
Engineering an Exact Pseudo-Boolean Model Counter*

Suwei Yang1,2,3, Kuldeep S. Meel3,4

1GrabTaxi Holdings
2Grab-NUS AI Lab

3National University of Singapore
4University of Toronto

Abstract

Model counting, a fundamental task in computer science, in-
volves determining the number of satisfying assignments to a
Boolean formula, typically represented in conjunctive normal
form (CNF). While model counting for CNF formulas has re-
ceived extensive attention with a broad range of applications,
the study of model counting for Pseudo-Boolean (PB) formu-
las has been relatively overlooked. Pseudo-Boolean formu-
las, being more succinct than propositional Boolean formu-
las, offer greater flexibility in representing real-world prob-
lems. Consequently, there is a crucial need to investigate effi-
cient techniques for model counting for PB formulas.
In this work, we propose the first exact Pseudo-Boolean
model counter, PBCount, that relies on knowledge compi-
lation approach via algebraic decision diagrams. Our exten-
sive empirical evaluation shows that PBCount can compute
counts for 1513 instances while the current state-of-the-art
approach could only handle 1013 instances. Our work opens
up several avenues for future work in the context of model
counting for PB formulas, such as the development of prepro-
cessing techniques and exploration of approaches other than
knowledge compilation.

1 Introduction
Propositional model counting involves computing the num-
ber of satisfying assignments to a Boolean formula. Model
counting is closely related to the Boolean satisfiability prob-
lem where the task is to determine if there exists an assign-
ment of variables such that the Boolean formula evaluates
to true. Boolean satisfiability and model counting have been
extensively studied in the past decades and are the corner-
stone of an extensive range of real-life applications such
as software design, explainable machine learning, planning,
and probabilistic reasoning (Bacchus, Dalmao, and Pitassi
2003; Narodytska et al. 2019; Jackson 2019; Fan, Miller,
and Mitra 2020). Owing to decades of research, there are nu-
merous tools and techniques developed for various aspects
of Boolean satisfiability and model counting, from Boolean
formula preprocessors to SAT solvers and model counters.

*The full version of the paper is available at
https://arxiv.org/abs/2312.12341 and code is available at
https://github.com/grab/pbcount
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The dominant representation format of Boolean formulas
is Conjunctive Normal Form (CNF), and accordingly, the
tools in the early days focused on CNF as the input format.
Over the past decade and a half, there has been considerable
effort in exploring other representation formats: one such
format that has gained significant interest from the commu-
nity is Pseudo-Boolean (PB) formulas, which are expressed
as the conjunction of linear inequalities. PB formulas are
shown to be more succinct than CNF formulas and natu-
ral for problems such as Knapsack, sensor placement, bi-
narized neural networks, and the like. Furthermore, PB for-
mulas are able to express constraints more succinctly com-
pared to Boolean formulas in CNF (Berre et al. 2018). As an
example, a single PB constraint is sufficient to express at-
most-k and at-least-k types of cardinal constraints whereas
the equivalent in CNF would require a polynomial num-
ber of clauses (Sinz 2005). On a higher level, an arbitrary
CNF clause can be expressed with a single PB constraint
but the converse is not true (Berre et al. 2018). The past
decade has witnessed the development of satisfiability solv-
ing techniques based on the underlying proof systems natu-
rally suited to PB constraints, and accordingly, the state-of-
the-art PB solvers, such as RoundingSat significantly out-
perform CNF solvers on problems that are naturally encoded
in PB (Elffers and Nordström 2018; Devriendt 2020; De-
vriendt et al. 2021).

In contrast to satisfiability, almost all the work in the con-
text of model counting has focused on the representation of
Boolean formulas in Conjunctive Normal Form (CNF), with
the sole exception of the development of an approximate
model counter for PB formulas (Yang and Meel 2021).

The primary contribution of this work is to address
the aforementioned gap through the development of a na-
tive scalable exact model counter, called PBCount, for PB
formulas. PBCount is based on the knowledge compila-
tion paradigm, and in particular, compiles a given PB for-
mula into algebraic decision diagrams (ADDs) (Bahar et al.
1993), which allows us to perform model counting. We
perform extensive empirical evaluations on benchmark in-
stances arising from different applications, such as sen-
sor placement, multi-dimension knapsack, and combinato-
rial auction benchmarks (Gens and Levner 1980; Blum-
rosen and Nisan 2007; Latour, Sen, and Meel 2023). Our
evaluations highlighted the efficacy of PBCount against ex-
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isting state-of-the-art CNF model counters. In particular,
PBCount is able to successfully count 1513 instances while
the prior state of the art could only count 1013 instances,
thereby demonstrating significant runtime improvements. It
is worth remarking that PBCount achieves superior perfor-
mance with substantially weaker preprocessing techniques
in comparison to techniques employed in CNF model coun-
ters, making a strong case for the advantages of native PB
model counting and reasoning. Furthermore, given the cru-
cial importance of preprocessing techniques for CNF count-
ing, we hope our work will motivate the development of pre-
processing techniques for PB model counting.

The rest of the paper is organized as follows: We discuss
the preliminaries and existing counting algorithm in Sec-
tion 2. In Section 3, we discuss existing works and how they
relate to our approach, which we detail in Section 4. Fol-
lowing that, we analyze the empirical results of PBCount
against existing tools in Section 5 and conclude in Section 6.

2 Preliminaries
Boolean Formula A Boolean variable can take values true
or false. A literal is either a Boolean variable or its nega-
tion. Let F be a Boolean formula. F is in conjunctive nor-
mal form (CNF) if F is a conjunction of clauses, where each
clause is a disjunction of literals. F is satisfiable if there ex-
ists an assignment τ of variables of F such that F evaluates
to true. We refer to τ as a satisfying assignment of F and de-
note the set of all τ as Sol(F ). Model counting for Boolean
formula F refers to the task of determining |Sol(F )|.

Pseudo-Boolean Formula A PB constraint is either an
equality or inequality of the form

∑n
i=1 aixi□k where

x1, ..., xn are Boolean literals, a1, ..., an, and k are integers,
and □ is one of {≥,=,≤}. We refer to a1, ..., an as term
coefficients in the PB constraint, where each term is of the
form aixi. A PB formula, G, consists of a set of PB con-
straints. G is satisfiable if there exists an assignment τ of
all variables of G such that all its PB constraints hold. PB
model counting refers to the computation of |Sol(G)| where
Sol(G) is the set of all satisfying assignments of G.

Projected Model Counting Let G be a formula defined
over the set of variables X . Let Vi, Vj be subsets of X such
that Vi ∩ Vj = ∅ and Vi ∪ Vj = X . Projected model count-
ing of G on Vi refers to the number of assignments of all
variables in Vi such that there exists an assignment of vari-
ables in Vj that makes G evaluate to true (Aziz et al. 2015).
In the evaluations, CNF model counter baselines perform
projected model counting on the original variables in the PB
formula, to avoid additional counts due to auxiliary variables
introduced in the PB to CNF conversion process.

Algebraic Decision Diagram An algebraic decision dia-
gram (ADD) is a directed acyclic graph representation of a
function f : 2X → S where X is the set of Boolean vari-
ables that f is defined over, and S is an arbitrary set known
as the carrier set. We denote the function represented by an
ADD ψ as Func(ψ). The internal nodes of ADD represent
decisions on variables x ∈ X and the leaf nodes represent
s ∈ S. In this work, we focus on the setting where S ⊂ Z.

As an example, an ADD representing 3x1+4x2 is shown in
Figure 1. In the figure, a dotted arrow from an internal node
represents when the corresponding variable is set to false
and a solid arrow represents when it is set to true.

x1

x2 x2

0 4 3 7

Figure 1: An ADD representing 3x1 + 4x2

In addition, we make use of Apply and ITE operations
on ADDs (Bryant 1986; Bahar et al. 1993). The Apply
operation takes as input a binary operator ▷◁, two ADDs
ψ1, ψ2, and outputs an ADD ψ3 such that the Func(ψ3) =
Func(ψ1) ▷◁ Func(ψ2). The ITE operation (if-then-else) in-
volves 3 ADDs ψ1, ψ2, ψ3, where carrier set of ψ1 is re-
stricted to {0, 1}. ITE outputs an ADD that is equivalent to
having 1 valued leaf nodes in ψ1 replaced with ψ2 and 0
valued leaf nodes with ψ3.

Relation of Pseudo-Boolean Constraint to CNF Clause
Given an arbitrary CNF clause D, one could always convert
D to a PB constraint. Given that D is of the form

∨m
i=1 li,

where l1, ..., lm are Boolean literals, D can be represented
by a single PB constraint

∑m
i=1 aili ≥ 1 where all coef-

ficients a1, ..., ai, ...am are 1. However, there are PB con-
straints that require polynomially many CNF clauses to rep-
resent. An example would be

∑m
i=1 li ≥ k which requires at

least k ofm literals to be true. We refer the reader to the Ap-
pendix for statistics of the number of variables and clauses
before and after PB to CNF conversion for benchmarks used.

2.1 Model Counting with ADDs
In this work, we adapt the existing dynamic programming
counting algorithm of ADDMC (Dudek, Phan, and Vardi
2020a), shown in Algorithm 1, to perform PB model count-
ing with ADDs. This includes using the default ADDMC
configurations for ADD variable ordering (MCS) and clus-
ter ordering ρ (BOUQUET TREE). The algorithm takes in
a list φ of ADDs, representing all constraints, and an or-
der ρ of which to process the ADDs. ADD ψ is initialized
with value 1. According to cluster ordering ρ, cluster ADDs
ψj are formed using the Apply operation with × operator
on each of the individual constraint ADDs of constraints in
the cluster. The cluster ADD ψj is combined with ψ using
the same Apply operation. If variable x does not appear in
later clusters in ρ, it is abstracted out from ψ (early pro-
jection process in ADDMC) using ψ ← W(x̄) × ψ[x 7→
0]+W(x)×ψ[x 7→ 1] in line 8, whereW(·) is the user pro-
vided literal weight function. In unweighted model count-
ing, W(·) is 1 for all literals. Once all clusters have been
processed, the unprocessed variables x of the formula G are
abstracted out using the same operation as before (line 10).
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After all variables are abstracted out, ψ is a constant ADD
that represents the final count.

Algorithm 1: computeCount(φ, ρ)
Input: φ - list of ADD, ρ - cluster merge ordering
Output: model count

1: ψ ← constantADD(1)
2: for cluster Aj ∈ ρ do
3: ψj ← constantADD(1)
4: for constraint Ci ∈ Aj do
5: ψj ← ψj × φ[Ci]
6: ψ ← ψ × ψj

7: for each x ∈ ψ where x not in later clusters in ρ do
8: ψ ←W(x̄)× ψ[x 7→ 0] +W(x)× ψ[x 7→ 1]
9: for all unprocessed variable x do

10: ψ ←W(x̄)× ψ[x 7→ 0] +W(x)× ψ[x 7→ 1]
11: return getValue(ψ)

3 Related Work
Boolean Formula Preprocessing Boolean formula pre-
processing involves simplifying a given formula to reduce
runtimes of downstream tasks such as determining satisfi-
ability of the formula (SAT-solving) and model counting.
Preprocessing is crucial to modern SAT solvers and model
counters’ performance improvements in recent decades.
There are numerous preprocessing techniques introduced
over the years by the research community, some of which
are unit propagation, bounded variable elimination, failed
literal probing, and vivification (Dowling and Gallier 1984;
Berre 2001; Eén and Biere 2005; Piette, Hamadi, and Sais
2008). In this work, we adapt some of the SAT preprocessing
techniques, namely unit propagation and a variant of failed
literal probing, to simplify PB formulas.

Search-Based Model Counters Among the numerous ex-
isting CNF model counters, we can classify them into
two main categories – search-based model counters and
decision diagram-based model counters. Notable existing
search-based model counters include GPMC, Ganak, and
Sharpsat-TD (Ryosuke Suzuki and Sakai 2017; Sharma
et al. 2019; Korhonen and Järvisalo 2021). Search-based
model counters work by setting values to variables in a given
formula in an iterative manner, which is equivalent to implic-
itly exploring a search tree. In addition, search-based model
counters adapt techniques such as sub-component caching
from SAT solving for more efficient computation.

Decision Diagram-Based Model Counter Decision
diagram-based model counters employ knowledge compi-
lation techniques to compile a given formula into directed
acyclic graphs (DAGs) and perform model counting with
these DAGs. Some of the recent decision diagram-based
model counters are D4, ExactMC, ADDMC, and its related
variant DPMC (Lagniez and Marquis 2017; Dudek, Phan,
and Vardi 2020a,b; Lai, Meel, and Yap 2021). D4 and
ExactMC compile the formula in a top-down manner into
the respective decision diagram forms. In contrast, ADDMC
and DPMC (decision diagram mode) perform bottom-up

compilations of algebraic decision diagrams (ADDs). In
this work, we based PBCount on ADDMC and introduced
techniques to compile a PB constraint directly into an ADD
and employ the same counting approach in ADDMC.

Pseudo-Boolean Conversion One way to perform PB
model counting is to convert the PB formula to a Boolean
formula and use existing CNF model counters. A notable
tool for the conversion of PB to CNF is PBLib (Philipp and
Steinke 2015). PBLib implements various encodings to con-
vert PB formulas into CNF form, some of which include
cardinality networks, sorting networks, and BDD-based en-
codings (Eén and Sörensson 2006; Abı́o et al. 2011, 2013).
In this work, we use default settings for the PBEncoder bi-
nary provided as part of PBLib to perform the required con-
versions. We subsequently compare PBCount against state-
of-the-art CNF model counters. It is worth noting that the
model counting task for PB formula becomes a projected
model counting task of the corresponding CNF formula, as
previously mentioned in Section 2.

4 Approach
We show the overall flow of PBCount in Figure 2. We first
preprocess the PB formula using propagation and assump-
tion probing. Subsequently, we compile each of the PB con-
straints into an algebraic decision diagram (ADD). Next, we
merge constraint ADDs using Apply operation and perform
model counting by abstracting out variables (Section 2.1).
The model count would be the value after all variables are
abstracted out. Without loss of generality, the algorithms de-
scribed in this work handle PB constraints involving ‘=’ and
‘≥’ operators, as ‘≤’ type constraints can be manipulated
into ‘≥’ type constraints.

Preprocess
(Section 4.1)

Compile into
individual ADD

(Section 4.2)

Count with ADDs
(Section 2.1)

PB formula G

Model Count
PBCount

Figure 2: Overall flow of our PB model counter PBCount.
Shaded boxes indicate our contributions.

4.1 Preprocessing

Propagate Assumption ProbingPB formula G PB formula G′

Preprocessing

Figure 3: Preprocessing of PB formula

The preprocessing phase of PBCount performs assump-
tion probing and unit propagation (Biere, Järvisalo, and
Kiesl 2021). PBCount repeatedly performs unit propaga-
tion and assumption probing until no change is detected, as
shown in Algorithm 2.
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Algorithm 2: Preprocess(G)
Input: G - PB formula
Output: G′ - preprocessed PB formula

1: mapping← []; G′ ← G
2: repeat
3: for all single variable constraint C ∈ G′ do
4: mapping← mapping ∪ InferDecision(C)
5: G′ ← propagate(G′, mapping)
6: for all variable x ∈ G′ do
7: mapping← mapping ∪ AssumProbe(G′, x)
8: G′ ← propagate(G′, mapping)
9: until G′ does not change

10: return G′

Sign Manipulation Let C be the PB constraint −3x1 −
4x2 ≤ −3. One can multiply both sides of the constraint by
−1 to form 3x1 + 4x2 ≥ 3. In addition, one would be able
to switch the sign of the coefficient of x2 as follows.

3x1 + 4x2 ≥ 3

3x1 + 4(1− x̄2) ≥ 3

3x1 − 4x̄2 ≥ −1

In general, one is able to manipulate the sign of any term
coefficient as shown in the example above. We use the above
technique to optimize PB constraint compilation approaches
which we discuss in later sections.

Propagation Propagation in the Pseudo-Boolean context
refers to the simplification of the PB constraints if decisions
on some PB variables can be inferred. In particular, one
might be able to infer decisions on PB variable xi from PB
constraint Cj when the constraint is of either 1) aixi ≥ k or
2) aixi = k forms. We defer the details of the InferDecision
algorithm to the Appendix.

Algorithm 3: AssumProbe(G, xi)
Input: G - PB formula, xi - assumption variable
Output: mapping of variable values

1: temp, mapping← []
2: for all constraint C ∈ G[xi 7→ 1] do
3: temp← temp ∪ InferDecision(C)
4: for all constraint C ∈ G[xi 7→ 0] do
5: temp← temp ∪ InferDecision(C)
6: for all variable xj , where j ̸= i do
7: if exactly one literal of xj in temp then
8: mapping← mapping ∪ temp[xj]
9: return mapping

Assumption Probing Assumption probing can be viewed
as a weaker form of failed literal probing (Biere, Järvisalo,
and Kiesl 2021) as well as single step look ahead propa-
gation process. For an arbitrary variable xi ∈ G, where G
is the PB formula, assumption probing involves performing
propagation and decision inference independently for when
xi = 0 and xi = 1. If another variable xj is inferred to
have the same value assignment τ [xj ] in both cases, then it

can be inferred that xj should be set to τ [xj ] in all satis-
fying assignments of G. Algorithm 3 illustrates the process
for a single variable xi, and in the preprocessing stage, we
perform assumption probing on all variables in G.

4.2 Pseudo-Boolean Constraint Compilation
In this work, we introduce two approaches, namely top-
down and bottom-up, to compile each constraint of a PB
formula into an ADD. We use T, k, and eq in place of PB
constraint C when describing the compilation algorithms. T
refers to the term list, which is a list of aixi terms of C. k is
the constraint constant and eq indicates ifC is ‘=’ constraint.

x1

x2

0 1

Figure 4: An ADD ψ1 representing 3x1 + 4x2 ≥ 3

Bottom-up ADD Constraint Compilation In order to
compile an ADD which represents a PB constraint of the fol-
lowing form

∑n
i=1 aixi[≥,=,≤]k, we first start compiling

the expression
∑n

i=1 aixi from literal and constant ADDs
as shown by line 3 of Algorithm 4. A constant ADD which
represents integer ai is a single leaf node that has value ai. A
literal ADD comprises of an internal node, which represents
variable x, and true and false leaf nodes, which represent
the evaluated values of the literal if x is set to true and false.
With the literal and constant ADDs, we use Apply with ×
operator to form ADDs for each term aixi. We use Apply
with + operator on term ADDs to form the ADD represent-
ing expression

∑n
i=1 aixi. As an example, the ADD ψ for

the expression 3x1 + 4x2 is shown in Figure 1. To account
for the inequality or equality, we look at the value of leaf
nodes in expression ADD ψ and determine if they satisfy
the constraint (lines 4 to 10). We replace the leaf nodes with
1 node if the constraint is satisfied and 0 node otherwise, the
resultant ADD is illustrated in Figure 4.

Top-down ADD Constraint Compilation In contrast to
the bottom-up ADD compilation approach, the top-down
ADD compilation for a given PB constraint involves the if-
then-else (ITE) operation for decision diagrams. We only
consider PB constraints that involve = or ≥ as mentioned
previously. The top-down compilation algorithm (Algo-
rithm 5) makes use of recursive calls of Algorithm 6 to con-
struct an ADD that represents a given PB clause. In particu-
lar, Algorithms 5 and 6 work by iterating through the terms
of the PB constraint using idx. The algorithms build the sub-
ADDs when the literal at position idx evaluates to true for
the if-then case and otherwise for the else case of the ITE op-
eration while updating the constraint constant k (lines 2-3 of
Algorithm 5 and lines 9-10 of Algorithm 6). Notice that the
top-down compilation approach allows for early termination
when the current k value is negative for ≥ k case. However,
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Algorithm 4: compileConstraintBottomUp(T, k, eq)
Input: T - term list, k - constraint value,
eq - indicator if constraint is ‘=’ type
Output: ψ - constraint ADD

1: ψ ← constantADD(0)
2: for term t in T do
3: ψ += constantADD(t.coeff) × literalADD(t.literal)
4: for node n in LeafNode(ψ) do
5: if eq is true & n.value = k then
6: n.value← 1
7: else if eq is false & n.value ≥ k then
8: n.value← 1
9: else

10: n.value← 0
11: return ψ

early termination is possible only if all unprocessed coeffi-
cients are positive, implying that k in subsequent recursive
calls cannot increase. One way would be to sort the term list
T in ascending order of term coefficients, processing terms
with negative coefficients before positive coefficients.

Algorithm 5: compileConstraintTopDown(T, k, eq)
Assumption: T is in ascending order of term coefficients or
all coefficients are non-negative
Input: T - term list, k - constraint value,
eq - indicator if constraint is ‘=’ type
Output: ψ - constraint ADD

1: ψ ← literalADD(T [0].literal)
2: ψlo ← compileTDRecur(T, k, eq, 1)
3: ψhi ← compileTDRecur(T, k − T [0].coeff, eq, 1)
4: ψ.ITE(ψhi, ψlo)
5: return ψ

Optimizations for Bottom-up Compilation In the
bottom-up compilation approach, an ADD is built from
the individual literal and constant ADDs to represent the
expression, before subsequently having leaf node values
converted to 1 and 0 depending on if the PB constraint
is satisfied. In the process, an ADD could be exponential
in size with respect to the number of variables processed.
In order to minimize the intermediate ADD during the
compilation process, we introduce an optimization for
bottom-up compilation. The key idea is to increase the
number of shared sub-components of the intermediate
ADD, and this amounts to processing the PB constraint
terms in a manner that results in fewer distinct subset sums
of term coefficients as every distinct subset sum requires a
separate leaf node. To this end, we optimize the compilation
process by sorting the terms according to the absolute values
of their coefficients in ascending order. Subsequently, we
manipulate the coefficients, using x = (1− x̄), of the terms
such that alternate terms have coefficients of different signs.
We defer the pseudo code to the Appendix.

Algorithm 6: compileTDRecur(T, k, eq, idx)
Input: T - term list, k - current constraint value,
eq-input constraint equality, idx-index of current term in T
Output: ψ - constraint ADD from idx to end of T

1: if T [idx].coeff ≥ 0 then
2: isPos← true
3: if eq & isPos & k < 0 then
4: return constantADD(0)
5: else if !eq & isPos & k ≤ 0 then
6: return constantADD(1)
7: else if idx < T .length then
8: ψ ← literalADD(T [idx].literal)
9: ψlo ← compileTDRecur(T, k, eq, idx+ 1)

10: ψhi ← compileTDRecur(T,
k − T [idx].coeff, eq, idx+ 1)

11: return ψ.ITE(ψhi, ψlo)
12: else
13: if eq & k = 0 then
14: return constantADD(1)
15: else
16: return constantADD(0)

Optimizations for Top-down Compilation Similarly, we
also introduce optimizations for the top-down compilation
approach. Recall that one would only be able to perform
early termination for PB constraints of the form

∑
aixi ≥ k

after all negative coefficient terms have been processed. To
this end, we manipulate all coefficients to be positive and ad-
just k accordingly so that early termination is possible. Fur-
thermore, we sort the terms in descending value of the term
coefficients as larger coefficients are more likely to satisfy
the constraint. We defer the pseudo code to the Appendix.

Algorithm 7: compileConstraintDynamic(T, k, eq)
Input: T - term list, k - constraint value, eq-input constraint
equality
Output: ψ - constraint ADD
Cond 1: T .length ≤ 25 and k < 25th percentile of T .coeff
Cond 2: k < 25th percentile of T .coeff and unique coeffi-
cient rate ≥ 0.9 and unique adjacent difference rate ≥ 0.85

1: if cond 1 or cond 2 then
2: bottomUp← false
3: else
4: bottomUp← true
5: if bottomUp then
6: return optimizeCompileBottomUp(T, k, eq)
7: else
8: return optimizeCompileTopDown(T, k, eq)

Dynamic Compilation A PB formula can include more
than one PB constraint. As we will show in a case study in
the experiments section, the choice of compilation approach
has a substantial impact on overall runtime. To this end, we
introduce a dynamic heuristic (Algorithm 7) to select the ap-
propriate compilation approach and perform optimization of
the compilation process as previously discussed. In Algo-
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rithm 7, we choose top-down compilation if either condition
1 or 2 is met. Conditions 1 and 2 are designed to be in favor
of the botttom-up compilation approach, we provide perfor-
mance analysis in the experiments section.

5 Experiments
We performed extensive empirical evaluations to compare
the runtime performance of PBCount with state-of-the-art
exact model counters. Our empirical evaluation focuses on
benchmarks arising from three application domains: sen-
sor placement, auctions, and multi-dimensional knapsack.
Through our evaluations and analysis, we sought to answer
the following research questions:

RQ 1 How does the runtime performance of PBCount
compare to that of the state-of-the-art approaches?

RQ 2 How does the dynamic compilation approach impact
the runtime performance of PBCount?

Setup We performed our evaluations on machines with
AMD EPYC 7713 processors. Each benchmark instance is
provided with 1 core, 16GB memory, and a timeout of 3600
seconds. Since all the state-of-the-art exact model counters
take CNF as input, we employed the CNF model counters
with the help of PB to CNF conversion tool PBLib1 (Philipp
and Steinke 2015). We evaluated PBCount against state-
of-the-art projected counters: DPMC, D42 and GPMC; D4
and GPMC are among the winners of the Projected counting
track at Model Counting Competition 2022 and 2023.

Benchmarks We generated 3473 benchmarks of the fol-
lowing application areas – sensor placement, auctions, and
multi-dimension knapsack. We detail the benchmark statis-
tics (number of variables and constraints) in the Appendix.

• The sensor placement benchmark setting (1473 instances
after removal of 0 counts) is adapted from prior work
on identifying code sets (Latour, Sen, and Meel 2023).
Given a network graph, a maximum number of sensors
allowed, count the number of ways to place sensors such
that failures in the network are uniquely identifiable.

• For the auction benchmark setting (1000 instances), we
adapt the combinatorial auction setting (Blumrosen and
Nisan 2007) to a counting variant. There are m partici-
pants and n items, each of which can be shared by one or
more participants. Given that each participant has a min-
imum utility threshold, we count the number of ways the
n items can be shared such that all participants achieve
their minimum threshold. The utilities are additive and
can be negative.

• For the multi-dimension knapsack benchmark set-
ting (Gens and Levner 1980) (1000 instances), there are
n items and constraints onm different features or dimen-
sions of the items in the form of the sum of each dimen-
sion should not exceed a given constant. Given such a
setting, the goal would be the count the number of sub-
sets of items that satisfies the constraints.
1We used the provided PBEncoder for conversion.
2Binary from Model Counting Competition 2022

5.1 RQ1: Runtime Comparison
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Figure 5: Cactus plot of number of benchmark instances
completed by different counters. A point (x, y) on each line
plot indicates the corresponding counter completes x num-
ber of benchmarks after y seconds has elapsed.

We show the cactus plot of the number of instances com-
pleted by each counter out of the 3473 benchmarks in Fig-
ure 5. The exact number of instances completed by each
counter for each benchmark set is shown in Table 1. Ad-
ditionally, we provide individual cactus plots for each set of
benchmarks in the Appendix.

Benchmarks DPMC D4 GPMC PBCount

Sensor placement 625 566 575 638
M-dim knapsack 81 281 279 503
Auction 76 116 159 372

Total 782 963 1013 1513

Table 1: Number of benchmark instances completed by each
counter in 3600s, higher is better.

In sensor placement benchmarks, PBCount count com-
pleted 638 instances, narrowly ahead of DPMC (625 in-
stances), and more than D4 (566 instances) and GPMC (575
instances). In multi-dimension knapsack (M-dim knap-
sack) and auction benchmarks, PBCount significantly out-
performs the competing counters. PBCount completed 503
M-dim knapsack instances, around 1.8× that of GPMC
(279 instances) and D4 (281 instances), and 6.2× that of
DPMC (81 instances). In auction benchmarks, PBCount
completed 372 instances, around 2.3× that of GPMC (159
instances), 3.2× of D4 (116 instances), and 4.9× of DPMC
(76 instances). Overall, PBCount completed 1513 instances
out of 3473 total instances, around 1.5× that of GPMC,
1.6× of D4, and 1.9× that of DPMC. Note that PBCount
achieved superior performance with minimal preprocessing
over GPMC, which has advanced preprocessing capabilities.
Our results demonstrate the significant performance advan-
tages of counting natively for PB formulas and provide an
affirmative answer to RQ1.
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5.2 RQ2: Analysis of Compilation Approaches
We now focus on the analysis of different compilation
approaches: top-down (Algorithm 5), bottom-up (Algo-
rithm 4), and dynamic (Algorithm 7). The results in Ta-
ble 2 show that for the benchmarks, bottom-up PB con-
straint compilation outperforms top-down approach signif-
icantly in auction and multi-dimension knapsack and to a
lesser degree sensor placement. In addition, the evaluation
result also highlights that our dynamic compilation heuristic
and constraint term optimization closely match the bottom-
up approach, with the exception of completing 3 fewer in-
stances in auction benchmarks. However, in the 372 auc-
tion instances completed by both bottom-up and dynamic
approaches, the dynamic approach with term coefficient op-
timization completes the counting task faster for 257 in-
stances. We show the scatter plot comparison in Figure 6.

Benchmarks Top-down Bottom-up Dynamic

Sensor placement 580 638 638
M-dim knapsack 109 503 503
Auction 158 375 372

Table 2: Number of benchmarks completed by PBCount
when employing different compilation strategies, higher
number indicates better performance.
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Figure 6: Dynamic vs bottom-up runtime (log10) for auction
benchmarks. Points beneath red diagonal line indicate dy-
namic compilation is faster (257 points), points above other-
wise (115 points).

Compilation Approach Performance Case Study We
provide an example to highlight the performance impact of
the choice of compilation approach. The example involves
the following PB formula in Equation 1 with a single con-
straint that has unique term coefficients:

12∑
i=0

2ixi+1 +

10∑
i=1

3ixi+13 +

7∑
i=1

7ixi+23 ≥ k (1)

We vary the value of k in the above PB constraint from
101 to 105 and compare the runtime between top-down and
bottom-up compilation approaches in Table 3. Note that
bottom-up compilation takes around the same time irrespec-
tive of k as there is no early termination. On the other hand
for top-down compilation, the PB constraint is easily satis-
fied when k is small and thus allows for early termination,
leading to significant time savings compared to when k is
large. Notice that when top-down compilation is unable to
terminate early, it is much slower than bottom-up compila-
tion even when all term coefficients are unique.

Approach k value

101 102 103 104 105

Top-down 0.005 0.009 0.228 8.586 46.071
Bottom-up 6.927 7.202 7.198 7.434 6.732

Table 3: Runtime (seconds) to complete model counting for
formula in Equation 1. Lower is better

Approach k value

101 102 103 104 105

Top-down 3.325 61.753 60.530 60.881 64.097
Bottom-up 0.005 0.004 0.004 0.004 0.004

Table 4: Runtime (seconds) to complete model counting for
formula in Equation 1 with all coefficients set to 1.

As mentioned previously, bottom-up compilation bene-
fits from having large numbers of same term coefficients
or collisions in subset sums of coefficients. To this end, we
changed all term coefficients of the PB constraint in equa-
tion 1 to 1 and compared runtimes in Table 4. We observed
around three orders of magnitude reduction in the runtime
of the bottom-up compilation approach. In contrast, the top-
down approach terminates early only in k = 101 case and
requires full enumeration in other cases. In the absence of
early termination, top-down compilation approach is much
slower than bottom-up compilation approach, and this is re-
flected in our dynamic compilation heuristic.

6 Conclusion
In this work, we introduce the first exact PB model counter,
PBCount. PBCount directly compiles PB formulas into
ADDs, enabling us to reuse the ADD counting framework
in ADDMC. In the design of PBCount, we introduce both
top-down and bottom-up PB constraint compilation tech-
niques and highlight the performance differences between
them. While we introduced dynamic compilation heuristics
to determine the per constraint compilation method and pre-
liminary preprocessing techniques for PB formulas, it would
be of interest to develop more advanced heuristics and pre-
processing techniques in future works. A strong motivation
is PBCount’s performance lead over existing CNF model
counters. We hope this work will gather more interest in PB
formulas and PB model counting.
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