, it is re-
quired to compute Kemeny rankings which is a known NP-
hard problem. We use a simple ILP formulation for this. All
code is written in Python and is publicly available under
https://github.com/annemage/Eliciting- Kemeny-Rankings.

Results and Analysis: As all sampling methods corre-
spond to uniform sampling when no pruning is taken into
account, we restrict our attention here to the case where we
apply Algorithm 3 to the confidence intervals indicated in
Corollary 3 w.r.t. current numbers of pulls for every new
sample. Unsurprisingly, our experiments show that the Ke-
meny score for a current approximation is closer to the true
Kemeny score than the approximation bounds given by the
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(a) Sampling With Replacement. Averages over 10 instances.
k =4, p = 0.6. Average true Kemeny score 2.08.
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(b) Sampling Without Replacement. Averages over 100 instances.
k = 6, p = 1.5. Average true Kemeny score 5.618.

Figure 1: Average Confidence Bounds for uniformly at random generated instances with n = 10 voters. 6 = 0.05.

total length of confidence intervals (see Lemma 5) would
suggest, i.e., our approximation bounds are not tight. Be-
cause it is the approximation bounds, however, that influence
the sample strategies, we show a comparison of these in Fig-
ure 1 for a sequence of samples. Note that here the length of
the x-axis corresponds to the theoretical sample complexity
given in Corollary 3. Obviously, the two plots confirm that
sampling without replacement is much more efficient for all
sample methods. Note that if for an instance sampling termi-
nated because the approximation bound p was reached early,
averages are taken over the remaining instances only.

It can be easily seen in Figure 1la that when sampling
with replacement only uniform and opportunistic sampling
reach the given approximation bound p within the theoreti-
cal sample complexity of 6576 samples. Note that in these
experiments the look-ahead methods (optimistic, pessimistic
and realistic sampling) often get stuck by sampling the same
pairs of arms which apparently do not lead to enough prun-
ing of confidence intervals to be worth it. This is surprising
especially for pessimistic sampling, as this method should be
conservative w.r.t. pruning possibilities. Furthermore, uni-
form and opportunistic sampling behave exactly the same
and reach the desired approximation p in exactly the the-
oretical sample complexity. This might imply that pruning
has no effect in these instances which could be an artifact of
how the confidence intervals are computed in this case.

On the other hand, it can easily be seen from Figure 1b
that for sampling without replacement even uniform sam-
pling needs in average less than the theoretical number of
samples indicated in Corollary 3 when pruning is applied,
showing that pruning of confidence intervals is applicable in
our instances. Here, the adaptive sampling strategies show a
clear advantage over sampling uniformly. While opportunis-
tic sampling seems the best choice when only sampling few
pairs of arms, it is outperformed by optimistic, pessimistic
and realistic (Bayesian) look-aheads for more samples. Nat-
urally, the look-ahead methods can anticipate any possibil-
ity of pruning the confidence intervals, which seems to give
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them an advantage in the long run. However, at this point we
would like to point out that opportunistic sampling has much
lower computational complexity than the look-ahead meth-
ods, which is an obvious advantage in practice. Optimistic
and realistic sampling behave similarly. They need fewer
samples and give a better approximation than pessimistic
sampling. This might be because pessimistic sampling is too
conservative in reacting to chances of pruning.

For different k experimental results show similar be-
haviour. Please refer to Appendix D in (George and Dim-
itrakakis 2023) for more results regarding different k and a
comparison to preference profiles generated from a Mallows
model (Mallows 1957) with ¢ = 0.2 (i.e., preferences be-
ing fairly similar) or uniformly at random generated single-
peaked preferences which always admit a Condorcet winner.

6 Conclusion

We phrased the problem of eliciting voters’ preferences for
determining a Kemeny ranking in terms of a Dueling Ban-
dit problem and found that while there are no efficient PAC
algorithms for approximating the Kendall tau distance, we
can formulate PAC algorithms for approximating the Ke-
meny score. Here, our approximation bounds for the Ke-
meny score are dependent on the sum of confidence bounds
for the approximated winning probabilities of arms, render-
ing uniform sampling the best sampling strategy w.r.t. these
bounds. We analyse the sample complexity for uniform sam-
pling of arms for sampling with and without replacement.
Further, we described ways of pruning confidence bounds
in order to reduce the sample complexity, yielding non-
uniform sample strategies, and demonstrate the effect of our
methods experimentally.

In future work, one could transfer the methodology taken
in this paper for finding confidence-bound-based approxi-
mation bounds for other C2 voting rules. Furthermore, the
Kemeny score could be an interesting approximation mea-
sure for PAC algorithms under different voting rules.
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