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Abstract
Recently, anchor graph-based multi-view clustering has been
proven to be highly efficient for large-scale data processing.
However, most existing anchor graph-based clustering meth-
ods necessitate post-processing to obtain clustering labels and
are unable to effectively utilize the information within anchor
graphs. To solve these problems, we propose an Embedded
Feature Selection on Graph-Based Multi-View Clustering
(EFSGMC) approach to improve the clustering performance.
Our method decomposes anchor graphs, taking advantage of
memory efficiency, to obtain clustering labels in a single step
without the need for post-processing. Furthermore, we intro-
duce the ℓ2,p-norm for graph-based feature selection, which
selects the most relevant data for efficient graph factoriza-
tion. Lastly, we employ the tensor Schatten p-norm as a ten-
sor rank approximation function to capture the complemen-
tary information between different views, ensuring similar-
ity between cluster assignment matrices. Experimental results
on five real-world datasets demonstrate that our proposed
method outperforms state-of-the-art approaches.

Introduction
Over the past few decades, there has been immense interest
in developing numerous exceptional clustering algorithms,
including subspace-based clustering (Luo et al. 2018; Xie
et al. 2020), non-negative matrix factorization clustering
(Gao et al. 2013; Salah, Ailem, and Nadif 2018), and graph-
based clustering (Hu et al. 2020; Nie, Li, and Li 2017). No-
tably, graph-based clustering methods have been widely de-
veloped due to their excellent performance in capturing the
spatial structure of nonlinear data.

The key step in graph-based clustering methods is to con-
struct an N × N affinity graph matrix to represent the sim-
ilarity between different N data points. However, this oper-
ation can be time-consuming and memory-intensive. To ad-
dress this issue, anchor graph-based methods (Li et al. 2020)
have been proposed to construct an N ×M(M << N) an-
chor graph, where anchor graphs are used to measure the
relationship between N data points and M anchors. How-
ever, post-processing (e.g., K-means) is required in most
anchor graph-based methods to obtain final clustering la-
bels, which not only increases the computational time but
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also leads to the clustering performance being limited by
K-means. To this end, SFMC (Li et al. 2020) manipulates
the joint graph by a connectivity constraint, so that the con-
nected components can indicate clusters directly. MSC-BG
(Yang et al. 2022) proposed imposing constraints on the rank
of the Laplacian matrix to obtain an affinity graph matrix
with K connected components. Nevertheless, imposing con-
straints on connected components may result in a smaller
number of connected components than K, leading to a sig-
nificant decrease in clustering performance.

Moreover, most anchor graph-based clustering algorithms
take advantage of all the data points, but the anchor points
corresponding to noise and redundant data in data points are
useless. Therefore, LAPIN (Nie et al. 2023) method obtains
a better coefficient matrix by applying sparse constraints to
the data matrix, thus to alleviate the impact of noise to some
extent. However, the distribution of noise is difficult to es-
timate, and the sparse representation of the noise term is
hard to guarantee. Furthermore, the quality differences be-
tween different data views can also significantly affect clus-
tering performance. Accordingly, AMGL (Nie, Li, and Li
2016) automatically learns optimal weights for each view
by minimizing the squared-root trace. Although these meth-
ods have achieved good results, they cannot fully utilize the
complementary information in the adjacency matrix of dif-
ferent views.

To address these issues, we propose an Embedded Feature
Selection on Graph-Based Multi-View Clustering (EFS-
GMC) method, which can obtain the final cluster label in
one step. Specifically, we adapt non-negative matrix factor-
ization directly to the anchor graph to get the final cluster
indicator matrix in one step, thus avoiding post-processing.
Besides, we draw inspiration from feature selection for raw
data points and apply feature selection to the anchor graph.
Specifically, we minimize the ℓ2,p-norm to make the learned
anchor map representation more sparse to filter out the
anchor points corresponding to noise and redundant data,
which significantly reduces the effect of noise. In addition,
we refer to the weighted tensor Schatten p-norm minimiza-
tion (WTSNM) (Xia et al. 2022) and propose to employ the
tensor Schatten p-norm minimization to explore the low-
rank structure embedded in inter-view graphs. The main
contributions of our method are as follows:

• Our method performs non-negative matrix decomposi-
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tion of the learned anchor graphs to obtain a discrete label
matrix, allowing us to obtain clustering results directly in
one step without the need for post-processing.

• We propose a method that minimizes the ℓ2,p-norm to
ensure the sparsity of the learned anchor graph, thereby
achieving the selection of representative anchor points
while eliminating the redundant ones and present a novel
and efficient algorithm with a closed-form solution.

• We employ LPP (Lu et al. 2016) manifold learning to
ensure label consistency among adjacent sample points,
and explore the low-rank structure of inter-view graphs
using Schatten p-norm, which fully leverages the com-
plementary information embedded in the graphs.

• We propose an efficient algorithm to solve the model via
ALM, and we carry out experiments on real multi-view
datasets to demonstrate the effectiveness of our proposed
method.

Methodology
Notations and Definitions: In this paper, we use bold cal-
ligraphy letters for 3rd-order tensors, e.g., A ∈ Rn1×n2×n3 ,
and bold upper case letters for matrices, e.g., A. Ai: and A:j

are the i-th row and j-th column of matrix A, separately.
The v-th frontal slice of A is Av . A is the discrete Fast
Fourier Transform (FFT) of A along the third dimension,
i.e., A = fft(A, [ ], 3). The trace of matrix A is denoted by
tr(A). I is an identity matrix.

Definition 1 (Gao et al. 2021) Given G ∈ Rn1×n2×n3 , the
tensor Schatten p-norm of G is defined as

∥G∥Sp⃝ =

(
n3∑
i=1

∥Gi∥
p

Sp⃝

) 1
p

=

 n3∑
i=1

h∑
j=1

σj(Gi)
p

 1
p

(1)

where h = min(n1, n2), p ∈ (0, 1], σj(Gi) is the j-th sin-
gular value of Gi. The Schatten p-norm can approximate the
rank function more tightly when p is chosen appropriately.

Definition 2 (Wang et al. 2018; Liao et al. 2018) Given
H ∈ Rn1×n2 , the ℓ2,p-norm is defined as

∥H∥2,p =

n1∑
i=1

∥Hi:∥p2 =

n1∑
i=1

 n2∑
j=1

H2
ij


p
2

(2)

where p ∈ (0, 1]. Specially, when p = 1, ℓ2,p-norm becomes

ℓ2,1-norm, i.e., ∥H∥2,1 =
∑n1

i=1

√∑n2

j=1 H2
ij .

Definition 3 (Dong et al. 2016) Given Z ∈ RN×M , weight
matrix W ∈ RN×N , the Sparse Gradient Pursuit is defined
as

∥∇Z∥ℓ1 =
N∑
i=1

N∑
j=1

Wij∥Z:i−Z:j∥1 = ∥KZ∥1 (3)

where ∇Z represents the gradient of Z and K denotes the
gradient matrix of the adjacency KNN graph (Yang et al.
2014).

Problem Formulation and Objective
Anchor graph-based methods typically require learning a
shared graph using predefined graphs Sv ∈ RN×M , which
capture the relationships between N data points and M an-
chor points. However, there are some drawbacks to these
methods: (1) The cluster labels must be obtained via post-
processing, which can limit clustering performance; (2) All
data points in the anchor graphs are used, which can in-
troduce redundant data and lead to inefficiencies; (3) These
methods process each view separately, which prevents them
from fully leveraging the complementary information in the
adjacency matrices of different views.

In response to the above-mentioned disadvantages, we use
non-negative matrix factorization (Ding et al. 2006) to ob-
tain the final global cluster assignment matrix by factorizing
the anchor graph in one step, thus avoiding post-processing.
To ensure that results before and after matrix factorization
are close, ℓ2,1-norm is used for non-negative matrix factor-
ization to avoid the increasing error caused by the square of
F -norm. Thus, we have

min
Gv,Hv

V∑
v=1

1

αv

{
∥Sv−GvHvT∥2,1

}
s.t. GvTGv=I, G≥0,

V∑
v=1

αv = 1,αv ≥ 0

(4)

where αv is the non-negative normalized weight factor, Sv ∈
RN×M is pre-defined anchor graph (Li et al. 2020), Gv ∈
RN×C is the cluster assignment matrix, Hv ∈ RM×C is the
latent feature matrix, C is the number of clusters.

To better construct anchor points, we consider selecting
the most representative data points from the anchor map.
When reconstructing the anchor graph Sv , we can add a di-
agonal matrix diag(f) with fi = {0, 1} corresponding to
the matrix Sv for feature selection. At this point, the re-
construction matrix corresponding to anchor graph Sv is
S̃
v

= Svdiag(f). We observe that the matrix Sv can be
reconstructed by Gv and Hv , thus the i-th column vec-
tors of the reconstruction matrix S̃

v
can be represented as

S̃
v

:i = GvHv
i:

T. Considering ∥S̃
v

:i∥2 = ∥GvHv
i:

T∥2 = ∥Hv
i:∥2,

we can see that the reconstruction for Sv is heavily depen-
dent on the matrix Hv , and when ∥S̃

v

:i∥2 is close to 0, it
means that the corresponding anchor point is not represen-
tative and should be excluded. Therefore, ensuring the row
sparsity of Hv can achieve feature selection on the graph
easily. The corresponding model in this case is:

min
Gv,Hv

V∑
v=1

1

αv

{
∥Sv−Gv(diag(f)Hv)

T∥2,1
}

s.t. GvTGv=I, G≥0,
V∑

v=1

αv = 1,αv ≥ 0,f ∈ {0, 1}M

(5)
where diag(f) ∈ RM×M with fi = {0, 1}. When fi = 0, the
corresponding i-th row of diag(f)Hv is 0T, and the i-th col-
umn of the reconstructed anchor graph S̃

v
also tends toward
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0. Otherwise, when fi = 1, it indicates that the feature asso-
ciated with graph Sv is useful and should be retained. This
allows for efficient feature selection on the anchor graph Sv .
However, directly imposing a constraint on a specific row in
matrix Hv to be 0T is too strict and difficult to solve. There-
fore, we propose a new row sparsity norm, termed as the
ℓ2,p-norm (see Definition 2). By using this norm, the result-
ing Hv matrix can be made even sparser, leading to further
enhancement of the performance of the algorithm. Besides,
using the ℓ2,p-norm constraint for non-negative matrix fac-
torization can reduce the reconstruction error. Therefore, we
can obtain:

min
Gv,Hv

V∑
v=1

1

αv

{
∥Sv−GvHvT∥2,p+λ∥Hv∥2,p

}
s.t. GvTGv=I, Gv≥0,

V∑
v=1

αv = 1,αv ≥ 0

(6)

In equation (6), the sparsity of the rows in matrix Hv con-
trols the column sparsity of the anchor graph Sv , thereby
enabling the Hv matrix to realize feature selection on the
anchor graph. Furthermore, the matrix Gv serves as the cor-
responding label embedding matrix. To effectively learn the
feature selection matrix Hv , it is necessary to ensure that ad-
jacent samples in the high-dimensional manifold remain ad-
jacent after dimension reduction. Inspired by the local pre-
serving projection (LPP) (Lu et al. 2016) algorithm, we con-
sider adding a regularization term to the matrix Gv to pre-
serve the label consistency between adjacent sample points
by employing the idea of LPP manifold learning. This leads
to our new model formulation:

min
Gv,Hv

V∑
v=1

1

αv

{
∥Sv−GvHvT∥2,p

+γtr(GvTL̃
v
Gv)+λ∥Hv∥2,p

}
s.t. GvTGv=I, Gv≥0,

V∑
v=1

αv = 1,αv ≥ 0

(7)

where the normalized Laplacian matrix L̃
v

can be calculated
by L̃

v
=I−Sv(∆v)

−1SvT and the diagonal elements of diag-
onal matrix ∆v are ∆v

ii=
∑N

i=1Sv
ij .

During the optimization process of the model,
tr(GvTL̃

v
Gv) needs to be transformed into the square

of F -norm for computation, with the corresponding
expression being:

tr(GvTL̃
v
Gv) =

1

2

N∑
i=1

N∑
j=1

Wv
ij∥Gv

i:−Gv
j:∥

2

F
(8)

where Wv is the adjacency matrix and Gv is the cluster
assignment matrix. Minimizing the ℓ1-norm optimization
problem tends to set some elements to 0, i.e., only the part
of the data that fits well is selected for estimating the ma-
trix Gv to ensure the sparsity. Therefore, we propose to use

Rotate

RotateG1
G2

GV

N

C

V

V

N

C

… …

Ωm

Figure 1: Construction of G ∈ RN×V×C .

the ℓ1-norm instead of the square of the F -norm. Inspired
by Definition 3, we convert the row operation of matrix Gv

into the column operation of GvT to obtain the correspond-
ing expression:

1

2

N∑
i=1

N∑
j=1

Wv
ij∥Gv

i:−Gv
j:∥1=

1

2
∥GvTTvT∥1 (9)

where Tv ∈ RO×N is the corresponding gradient matrix
of adjacent K-nearest neighbor (KNN) graph (the k-th row
satisfies Tv

ki = −Tv
kj = Wv

ij), O = K ∗N is the number of
edges in the KNN graph. Combining (9) with (7), we have:

min
Gv,Hv

V∑
v=1

1

αv

{
∥Sv−GvHvT∥2,p+

γ

2
∥GvTTvT∥1+λ∥Hv∥2,p

}
s.t. GvTGv=I, Gv≥0,

V∑
v=1

αv = 1,αv ≥ 0

(10)

However, equation (10) does not fully exploit the com-
plementary information in different views. Hence, we use
the tensor Schatten p-norm (defined in Definition 1) to mea-
sure the similarity between different Gv and obtain the fi-
nal global cluster assignment matrix C=

∑V
v=1

Gv

αv , incorpo-
rating weight information. Specifically, we construct a 3rd-
order tensor G from Gv (as illustrated in Figure 1) and con-
sider the corresponding Schatten p-norm after rotation. No-
tably, Ωm ensures that the relationship between the N data
points and the c-th cluster is consistent across views. There-
fore, ∥G∥Sp⃝ allows for a comprehensive exploration of in-
formation hidden between different views. Combining (10)
with the Schatten p-norm, our final model can be expressed
as:

min
Gv,Hv

V∑
v=1

1

αv

{
∥Sv−GvHvT∥2,p+

γ

2
∥GvTTvT∥1+λ∥Hv∥2,p

}
+β∥G∥pSp⃝

s.t. GvTGv=I, Gv≥0,
V∑

v=1

αv = 1,αv ≥ 0

(11)

Optimization
We propose an efficient optimization method based on
the Augmented Lagrange Multiplier (ALM) method. This
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method involves introducing auxiliary variables J , Pv , and
Qv , which allows us to rewrite (11) as:

min
V∑

v=1

1

αv

{
∥Pv∥2,p+

ρ0
2
∥Sv−GvHvT−Pv+

Kv

ρ0
∥2F+

γ

2
∥Qv∥1+

ρ1
2
∥GvTTvT−Qv+

Mv

ρ1
∥2F+

λ∥Hv∥2,p
}
+β∥J ∥pSp⃝+

ρ2
2
∥G−J+

W
ρ2

∥2F

s.t. GvTGv=I, Qv≥0,
V∑

v=1

αv = 1,αv ≥ 0

(12)
where W , Kv and Mv are Lagrange multiplier, ρ0, ρ1 and ρ2
are the penalty parameters. The optimization process could
be separated into the following steps:

• Qv sub-problem:

argmin
Qv

V∑
v=1

1

αv

{
γ

2
∥Qv∥1+

ρ1
2
∥GvTTvT−Qv+

Mv

ρ1
∥2F
}

s.t. GvTGv=I, Qv≥0,
V∑

v=1

αv = 1,αv ≥ 0

(13)
Considering every single view individually, it follows that

argmin
Qv

γ

2ρ1
∥Qv∥1+

1

2
∥Qv−Cv∥2F s.t. GvTGv = I, Qv≥0

(14)
where Cv = GvTTvT+Mv

ρ1
. Inspired by (Hale, Yin, and

Zhang 2008), we have

Qv∗ = Θ γ
2ρ1

(Cv) (15)

where the i, j-th element of Θ γ
2ρ1

(Cv) is defined as

Θ γ
2ρ1

(Cv)ij = sgn
(
Cv

ij

)
×max

(
|Cv

ij−
γ

2ρ1
|, 0
)

(16)

• Hv sub-problem:

argmin
Hv

V∑
v=1

1

αv

{
1

2
∥Av−Hv∥2F+

λ

ρ0
∥Hv∥2,p

}

s.t. GvTGv=I,
V∑

v=1

αv = 1,αv ≥ 0

(17)

where Av =
(

Sv−Pv+Kv

ρ0

)T
Gv . In order to solve (17), we

need the following Lemma 1 2 and Theorem 1.
Lemma 1 (Gao et al. 2021) Considering

min
δ≥0

f(δ) =
1

2
(δ−ω)

2
+λδp s.t. 0<p<1 (18)

by using the Generalized Soft-Thresholding (GST):

τGST
p (λ) = (2λ(1−p))

1
2−p+λp(2λ(1−p))

p−1
2−p , (19)

Thus, δ∗ can be obtained by{
δ∗ = 0, ω ≤ τGST

p (λ)

δ∗ = sign(ω)SGST
p (ω, λ), otherwise

(20)

where SGST
p (ω, λ) can be solved by SGST

p (ω, λ)−ω +

λp(SGST
p (ω, λ))p−1 = 0.

Lemma 2 (Yang et al. 2020) Considering Q,P ∈ CN×M ,
and F : CN×M→C is represented as F (Q) = f◦→σQ =

f(σ1(Q), · · ·, σK(Q)), where
→
σQ is the vector with compo-

nents of the non-increasing singular values of Q. If F (Q)
is a complex invariant function and consider the SVD P =
U
∑

PVH, then the optimal solution to

min
Q

{
1

2
∥P−Q∥2F+F (Q)

}
(21)

is Q∗ = U
∑∗

QVH, where
∑∗

Q = diag(
→
σ

∗
Q) and

→
σ

∗
Q = argmin

→
σ

{
1

2
∥→σ−→

σ P∥
2

2+f(
→
σ )

}
(22)

Theorem 1 Suppose H ∈ RN×M , the solution of

argmin
H

1

2
∥A−H∥2F+µ∥H∥2,p (23)

is H∗ = [H∗
1:; · · · ;H∗

N :]
T, where the i-th row element is

H∗
i: = σ∗ Ai:

∥Ai:∥2
(24)

where σ∗ can be obtained by

σ∗ = argmin
x≥0

1

2
(x−∥Ai:∥2)2+µxp (25)

which can be obtained by the General Shrinkage Threshold-
ing (GST) algorithm(Gao et al. 2021) (see Lemma 1).

Proof 1 We rewrite (23) as a row-wise manner to get

argmin
H∗

i:

N∑
i=1

{
1

2
∥Ai:−Hi:∥22+µ∥Hi:∥p2

}
(26)

Considering each row separately, (26) can be rewritten as

argmin
H∗

i:

1

2
∥Ai:−Hi:∥22+µ∥Hi:∥p2 (27)

We perform economy SVD to Hi: to get σ(Hi:) =√
Hi:HT

i: = ∥Hi:∥2. Referring to Lemma 2, we have
F (Hi:) = µ∥Hi:∥p2 = µ(σ(Hi:))

p
= f(σ(Hi:)), i.e.,

f(x) = µ(x)
p. Thus, the optimal result of (27) is

H∗
i:= ui

∑∗

Hi:

vT
i = [1]σ∗(Hi:)

Ai:

∥Ai:∥2
= σ∗(Hi:)

Ai:

∥Ai:∥2
(28)

where ui = 1T = [1] and vT
i = Ai:

∥Ai:∥2
can be decomposed

by economy SVD of Ai:. Since σ(Ai:) =
√

Ai:AT
i: = ∥Ai:∥2

is the only singular value of Ai:, σ∗(Hi:) can be obtained by
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σ∗(Hi:) = argmin
x≥0

1

2
∥x−σ(Ai:)∥22+f(x)

= argmin
x≥0

1

2
(x−∥Ai:∥2)2+µxp

(29)

Thus, taking each view into account, the optimal solution
of (17) can be easily obtained by Theorem 1 as

Hv∗ = [Hv
1:
∗; · · · ;Hv

N :
∗]T (30)

where the i-th row element is Hv
i:
∗ = σ∗ Av

i:

∥Av
i:∥2

.
• J sub-problem:

argmin
J

β∥J ∥pSp⃝+
ρ2
2
∥G−J+

W
ρ2

∥2F s.t. GvTGv = I

(31)
Now, the idea is to use the following Theorem 2 (Gao et al.
2021):
Theorem 2 Let S ∈ Rn1×n2×n3 , h = min(n1, n2) have
the t-SVD S = U ∗A ∗ VT . Then the solution of

argmin
X

1

2
∥X−S∥2F +τ ∥X∥pSp⃝ (32)

is the following

X ∗ = Γτ (S) = U ∗ ifft
(
Cτ

(
S
))

∗ VT (33)

where Cτ (S) is a 3rd-order tensor, whose diagonal ele-
ments can be obtained by the General Shrinkage Threshold-
ing (GST) algorithm(Gao et al. 2021).

Accordingly, the solution of (31) is

J ∗ = Γ β
ρ2

(G+W
ρ2

) (34)

• Gv sub-problem:

argmin
Gv

V∑
v=1

1

αv

{
ρ0
2
∥Sv−GvHvT−Pv+

Kv

ρ0
∥2F+

ρ1
2
∥GvTTvT−Qv+

Mv

ρ1
∥2F
}
+

V∑
v=1

ρ2
2
∥Gv−Jv+

Wv

ρ2
∥2F

s.t. GvTGv=I,
V∑

v=1

αv = 1,αv ≥ 0

(35)
By simple calculation, (35) is equivalent to

argmax
Gv,Hv

V∑
v=1

1

αv

{
tr(GvTDvGv)+2tr(GvTEv)

}
s.t. GvTGv=I,

V∑
v=1

αv = 1,αv ≥ 0

(36)

where Ev = ρ0

2αv AvHv + ρ1

2αv TvTBvT + ρ2Cv

2 and Dv =

− ρ1

2αv TvTTv . Update Fv = DvGv+Ev and perform SVD
decomposition on Fv to get UΣVT = Fv . Update Gv∗ =
UVT. Repeat until convergence and get new Gv .

• Pv sub-problem:

argmin
Pv

V∑
v=1

1

αv

{
1

2
∥Pv−Nv∥2F+

1

ρ0
∥Pv∥2,p

}

s.t. GvTGv=I,
V∑

v=1

αv = 1,αv ≥ 0

(37)

where Nv = Sv+GvHvT−Kv

ρ0
. Inspired by Theorem 1, tak-

ing each view into account, the optimal solution of (37) can
be easily obtained as

Pv∗ = [Pv
1:
∗; · · · ;Pv

N :
∗]T (38)

where the i-th row element is Pv
i:
∗ = σ∗ Nv

i:

∥Nv
i:∥2

.
• αv sub-problem:

argmin
αv

V∑
v=1

τ(v)

αv
s.t.

V∑
v=1

αv = 1,αv ≥ 0 (39)

where τv = ∥Pv∥2,p+ρ1

2 ∥GvTTvT−Qv+Mv

ρ1
∥2F+

γ
2 ∥Qv∥1

+ρ0

2 ∥Sv−GvHvT−Pv+Kv

ρ0
∥2F++λ∥Hv∥2,p.

Due to the fact that
∑V

v=1 α
v = 1 and αv≥0, it follows

that (39) is equivalent to

argmin
αv,η

V∑
v=1

τv

αv −η

(
V∑

v=1
αv−1

)
(40)

where η is the Lagrange multiplier. Setting the partial deriva-
tives with respect to αv and η in (40) to be zero gives

αv =
√

τv

η and η =
(∑V

v=1

√
τv
)2

. Then it is not hard
to see

αv =
√
τ(v)

/ V∑
v=1

√
τv (41)

The remaining variables are updated as follows

Kv = Kv+ρ0

(
Sv−GvHvT−Pv

)
(42)

Mv = Mv+ρ1 (Gv−Qv) (43)

W = W+ρ2 (G−J ) (44)

ρi = min (pho ρ×ρi,max ρi) (45)
where i = 0, 1, 2, max ρi and pho ρ are constants.
• Clustering labels sub-problem: The final clustering

assignment matrix C =
∑V

v=1
Gv

αv is constructed using Gv ∈
RN×C , where N represents the number of data points and
C denotes the number of categories. The whole algorithm is
summarized in Algorithm 1.

Complexity
The main computational complexity of this model is
O(V NMd + V N2Ct), where d =

∑V
v=1 dv , V , M , N ,

C and t are the number of views, anchors samples, number
of clusters and number of iterations, respectively.
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Algorithm 1: EFSGMC

Input: Data matrices: {Xv}Vv=1∈RN×dv , anchors number
M , and cluster number K.

Output: Cluster assignment matrix G̃ with K classes.
1: Initialize W = J = 0, Kv = Mv = 0, ρ0, ρ1, ρ2,

pho ρ = 1.1, max ρi = 1010, αv = 1
V , γ, λ, β.

2: while not converg do
3: Update Qv by using (15)
4: Update Hv by using (30)
5: Update J by using (34)
6: Update Gv by solving (36)
7: Update Pv by solving (37)
8: Update αv by using (41)
9: Update Kv , Mv , W and ρi by using (42), (43), (44)

and (45), respectively;
10: Directly achieve the K clusters based on the cluster

assignment matrix G̃=
∑V

v=1
Gv

αv ;
11: end while
12: return Clustering results.

Scale Normal Large
Dataset MSRC HW Mnist Cal101 Reuters

Size 210 2000 4000 2386 18758
Sample 1622 345 69 3766 107727
Views 5 4 3 6 5

Clusters 7 10 4 20 6

Table 1: Statistics of Real Benchmark Datasets.

Experiments
Experimental Setup
Datasets As shown in Table 1, MSRC (Winn and Jo-
jic 2005), HW (Dua and Graff 2017), Mnist4 (Deng 2012),
Cal101-20 (Fei-Fei, Fergus, and Perona 2007) and Reuters
(Apté, Damerau, and Weiss 1994) are selected.

Settings The hyperparameters are selected in the range of
[0.0001, 0.001, 0.01, 0.1, 0.5, 1, 5, 10, 50, 100, 1000, 10000]
to obtain the optimal results. Adjusting K within the range
of 2-10, the optimal value of 5 was chosen.

Comparative algorithms A total of 11 state-of-the-art al-
gorithms were selected as comparison algorithms, includ-
ing Co-reg (Kumar and Rai 2011), SwMC (Nie, Li, and
Li 2017), MVSC (Li et al. 2015), SMSC (Hu et al. 2020),
AMGL (Nie, Li, and Li 2016), MLAN (Nie et al. 2018),
SFMC (Li et al. 2020), RMSC (Xia et al. 2014), CSMSC
(Luo et al. 2018), MSC-BG (Yang et al. 2022), FPMVS-
CAG (Wang et al. 2021).

Evaluation metrics ACC, NMI and Purity indexes are
used to evaluate the clustering performance of all methods.

Experimental Results
Comparisons with State-of-the-art Methods The clus-
tering performance of different algorithms on 5 data sets is

shown in Table 2. Specifically, our method and MSC-BG
algorithm both obtain optimal and sub-optimal clustering
performance. On the largest dataset Reuters, the proposed
method and MSC-BG and SFMC algorithms achieve sat-
isfactory clustering results, but our method is superior. All
three algorithms use the anchor selection method, signifi-
cantly reducing memory consumption. Our algorithm signif-
icantly improves performance compared to MSC-BG, which
uses anchor selection and tensor Schatten p-norm. The pri-
mary reason may be that our method uses feature selection to
filter out redundant information. Moreover, compared with
the SMSC algorithm, our method considers both inter-view
and intra-view potential information, substantially improv-
ing clustering performance.

Effect of parameter p of Schatten p-norm We vary the p
from 0.1 to 1.0 to investigate the impact of the tensor Schat-
ten p-norm on two datasets. Experiments show that the pro-
posed approach achieves the optimal performance at 0.5,
0.8, which indicates that different p values can better cap-
ture the latent space distribution of different datasets. Thus,
adjusting p on different datasets can improve performance
in practical applications .
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Figure 2: The clustering result with varying p of Schatten
p-norm.
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Figure 3: The clustering result with varying anchor rates.

Effect of anchor rate We conducted ten experiments by
incrementally increasing the anchor rate from 0.1 to 1.0,
as shown in Figure 3. Experiments show that the algorithm
does not necessarily perform optimally when the anchor rate
is set to 1.0. This could be attributed to redundant and ir-
relevant data in the actual dataset, which can be removed
using the anchor selection method. Additionally, an anchor
selection strategy reduces memory usage, enabling effective
clustering of large-scale data.
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Dataset MSRC HW Mnist Cal101 Reuters
Metric ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity
Co-reg 0.635 0.578 0.659 0.784 0.758 0.795 0.785 0.602 0.786 0.412 0.587 0.754 0.563 0.326 0.552
SwMC 0.776 0.774 0.805 0.758 0.833 0.792 0.914 0.799 0.912 0.599 0.493 0.700 OM OM OM
MVSC 0.794 0.672 0.756 0.796 0.820 0.808 0.733 0.651 0.780 0.595 0.613 0.717 0.596 0.347 0.574
SMSC 0.766 0.717 0.804 0.742 0.781 0.759 0.913 0.789 0.913 0.582 0.590 0.748 OM OM OM
AMGL 0.751 0.704 0.789 0.704 0.762 0.732 0.910 0.785 0.910 0.557 0.552 0.677 OM OM OM
MLAN 0.681 0.630 0.733 0.778 0.832 0.812 0.744 0.659 0.744 0.526 0.474 0.666 OM OM OM
SFMC 0.810 0.721 0.810 0.853 0.871 0.873 0.917 0.801 0.917 0.642 0.595 0.748 0.602 0.354 0.552
RMSC 0.762 0.663 0.769 0.681 0.661 0.713 0.705 0.486 0.705 0.385 0.512 0.742 OM OM OM

CSMSC 0.758 0.735 0.793 0.806 0.793 0.867 0.643 0.645 0.832 0.474 0.648 0.563 OM OM OM
MSC-BG 0.981 0.960 0.981 0.889 0.922 0.889 0.938 0.861 0.938 0.667 0.727 0.794 0.640 0.484 0.686

FPMVS-CAG 0.843 0.738 0.843 0.85 0.787 0.850 0.887 0.719 0.887 0.635 0.611 0.723 0.526 0.323 0.603
EFSGMC 1.000 1.000 1.000 0.994 0.984 0.994 0.951 0.866 0.951 0.741 0.725 0.839 0.618 0.518 0.739

Table 2: The clustering result of the selected methods. (”OM” means out-of-memory.)

ACC NMI Purity
0.75

0.8

0.85

0.9

0.95

1

C
lu

st
er

in
g 

pe
rf

or
m

an
ce

Our
Our w.o. Sp-norm

(a) MSRC
ACC NMI Purity

0.75

0.8

0.85

0.9

0.95

1

C
lu

st
er

in
g 

pe
rf

or
m

an
ce

Our
Our w.o. Sp-norm

(b) HW

ACC NMI Purity
0.7

0.75

0.8

0.85

0.9

0.95

1

C
lu

st
er

in
g 

pe
rf

or
m

an
ce

Our
Our w.o. Sp-norm

(c) Mnist
ACC NMI Purity

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
lu

st
er

in
g 

pe
rf

or
m

an
ce

Our
Our w.o. Sp-norm

(d) Cal101

Figure 4: The ablation studies on selected datasets.

Ablation studies about Schatten p-norm To evaluate the
effectiveness of utilizing the tensor Schatten p-norm to ex-
tract complementary information from inter-view low-rank
space, we conducted corresponding experiments on four
datasets. An analysis of Figure 4 shows that utilizing this
norm can help reveal complementary information that may
be hidden between different views.

Effect of minimizing ℓ2,p-norm of Hv To investigate the
role of the ℓ2,p-norm, we set p = 1 to obtain the ℓ2,1-norm
and present the corresponding visual analysis of the feature
selection matrix Hv in Figure 5. The usage of the ℓ2,p-norm
results in sparser Hv . This indicates that the ℓ2,p-norm can
lead to sparser feature selection matrices and facilitate fea-
ture selection on the graph, enabling the removal of redun-
dant and noisy anchor points in the anchor graph.

Analysis of convergence curves We analyzed the rela-
tionship between the reconstruction error of anchor graph
Sv and the number of iterations, where the Reconstruction
Error (RE) is defined as RE = ∥Sv − GvHvT − Pv∥∞ on
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Figure 5: The visual analysis of Hv on MSRC dataset.
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Figure 6: The convergence curves.

the dataset MSRC, HW, Mnist4, and Cal101. Experiments
show that the models converge within 50 iterations on the
four datasets.

Conclusion
In this paper, we utilize the non-negative matrix decompo-
sition on the anchor graph to obtain the cluster label in one
step. Additionally, we introduce a novel ℓ2,p-norm for fea-
ture selection on the anchor graph and provide an effective
solution, significantly improving clustering efficiency. We
include the minimization tensor Schatten p-norm of clus-
ter assignment matrices to enhance clustering performance,
which helps explore the complementary information and
representation space structure between different views. We
introduce our algorithm and provide an efficient solution.
Extensive experiments verify the validity of EFSGMC.
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