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Abstract

Answer Set Programming (ASP) has emerged as a promising
paradigm in knowledge representation and automated reason-
ing owing to its ability to model hard combinatorial problems
from diverse domains in a natural way. Building on advances
in propositional SAT solving, the past two decades have wit-
nessed the emergence of well-engineered systems for solving
the answer set satisfiability problem, i.e., finding models or
answer sets for a given answer set program. In recent years,
there has been growing interest in problems beyond satisfia-
bility, such as model counting, in the context of ASP. Akin
to the early days of propositional model counting, state-of-
the-art exact answer set counters do not scale well beyond
small instances. Exact ASP counters struggle with handling
larger input formulas. The primary contribution of this paper
is a new ASP counting framework, called sharpASP, which
counts answer sets avoiding larger input formulas. This re-
lies on an alternative way of defining answer sets that al-
lows for the lifting of key techniques developed in the con-
text of propositional model counting. Our extensive empiri-
cal analysis over 1470 benchmarks demonstrates significant
performance gain over current state-of-the-art exact answer
set counters. Specifically, by using sharpASP, we were able
to solve 1062 benchmarks with PAR2 score of 3082 whereas
using prior state-of-the-art, we could only solve 895 bench-
marks with a PAR2 score of 4205, all other experimental con-
ditions being the same.

1 Introduction
Answer Set Programming (ASP) (Marek and Truszczyński
1999) is a declarative problem-solving approach with a wide
variety of applications ranging from planning, diagnosis,
scheduling, and product configuration checking (Nouman
et al. 2016; Brik and Remmel 2015; Tiihonen et al. 2003).
An ASP program consists of a set of rules defined over
propositional atoms, where each rule logically expresses
an implication relation. An assignment to the propositional
atoms satisfying the ASP semantic is called an answer set.
In this paper, we focus on an important class of ASP pro-
grams called normal logic programs that have been used in
diverse applications (see for example (Dodaro and Maratea
2017; Brooks et al. 2007)), and present a new technique to
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count answer sets of such programs, while scaling much be-
yond state-of-the-art exact answer set counters.

In general, given a set of constraints in a theory, model
counting seeks to determine the number of models (or solu-
tions) to the set of constraints. From a computational com-
plexity perspective, this can be significantly harder than de-
ciding whether there exists any solution to the set of con-
straints, i.e. the satisfiability problem. Yet, in the context
of propositional reasoning, compelling applications have fu-
elled significant practical advances in propositional model
counting, also referred to as #SAT (Thurley 2006), over the
past decade. This, in turn, has ushered in new applications
in quantified information flow (Biondi et al. 2018), neural
network verification (Baluta et al. 2019), computational bi-
ology, and the like. The success of practical propositional
model counting in diverse application domains have natu-
rally led researchers to ask if practically efficient counting
algorithms can be devised for constraints beyond proposi-
tional logic. In particular, there has been growing interest
in answer set counting, motivated by applications in prob-
abilistic reasoning and network reliability (Kabir and Meel
2023; Aziz et al. 2015).

Early efforts to build answer set counters sought to work
by enumerating answer sets of a given ASP program (Fichte
et al. 2017; Gebser et al. 2007). While this works extremely
well for answer set counts upto a certain threshold, enumer-
ation doesn’t scale well for problem instances with too many
answer sets. Therefore, subsequent approaches to answer set
counting sought to leverage the significant progress made in
#SAT techniques. Specifically, Aziz et al. (Aziz et al. 2015)
integrated a component-caching based propositional model
counting technique with unfounded set detection to yield
an answer set counter, called ASProblog. In another line of
work, dynamic programming on a tree decomposition of the
input problem instance has been proposed to achieve scal-
ability for ASP instances with low treewidth (Fichte et al.
2017; Fichte and Hecher 2019). Yet another approach has
been to translate a given normal logic program P into a
propositional formula F , such that there is a one-to-one
correspondence between answer sets of P and models of
F (Janhunen and Niemelä 2011; Bomanson 2017; Janhunen
2006). Answer sets of P can then be counted by invoking
an off-the-shelf propositional model counter (Sharma et al.
2019) on F . Though promising in principle, a naive appli-
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cation of this approach doesn’t scale well in practice ow-
ing to a blowup in the size of the resulting formula F when
the implications between propositional atoms encoded in the
program P give rise to circular dependencies (Lifschitz and
Razborov 2006), which is a common occurrence when mod-
eling numerous real-world applications. To address this, re-
searchers have proposed techniques to transform the pro-
gram to effectively break such circular dependencies and
then use a treewidth-aware translation of the transformed
program to a propositional formula (see, for example (Eiter,
Hecher, and Kiesel 2021)). However, breaking such circu-
lar dependencies can increase the treewidth of the resulting
transformed problem instance, which in turn can adversely
affect the performance of answer set counting. Thus, despite
significant advances, state-of-the-art exact answer set coun-
ters are stymied by scalability bottlenecks, limiting their
practical applicability. Within this context, we ask the ques-
tion: Can we design a scalable answer set counter, accom-
panied by a substantial reduction in the size of the trans-
formed input program, particularly when addressing circu-
lar dependencies?

The principal contribution of this paper addresses the
aforementioned question by introducing an alternative ap-
proach to exact answer set counting, called sharpASP, while
alleviating key bottlenecks faced by earlier approaches.
While a mere reduction in translation size does not inher-
ently establish a scalable ASP counting solution for gen-
eral scenarios, sharpASP allows us to solve larger and more
instances of exact answer set counting than was feasible
earlier. Similar to ASProblog, sharpASP lifts component-
caching based propositional model counting algorithms to
ASP counting. The key idea that makes this possible is
an alternative yet correlated perspective on defining answer
sets. This alternative definition makes it possible to lift core
ideas like decomposability and determinism in propositional
model counters to facilitate answer set counting. Viewed
differently, transforming propositional model counters into
our proposed ASP counting framework requires minimal
adjustments. Our experimental analysis demonstrates that
sharpASP, built using this approach, significantly outper-
forms the performance of state-of-the-art techniques across
instances from diverse domains. This serves to underscore
the effectiveness of our approach over the combined might
of earlier state-of-the-art exact answer set counters.

The remainder of this paper is organized as follows. We
present some preliminaries and notations in Section 2. Sec-
tion 3 presents an alternative way of defining the answer set
of an ASP instance, which allows us to propose the answer
set counting algorithm of sharpASP in Section 4, where we
also present correctness arguments for our algorithm. Sec-
tion 5 presents our experimental evaluation of the proposed
answer set counting algorithm. Finally, we conclude our pa-
per in Section 6.

2 Preliminaries
Before delving into the details, we introduce some notation
and preliminaries from propositional satisfiability and an-
swer set programming.

Propositional Satisfiability. A propositional variable v
takes one of two values: 0 (denoting false) or 1 (denoting
true). A literal ` is either a variable (positive literal) or
its negation (negated literal), and a clause C is a disjunc-
tion of literals. For convenience of exposition, we some-
times represent a clause as a set of literals, with the im-
plicit understanding that all literals in the set are disjoined
in the clause. A clause with a single literal is also called
a unit clause. In general, the constraint represented by a
clause C ≡ (¬v1 ∨ . . . ∨ ¬vk ∨ vk+1 ∨ . . . ∨ vk+m) can
be expressed as a logical implication: (v1 ∧ . . . ∧ vk) →
(vk+1 ∨ . . . ∨ vk+m). If k = 0, the antecedent of the above
implication is true, and if m = 0, the consequent is false. A
conjunctive normal form (CNF) formula φ is a conjuction of
clauses. When there is no confusion, a CNF formula is also
sometimes represented as a set of clauses, with the implicit
understanding that all clauses in the set are conjoined to give
the formula. We denote the set of variables in φ as Var(φ).

An assignment of a set X of propositional variables is
a mapping τ : X → {0, 1}. For a variable v ∈ X , we
define τ(¬v) = 1 − τ(v). Given a CNF formula φ (as a
set of clauses) and an assignment τ : X → {0, 1}, where
X ⊆ Var(φ), the unit propagation of τ on φ, denoted φ|τ , is
recursively defined as follows:

φ|τ=



1 if φ ≡ 1

φ′|τ if ∃C ∈ φ s.t. φ′ = φ \ {C},
` ∈ C and τ(`) = 1

φ′|τ ∪ {C ′} if ∃C ∈ φ s.t. φ′ = φ′ \ {C},
¬` ∈ C,C ′ = C \ {¬`}
and (τ(`) = 1 or {l} ∈ φ)

Note that φ|τ always reaches a fixpoint. We say that τ unit
propagates to literal ` in φ if {`} ∈ φ|τ , i.e. if φ|τ has a unit
clause with the literal `.

Answer Set Programming. An answer set program P ex-
presses logical constraints between a set of propositional
variables. In the context of answer set programming, such
variables are also called atoms, and the set of atoms appear-
ing in P is denoted atoms(P ). For notational convenience,
we will henceforth use the terms “variable” and “atom” in-
terchangeably. A normal (logic) program is a set of rules of
the following form:

Rule r: a← b1, . . . , bm,∼ c1, . . . ,∼ cn (1)

In the above rule, ∼ denotes default negation, signifying
failure to prove (Clark 1978). For rule r shown above, atom
“a” is called the head of r and is denoted Head(r). Similarly,
the set of literals {b1, . . . , bm,∼ c1, . . . ,∼ cn} is called the
body of r. Specifically, {b1, . . . , bm} are the positive body
atoms, denoted Body(r)+, and {c1, . . . , cn} are the negative
body atoms, denoted Body(r)−. For purposes of the follow-
ing discussion, we use Body(r) to denote the conjunction
b1 ∧ . . . ∧ bm ∧ ¬c1 ∧ . . . ∧ ¬cn. Atoms that appear in the
head of a rule (like a in rule r above) have also been called
founded variables/atoms in the literature (Aziz et al. 2015).

In answer set programming, an interpretation M ⊆
atoms(P ) lists the true atoms, i.e., an atom a is true iff
a ∈M . An assignment M satisfies Body(r), denoted M |=
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Body(r), iff Body(r)+ ⊆M and Body(r)−∩M = ∅, where
∼ is interpreted classically, i.e., M |=∼ ci iff M 6|= ci.
The rule r (see Equation (1)) specifies that if all atoms
in Body(r)+ hold and no atom in Body(r)− holds, then
Head(r) also holds. The assignment M satisfies rule r, de-
noted M |= r, if and only if whenever M |= Body(r), then
Head(r) ∈ M . Let Rules(P ) denote the set of all rules in
a normal program P . Then, we say that an assignment M
satisfies P , denoted M |= P , if and only if M |= r for each
r ∈ Rules(P ).

Given an assignment (or set of atoms) M , the Gelfond-
Lifschitz (GL) reduct of a program P w.r.t. M is de-
fined as PM = {Head(r) ← Body(r)+ | r ∈
Rules(P ),Body(r)− ∩ M = ∅} (Gelfond and Lifschitz
1988). A set of atoms M is an answer set of P if and only
if M |= PM , but N 6|= PM for every proper subset N of
M . The set of all answer sets of program P is denoted by
AS(P ), and the answer set counting problem is to compute
|AS(P )|, which is denoted by CntAS(P ).

Clark’s completion (Clark 1978) or program completion
is a technique for obtaining a translation of a normal pro-
gram P into a related, but not semantically equivalent,
propositional formula Comp(P ). Specifically, for each atom
a ∈ atoms(P ), we do the following:
1. Let r1, . . . , rk ∈ Rules(P ) such that Head(r1) = . . . =

Head(rk) = a, then we add the propositional formula
(a↔ (Body(r1) ∨ . . . ∨ Body(rk))) to Comp(P ).

2. Otherwise, we add the literal ¬a to Comp(P ).
Finally, Comp(P ) is obtained as the logical conjunction of
all constraints added above. It has been shown in the litera-
ture that an answer set of P satisfies Comp(P ) but not vice
versa (Lin and Zhao 2004).

To overcome the above problem, the idea of loop for-
mula was introduced in (Lin and Zhao 2004). We outline
the construction of a loop formula below. Given a normal
program P , we start by defining the positive dependency
graph DG(P ) of P as follows. The vertices of DG(P ) are
simply atoms(P ). For a, b ∈ atoms(P ), there exists an
edge from b to a in DG(P ) if there is a rule r ∈ Rules(P )
such that a ∈ Body(r) and b = Head(r). A set of atoms
L ⊆ atoms(P ) constitutes a loop in P if for every two atoms
x, y ∈ L there is a path from x to y in DG(P ) such that all
atoms (nodes) on the path are in L. An atom a is called a
loop atom of P if there is a loop L in P such that a ∈ L.
We use Loops(P ) and LA(P ) to denote the set of all loops
and the set of all loop atoms of P , respectively. A program
P is called tight if there is no loop in P ; otherwise, P is
called non-tight. Lin and Zhao (Lin and Zhao 2004) showed
that atoms in a loop cannot be asserted true by themselves;
instead they must be asserted by some atoms external to the
loop. Specifically, a rule r is an external support of a loop L
in P if Head(r) ∈ L and Body(r)+∩L = ∅. Let ExtRule(L)
denote the set of all external supports of loop L in P . The
loop formula LF(L,P ) (Lee and Lifschitz 2003) of a loop L
in program P can now be defined as follows:

LF(L,P ) = (
∧
a∈L

a)→
∨

r∈ExtRule(L)

Body(r)

Finally, the loop formula LF(P ) of program P is defined as
the conjunction of loop formulas for all loops L in P , i.e.∧
L∈Loops(P ) LF(L,P ). Let M ⊆ atoms(P ) be a subset of

atoms of P . We use τM : atoms(P )→ {0, 1} to denote the
assignment corresponding to M , i.e. τM (v) = 1 if v ∈ M
and τM (v) = 0 otherwise, for all v ∈ atoms(P ). Then M
is an answer set of P if and only if τM satisfies the proposi-
tional formula Comp(P ) ∧ LF(P ) (Lin and Zhao 2004).

2.1 Related Work
The decision version of normal logic programs is NP-
complete; therefore, the ASP counting for normal logic
programs is #P-complete (Valiant 1979). Given the #P-
completeness, a prominent line of work focused on ASP
counting relies on translations from the ASP program to the
CNF formula (Lin and Zhao 2004; Janhunen 2004, 2006;
Janhunen and Niemelä 2011). Such translations often result
in a large number of CNF clauses and thereby limit practical
scalability for non-tight ASP programs. Eiter et al. (2021)
introduced TP -unfolding to break cycles and produce a tight
program. They proposed an ASP counter called aspmc,
that performs a treewidth-aware Clark completion from a
cycle-free program to the CNF formula. Jakl, Pichler, and
Woltran (2009) extended the tree decomposition based ap-
proach for #SAT due to Samer and Szeider (2007) to Answer
Set Programming and proposed a fixed-parameter tractable
(FPT) algorithm for ASP counting. Fichte et al. (2017; 2019)
revisited the FPT algorithm due to Jakl et al. and developed
an exact model counter, called DynASP, that performs well
on instances with low treewidth. Aziz et al. (2015) extended
a propositional model counter to an answer set counter by
integrating unfounded set detection. Kabir et al. (2022) fo-
cused on lifting hashing-based techniques to ASP count-
ing, resulting in an approximate counter, called ApproxASP,
with (ε, δ)-guarantees.

3 An Alternative Definition of Answer Set
Our algorithm for answer set counting crucially relies on an
alternative way of defining the answer sets of a normal pro-
gram P . We first introduce an operation called Copy() that
plays a central role in this alternative definition. Our Copy()
operation is related to, but not the same as, a similar op-
eration used in ASProblog. Specifically, founded variables
(i.e. variables appearing at the head of a rule) were the focus
of the copy operation used in ASProblog. In contrast, loop
atoms in the program P are the focus of the Copy() opera-
tion in our approach. We elaborate more on this below.

3.1 The Copy Operation
Given a normal program P , for every loop atom/variable v
in LA(P ), let v′ be a fresh variable not present in atoms(P ).
We refer to v′ as the copy variable of v. ForX ⊆ LA(P ), we
denote the set of copy variables corresponding to atoms inX
as X ′. The Copy() operation, when applied to a normal pro-
gram P , returns a set of (implicitly conjoined) implications,
defined as follows:
1. (type 1) for every v ∈ LA(P ), the implication v′ → v is

in Copy(P ).
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2. (type 2) for every rule x ← a1, . . . ak, b1, . . . bm,∼
c1, . . . ∼ cn in P , where x ∈ LA(P ), {a1, . . . ak} ⊆
LA(P ) and {b1, . . . bm} ∩ LA(P ) = ∅, the implication
a1
′ ∧ . . . ak′ ∧ b1 ∧ . . . bm ∧ ¬c1 ∧ . . .¬cn → x′ is in

Copy(P ).
3. No other implication is in Copy(P ).
Note that in implications of type 2, copy variables are used
exclusively for positive loop atoms in the body of the rule
and for the loop atom in the head of the rule. Specifically,
if the head of a rule is not a loop atom, we don’t add any
implication of type 2 for that rule. As an extreme case, if P
is a tight program or LA(P ) = ∅, then Copy(P ) is empty.

An Alternative Definition of Answer Set We now
present a key observation that provides the basis for an al-
ternative definition of answer sets. Akin to the existing def-
initions of answer set (Janhunen 2006; Giunchiglia, Lierler,
and Maratea 2006; Lifschitz 2010), our definition seeks jus-
tification for atoms within an answer set. However, our def-
inition seeks to justify only loop atoms belonging to an an-
swer set, while the existing definitions, to the best of our
knowledge, aim to justify each atom in an answer set. The
alternative definition derives from the observation that un-
der Clark’s completion of a program, if the loop atoms of an
answer set are justified, then the remaining atoms of the an-
swer set are also justified. Thus, under Clark’s completion,
it suffices to seek justifications for loop atoms. Unlike exist-
ing definitions of answer sets, our definition of answer sets
operates exclusively within the realm of Boolean formulas
and employs unit propagation as a tool to decide whether an
atom is justified or not.

Recall from Section 2 the definition of φ|τ , i.e. unit prop-
agation of an assignment τ on a CNF formula φ. Recall also
that a CNF formula can be viewed as a set of clauses, where
each clause can be interpreted as an implication. Therefore,
the set of implications Copy(P ) can be thought of as repre-
senting a CNF formula. For an assignment τ : X → {0, 1}
where X ⊆ atoms(P ), we use the notation Copy(P )|τ to
denote the (implicitly conjoined) set of implications that re-
main after unit propagating τ on the CNF formula repre-
sented by Copy(P ). Specifically, we say that Copy(P )|τ =
∅ if τ unit propagates to only unit clauses on copy variables
in the CNF formula represented by Copy(P ).
Theorem 1. For a normal program P , let X ⊆ atoms(P )
and let τ : X 7→ {0, 1} be an assignment. Let Mτ denote
the set of atoms of P that are assigned 1 by τ . Then Mτ ∈
AS(P ) if and only if τ |= Comp(P ) and Copy(P )|τ= ∅.

Proof. (i) (proof of ‘if part’) Proof By Contradiction. As-
sume that τ |= Comp(P ) and Copy(P )|τ= ∅, but Mτ 6∈
AS(P ). Since Mτ 6∈ AS(P ) and τ |= Comp(P ), it im-
plies that τ 6|= LF(P ). Thus, there is a loop L in P such
that τ 6|= LF(L,P ). Assume that L is comprised of the set
of loop atoms {x1, . . . , xk }. Then τ 6|= x1 ∧ . . . ∧ xk →∨
r∈ExtRule(L) Body(r). In other words, even if τ is aug-

mented by setting x1 = . . . = xk = 1, the formula∨
r∈ExtRule(L) Body(r) evaluates to 0 under the augmented

assignment. Now recall that τ itself is an assignment to a
subset of atoms(P ), and it does not assign any truth value

to x1′, . . . , xk′. Therefore, there must be at least one type 2
implication in Copy(P )|τ , specifically one arising from a
rule r ∈ ExtRule(L), that does not unit propagate to a unit
clause or to 1 under τ . This contradicts the premise that
Copy(P )|τ= ∅.

(ii) (proof of ‘only if part’) Proof By Contradiction.
Suppose Mτ ∈ AS(P ). We know that this implies τ |=
Comp(P )∧ LF(P ). We now show that in this case, we must
also have Copy(P )|τ= ∅. Suppose, if possible, Copy(P )|τ 6=
∅. We ask if an implication of type 1, say v′ → v, can
stay back in Copy(P )|τ . If v ∈ Mτ , then τ(v) = 1,
and clearly the implication v′ → v doesn’t stay back in
Copy(P )|τ . If v 6∈ Mτ , then τ(v) = 0, and in this case τ
unit propagates to {¬v′}, and hence the implication doesn’t
stay back in Copy(P )|τ either. Therefore, no implication of
type 1 can stay back in Copy(P )|τ . Next, we ask if any im-
plication of type 2 can stay back in Copy(P )|τ . Suppose
this is possible. Note that for every v ∈ atoms(P ), either
v ∈ Mτ or v 6∈ Mτ . Therefore, τ(v) is either 0 or 1 for all
v ∈ atoms(P ). Therefore, if Copy(P )|τ 6= ∅, there must be
some x1′ ∈ Var(Copy(P )|τ ) and there must a (potentially
simplified) implication x2′∧C1 → x1

′ in Copy(P )|τ , where
C1 is either true or a conjunction of copy variables. The ex-
istence of copy variable x2′ in Copy(P )|τ implies the exis-
tence of another implication: x3′∧C2 → x2

′ in Copy(P )|τ .
Continuing this argument, we find that there are two cases
to handle: (i) there are an unbounded number of copy vari-
ables in Copy(P )|τ , which contradicts the fact that there can
be at most |Var(P )| copy variables. (ii) otherwise, there ex-
ists i, j such that xi′ = xj

′ and i < j, which implies that
the set of variables {xi, . . . xj−1 } constitutes an unfounded
set. However, this contradicts the fact that Mτ ∈ AS(P ). In
either case, we reach a contradiction, thereby proving that
Copy(P )|τ is empty. This completes the proof.

Example 1. Consider the normal program P given by the
rules {r1 = a←∼ b. r2 = b←∼ a. r3 = c← a, b. r4 =
c← d. r5 = d← a. r6 = d← b, c. r7 = e←∼ a,∼ b}.
This program has a single loop L consisting of atoms c and
d, i.e. LA(P ) = {c, d}. Therefore, Copy(P ) consists of the
conjunction of implications: { c′ → c, d′ → d, a ∧ b →
c′, d′ → c′, a → d′, b ∧ c′ → d′ }. Note that there are no
variables a′, b′, e′ or constraints involving them in Copy(P ).
The followings are now easily verified.
• Consider τ1 that assigns 1 to b and 0 to a, c, d, e. For the

corresponding answer set Mτ1 : { b }, Copy(P )|τ1= ∅
• Consider τ2 assigns 1 to a, c, d and 0 to b, e. For the cor-

responding answer set Mτ2 : { a, c, d }, Copy(P )|τ2= ∅
• Consider τ3 that assigns 1 to b, c, d and 0 to a, e.

For the corresponding non-answer set Mτ3 : { b, c, d },
Copy(P )|τ3 6= ∅

4 Counting Answer Sets
In this section, we first show how the alternative definition
of answer sets provides a new way to counting all answer
sets of a given normal program. Subsequently, we explore
how off-the-shelf state-of-the-art propositional model coun-
ters can be easily adapted to correctly count answer sets by
leveraging the alternative definition.
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It is easy to see from Theorem 1 that the count of answer
sets of a normal programP can be obtained simply by count-
ing assignments τ ∈ 2|atoms(P )| such that τ |= Comp(P )
and Copy(P )|τ= ∅. This motivates us to represent a normal
program P using a pair (F , G), where F = Comp(P ) and
G = Copy(P ). Further, we discuss below how key ideas in
state-of-the-art propositional model counters can be adapted
to work with this pair representation of normal programs to
yield exact answer set counters.

4.1 Decomposition
Propositional model counters often decompose the input
CNF formula into disjoint subformulas to boost up the
counting efficiency (Bayardo Jr and Pehoushek 2000) – for
two formulas φ1 and φ2, if Var(φ1) ∩ Var(φ2) = ∅, then
φ1 and φ2 are decomposable, i.e., we can count the number
of models of φ1 and φ2 separately and multiply these two
counts to get the number of models of φ1 ∧ φ2.

Given a normal program, our proposed definition involves
a pair of formulas: F and G. Specifically, we define compo-
nent decomposition with respect to (F,G) as follows:

Definition 1. (F1 ∧ F2, G1 ∧ G2) is decomposable to
(F1, G1) and (F2, G2) if and only if (Var(F1)∪Var(G1))∩
(Var(F2) ∪ Var(G2)) = ∅.

Finally, Proposition 1 offers evidence supporting the cor-
rectness of our proposed definition of decomposition in
computing the number of answer sets.

Proposition 1. Let (F1∧. . . Fk, G1∧. . . Gk) is decomposed
to (F1, G1), . . . , (Fk, Gk) then CntAS(F1 ∧ . . . Fk, G1 ∧
. . . Gk) = CntAS(F1, G1)× . . .CntAS(Fk, Gk)

Proof. By definition of decomposition, we know that
(Var(Fi)∪Var(Gi))∩(Var(Fj)∪Var(Gj)) = ∅, for 1 ≤ i <
j ≤ k. This, in turn, implies that Var(Gi) ∩ Var(Gj) = ∅
for 1 ≤ i < j ≤ k. Therefore, no variable (copy variable
or otherwise) is common in Gi and Gj , if i 6= j. Hence, for
every assignment τ : atoms(P ) → {0, 1}, unit propagation
of τ on Gi and Gj must happen completely independent of
each other, i.e. no unit literal obtained by unit propagation of
τ on Gi affects unit propagation of τ on Gj , and vice versa.
In other words, Gi|τ∧Gj |τ= (Gi ∧Gj)|τ .

Let F = F1 ∧ . . . Fk and G = G1 ∧ . . . Gk. In
the following, we use the notation τ to denote an assign-
ment atoms(P ) → {0, 1}, and τi to denote an assignment
atoms(P ) ∩ (Var(Fi) ∪ Var(Gi))→ {0, 1}, for 1 ≤ i ≤ k.
By virtue of the argument in the previous paragraph, the
domains of τi and τj are disjoint for 1 ≤ i < j ≤ k.
We use the notation τ1 ∪ . . . τk to denote the assignment
atoms(P ) → {0, 1} defined as follows: if v ∈ atoms(P ) ∩
(Var(Fi) ∪ Var(Gi)), then (τ1 ∪ . . . τk)(v) = τi(v). The
proof now consists of showing the following two claims:

1. CntAS(F1, G1)× · · ·CntAS(Fk, Gk) ≥ CntAS(F,G).
2. CntAS(F1, G1)× · · ·CntAS(Fk, Gk) ≤ CntAS(F,G).

Proof of part 1: Suppose τ ∈ AS(F,G). By definition,
τ |= F and G|τ= ∅. Since F = F1 ∧ . . . Fk, we know
that τ |= Fi for 1 ≤ i ≤ k. By the above definition of

τi, it then follows that τi |= Fi. Similarly, since unit prop-
agation of τ on Gi and Gj happen independently for all
i 6= j, and since unit propagation of τ on G = G1 ∧ . . . Gk
gives ∅, we have Gi|τi= ∅ as well. It follows that τi ∈
AS(Fi, Gi) for 1 ≤ i ≤ k. Therefore, every τ ∈ AS(F,G)
yields a sequence of τi ∈ AS(Fi, Gi), for 1 ≤ i ≤ k.
Since the domains of all τi’s are distinct, it follows that
CntAS(F1, G1)× · · ·CntAS(Fk, Gk) ≥ CntAS(F,G).
Proof of part 2: Suppose τi ∈ AS(Fi, Gi) for 1 ≤ i ≤ k.
By definition, τi |= Fi and Gi|τi= ∅. Since the domains of
τi and τj are disjoint for all 1 ≤ i < j ≤ k, it follows that
(τ1 ∪ . . . τk) |= (F1 ∧ . . . Fk) and hence τ |= F . We have
also seen that (G1∧· · ·Gk)|τ= (G1|τ∧ · · ·Gk|τ ). However,
since Var(Gi) is a subset of the domain of τi, we have (G1∧
· · ·Gk)|τ= (G1|τ1∧ · · ·Gk|τk). SinceGi|τi= ∅ for 1 ≤ i ≤
k, it follows that (G1 ∧ · · ·Gk)|τ= ∅. Therefore G|τ= ∅.
Since τ |= F as well, we have τ ∈ AS(F,G). Therefore,
every distinct sequence of τi, 1 ≤ i ≤ k such that τi ∈
AS(Fi, Gi) yields a distinct τ ∈ AS(F,G). It follows that
CntAS(F1, G1)× · · ·CntAS(Fk, Gk) ≤ CntAS(F,G).
It follows from the above two claims that

CntAS(F1, G1)× · · ·CntAS(Fk, Gk) = CntAS(F,G).

One of the drawbacks of the definition is its comparative
weakness in relation to the conventional definition of de-
composition. When dealing with a hard-to-decompose pro-
gram (F,G), then the process of counting answer sets re-
gresses to enumerating the answer sets of the program.

4.2 Determinism
Propositional model counters utilize determinism (Darwiche
2002), which involves assigning one of the variables in a
formula to either false or true. The number of models of φ
is then determined as the sum of the number of models in
which a variable x ∈ Var(φ) is assigned to false and true. A
similar idea can be used for answer set counting using our
pair representation as well. To establish the correctness of
the determinism employed in our approach, we first intro-
duce two helper propositions: Proposition 2 and 3.

Proposition 2. For partial assignment τ and program P
represented as (Comp(P ),Copy(P )), if Comp(P )|τ= ∅
and ∅ ⊂ Var(Copy(P )|τ ) ⊆ CopyVar(P ), then ∃L ∈
Loops(P ) s.t. L ⊆Mτ and τ 6|= LF(L,P ).

Proof. Since ∅ ⊂ Var(Copy(P )|τ ) ⊆ CopyVar(P ), there
exists a copy variable xi1

′ ∈ Var(Copy(P )|τ ) and an im-
plication (simplified after unit propagation) of type 2 of
the form C1 → xi1

′ in Copy(P )|τ , where C1 is a non-
empty conjunction of copy variables. Let xi2

′ ∈ Var(C1),
then there must also exist another implication (simplified af-
ter unit propagation) C2 → xi2

′ in Copy(P )|τ , where C2

is again a conjunction of copy variables. Accordingly, for
xi3 ∈ Var(C2)\Var(C1), we have another implication of the
form C3 → xi3

′ in Copy(P )|τ . Since the number of atoms
is bounded, it must be the case that there exists ik such that
there is an implication (simplified) of type 2 Ck → xk

′ such
that Ck \ (C1 ∪ C2 . . . Ck−1) = ∅.
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Now, observation Ck \ (C1 ∪ C2 . . . Ck−1) = ∅ im-
plies existence of an atom set L = {xi1 , xi2 , . . . xij} ⊆
{xi1 , xi2 , . . . xik} that forms a loop in DG(P ). Given that
Var(Copy(P )|τ ) ⊆ CopyVar(P ), we also know that τ as-
signs a value to every x ∈ Var(Copy(P )) ∩ atoms(P ). Fur-
thermore, each of the atoms xi1 , . . . xik must have been as-
signed 1 by τ . Otherwise, if any xil was assigned 0 by τ ,
then τ would have unit propagated on Copy(P )|τ to ¬x′il ,
which contradicts the observation that the copy variables
x′i1 , . . . x

′
ik

stayed backed in antecedents of implications of
type 2 in Copy(P )|τ . It follows that atoms in loop L form a
subset of atoms assigned 1 by τ .

We have shown above that {xi1 , xi2 , . . . xij} constitutes
a loop in the positive dependency graph. We now show by
contradiction that τ 6|=

∨
r∈ExtRule(L) Body(r). Indeed, if

τ |=
∨
r∈ExtRule(L) Body(r), let xit be Head(r) for a rule r

such that τ |= Body(r). In this case, τ must have unit prop-
agated to {x′it} in Copy(P )|τ . This contradicts the fact that
the copy variables x′i1 , . . . x

′
ik

stayed backed in antecedents
of implications of type 2 in Copy(P )|τ .

Therefore τ |= xi1 ∧ . . . xij but τ 6|=∨
r∈ExtRule(L) Body(r). This shows that τ 6|= LF(L,P ).

Proposition 3. For partial assignment τ and program
P represented as (Comp(P ),Copy(P )), suppose τ 6|=
LF(L,P ), where L = {x1, . . . , xk}. Then there ex-
ists τ+ such that {x1′, . . . , xk′} ⊆ Var(Copy(P )|τ+),
Comp(P )|τ+= ∅ and τ ⊆ τ+.

Proof. As τ 6|= LF(L,P ), we have ∀xi ∈ L, τ(xi) = 1 and
∀r ∈ ExtRule(L), τ 6|= Body(r). Let us denote by r′ an im-
plication of type 2 corresponding to a rule r ∈ ExtRule(L).
Then we have r′|τ 6= ∅; moreover, if Head(r) = xi, then
xi
′ ∈ Var(r|τ ). Since the above observation holds for all

r ∈ ExtRule(L) and for xi ∈ L, therefore, {x1′, . . . , xk′} ⊆
Var(Copy(P )|τ ). Observe that for every extension τ ′ of τ
that does not assign values to variables in {x1′, . . . , xk′}, it
must be the case that {x1′, . . . , xk′} ⊆ Var(Copy(P )|τ ′).
Furthermore, since the set of variables in Comp(P ) does
not contain a variable from the set {x1′, . . . , xk′}, therefore,
there exists an extension, τ+, of τ such that Comp(P )|τ+=
∅ and {x1′, . . . , xk′} ⊆ Var(Copy(P )|τ ′).

We are now ready to state and prove the correctness of de-
terminism employed in our ASP counter:

Proposition 4. Let program P be represented as (F,G).
Then

CntAS(F,G) = CntAS(F |¬x, G|¬x) + CntAS(F |x, G|x),
for all x ∈ atoms(P ) (2)

CntAS(⊥, G) = 0 (3)

CntAS(∅, G) =
{
1 if G = ∅
0 if Var(G) ⊆ CopyVar(P )

(4)

Note that if Comp(P ) = ∅ then either G = ∅ or ∅ ⊂
Var(G) ⊆ CopyVar(P ).

Proof. The proof comprises the following three parts:

Equation (2) applies determinism by partitioning all an-
swer sets of (F,G) into two parts – the answer sets where x
is 0 and 1, respectively. Observe that performing unit propa-
gation on (F,G) is valid since τ ∈ AS(F |σ, G|σ) if and only
if σ ∪ τ ∈ AS(F,G), where σ ∈ 2|X|, τ ∈ 2|atoms(P )\X|,
where X ⊆ atoms(P ).

The proof of the first base case eq. (3) is trivial. Each an-
swer set of P conforms to the completion of the program
Comp(P ), where, according to the alternative definition of
answer sets, F = Comp(P ).

We utilize the helper propositions proved earlier to
demonstrate the correctness of the second base case, as out-
lined in eq. (4), which appropriately selects answer sets from
the models of completion. First, we show that if there is a
copy variable in Copy(P )|τ , where Comp(P )|τ= ∅, then
one of the loop formulas of the program is not satisfied by τ .
The claim is proved in Proposition 2. Thus, τ cannot be ex-
tended to an answer set. Second, we demonstrate that if there
is an unsatisfied loop formula under a partial assignment
τ1, then there exists τ+1 such that some copy variables are
not propagated in Copy(P )|τ+

1
, where Comp(P )|τ+

1
= ∅ and

τ1 ⊆ τ+1 . The claim is established in Proposition 3. Thus,
through the method of contradiction, we can infer that, for
an assignment τ , if Copy(P )|τ= ∅, then τ can be extended
to an answer set.

4.3 Conjoin F and G
Until now, we have represented a program P as a pair of
formulas F andG. However, in this subsection, we illustrate
that rather than considering the pair, we can regard their con-
junction F ∧G, and all the subroutines of model counting al-
gorithms work correctly. First, in Proposition 5, we demon-
strate that F ∧ G uniquely defines a program (F,G) under
arbitrary partial assignments.
Proposition 5. For two assignments τ1 and τ2, and given
a normal program, F |τ1∧G|τ1= F |τ2∧G|τ2 if and only if
F |τ1= F |τ2 and G|τ1= G|τ2
Proof. (i) (proof of ‘if part’) The proof is trivial.

(ii) (proof of ‘only if part’) Proof By Contradiction. As-
sume that there is a clause c ∈ F |τ1 and c 6∈ F |τ2 . As
F |τ1∧G|τ1= F |τ2∧G|τ2 clause c ∈ G|τ2 . As c ∈ F |τ1 ,
c has no copy variable. Assume that clause c is derived
from the unit propagation of Copy(r), i.e., c = Copy(r)|τ2=
a1
′∧. . .∧ak′∧b1∧. . .∧bm∧¬c1∧. . .∧¬cn → x′|τ2 , where
∀i, ai′ propagates to 1 and x′ propagates to 0, which follows
that under assignment τ2, the atom x is assigned to 0 and
∀i, ai is assigned to 1. The rule r also belongs to Comp(P )
and both F |τ1 and F |τ2 are derived from Comp(P ). Thus,
under assignment τ2, if x is assigned to 0 and each of the
ai’s is assigned to 1, then the clause c ∈ F |τ2 , which must
be derived from rule r, so contradiction.

As a result, it is possible to perform unit propagation on
F ∧ G instead of performing unit propagation on F and G
separately. Although both formulas F and G are necessary
to check the base cases, we can still check base cases by con-
sidering the conjunction F ∧G. Checking the first base case
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(eq. (3)) is trivial because if an assignment τ conflicts on F ,
then τ conflicts on F ∧G as well. Additionally, calculating
Var(F ∧G) suffices to check the second base case (eq. (4)).
The component decomposition part also works with their
conjunction because the component decomposition condi-
tion (Var(F1) ∪ Var(G1)) ∩ (Var(F2) ∪ Var(G2)) = ∅ is
equivalent to (Var(F1 ∧G1))∩ (Var(F2 ∧G2)) = ∅. More-
over, as we restrict our decision to atoms(P ), the conjunc-
tion F ∧ G does not introduce new conflicts — if a par-
tial assignment τ conflicts on F ∧ G, then τ conflicts on
F . To summarize, the model counting algorithm correctly
computes the answer set count, even when processing the
formula F ∧ G instead of processing the two formulas F
and G separately.

4.4 sharpASP: Putting It All Together
In this subsection, we aim to extend a propositional model
counter to an exact answer set counter by integrating the
alternative answer set definition, component decomposition
(Proposition 1), and determinism (Equation (2)).

Algorithm 1: sharpASP(P )

1: function Counter(φ,CV ) . modified CNF counter
2: if φ = ∅ then return 1
3: else if Var(φ) ⊆ CV then return 0
4: else if ∅ ∈ φ then return 0

5: v← PickNonCopyVar(φ)
6: for `← {v,¬v} do
7: Count[`]← 1
8: comps← Decomposition(φ|`)
9: for each c ∈ comps do

10: if c ∈ Cache then
11: Count[`]← Count[`]× Cache[c]
12: else
13: Count[`]← Count[`]×Counter(c, CV )

14: if Count[`] = 0 then
15: break
16: Cache[φ]← Count[v] + Count[¬v]
17: return Cache[φ]
18: end function
19: F ← Comp(P ), G← Copy(P ) . Algorithm starts here
20: return Counter(F ∧G,CopyVar(P ))

The pseudocode for sharpASP is presented in Algo-
rithm 1. Given a non-tight program P , sharpASP ini-
tially computes Comp(P ) and Copy(P ) (Line 19 of Al-
gorithm 1) and then calls the adapted propositional model
counter Counter, with Comp(P ) ∧ Copy(P ) as the input
formula, and CopyVar(P ) as the set of copy variables (Line
20 of Algorithm 1). The model counting algorithm utilizes
CopyVar(P ) to check the base cases (Equation (3) and (4))
of the Equation (2).

The Counter differs from the existing propositional model
counters mainly in two ways. Firstly, following eq. (4), the
Counter returns 0 if it encounters a component consisting
solely of copy variables (Line 3 of Algorithm 1). Secondly,
during variable branching, Counter selects variables from

Var(Comp(P )) (Line 5 of Algorithm 1). Apart from that,
the subroutines of unit propagation, component decomposi-
tion (Line 8 of Algorithm 1), and caching1 (Line 10 of Algo-
rithm 1) within Counter and a propositional model counter
remain unchanged.

While sharpASP uses copy variables and copy opera-
tions similar to ASProblog, there are notable distinctions
between the two approaches. Firstly, sharpASP aims to jus-
tify only loop atoms, whereas the ASProblog algorithm aims
to justify all founded variables. Our empirical findings un-
derscore that loop atoms constitute a relatively small sub-
set of the founded variables. Consequently, the copy op-
eration of ASProblog introduces more copy variables and
logical implications involving copy variables compared to
ours. Secondly, the unit propagation techniques employed
in ASProblog differ from those used in sharpASP. Specif-
ically, ASProblog performs unit propagation by propagat-
ing only the justified literals from a program while leaving
the unjustified literals in the residual program. In contrast,
sharpASP adheres to the conventional unit propagation tech-
nique and employs copy variables to determine whether all
atoms are justified.

5 Experimental Evaluation
We developed a prototype2 of sharpASP on top of the ex-
isting state-of-the-art model counters (GANAK, D4, and
SharpSAT-TD) (Korhonen and Järvisalo 2021; Sharma et al.
2019; Lagniez and Marquis 2017). We modified SharpSAT-
TD by disabling all the preprocessing techniques, as they
would no longer preserve answer sets. We use notations
sharpASP(STD), sharpASP(G), and sharpASP(D) to repre-
sent sharpASP with underlying propositional model coun-
ters SharpSAT-TD, GANAK, and D4, respectively.

We compared the performance of sharpASP with that of
the prior state-of-the-art exact ASP counters: clingo3 (Geb-
ser et al. 2007), ASProblog (Aziz et al. 2015), and Dy-
nASP (Fichte et al. 2017). In addition, we utilized two trans-
lations from ASP to SAT: (i) lp2sat (Fages 1994; Janhunen
and Niemelä 2011; Bomanson 2017) (ii) aspmc (Eiter,
Hecher, and Kiesel 2021), followed by invoking off-
the-shelf propositional model counters. We use notations
lp2sat+X and aspmc+X to denote lp2sat and aspmc followed
by propositional model counter X, respectively.

Our benchmark suite consists of non-tight programs from
the domains of the Hamiltonian cycle and graph reachability
problems (Kabir et al. 2022; Aziz et al. 2015). We also con-
sidered the benchmark set from (Eiter, Hecher, and Kiesel
2021) (designated as aspben). We gathered a total of 1470
graph instances from the benchmark set of (Kabir et al.
2022; Eiter, Hecher, and Kiesel 2021). The choice/random
variables in the hamiltonian cycle and aspmc benchmark
pertain to graph edges. While the choice variables are asso-
ciated with graph nodes for the graph reachability problem.

1Model counter stores the count of previously solved subfor-
mulas by a caching mechanism to avoid recounting.

2Available at https://github.com/meelgroup/sharpASP
3clingo counts answer sets via enumeration.
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We ran experiments on a high-performance computer
cluster, where each node consists of AMD EPYC 7713
CPUs running with 128 real cores. The runtime and memory
limit were set to 5000 seconds and 8GB, respectively.

5.1 Runtime Performance Comparison
The performance of our considered counters varies across
different computational problems. Our evaluation of their
performance, considering both total solved instances and
PAR2 scores4, for each computational problem is detailed
in Table 1. The table demonstrates that sharpASP either out-
performs or achieves performance on par with existing ASP
counters, particularly for the Hamiltonian cycle and graph
reachability problems. However, on aspben, the clingo enu-
meration outperforms other answer set counters.

We observed that clingo demonstrates superior perfor-
mance, particularly on instances with a limited number
of answer sets. Since this observation applies to all non-
enumeration based counters in our repertoire, we devised
a hybrid counter that combines the strengths of enumera-
tion based counting with that of translation and proposi-
tional SAT based counting. Based on data collected from
runs of clingo, there is a shift in the runtime performance of
clingo when the count of answer sets exceeds 105 (within
our benchmarks). To ensure that our experiments can be
replicated on different platforms, we chose to use an answer
set count-based threshold instead of a time-based threshold.
Hence, our hybrid counter is structured as follows: it initi-
ates enumeration with a maximum of 105 answer sets. In
cases where not all answer sets are enumerated, the hybrid
counter then employs an ASP counter with a time limit of
5000 − t seconds, where t is the time spent in clingo. The
performance of the hybrid counters is tabulated in Table 2,
demonstrating that the hybrid counter based on sharpASP
clearly outperforms competitors by a handsome margin.

5.2 Ablation Study
We now delve into the internals, and to this end,
we form two groups of benchmarks – Group 1: in-
stances where sharpASP(STD) runs faster than lp2sat+STD
and aspmc+STD, which highlights the scenarios where
the sharpASP(STD) algorithm is more efficient than
lp2sat+STD and aspmc+STD; and Group 2: instances
where lp2sat+STD and aspmc+STD run faster than
sharpASP(STD), which shows the opposite scenario of
Group 1. Each group consists of 10 instances that had more
than 105 answer sets, and therefore clingo could not enumer-
ate all answer sets. By running the instances on all versions
of SharpSAT-TD, we record the time spent on the procedure
binary constraint propagation (BCP), number of decisions,
and cache hit rate for each counter. Taking each group’s av-
erage of each quantity provides a clear and concise way to
see how sharpASP compares with others on average across
all benchmarks. The statistical findings across all counters
are visually summarized in Figure 1.

4PAR2 is a penalized average runtime that penalizes two times
the timeout for each unsolved benchmarks.

The strength of sharpASP lies in its ability to minimize
the time spent on binary constraint propagation (BCP) com-
pared to other counters. The significantly large formula size
increases the overhead for BCP in the case of lp2sat+STD
and aspmc+STD. However, we also observe that sharpASP
suffers from high overhead in the branching phase and high
cache misses on Group 2 instances. To find out the reason for
a higher number of decisions, we analyze the decomposibil-
ity of Group 1 and Group 2 instances.

Our investigation has shown that, on all variants of
SharpSAT-TD, most instances of Group 1 start decomposing
at nearly the same decision levels. Thus, sharpASP(STD)
outperforms on Group 1 instances due to spending less time
on BCP. We observed that several instances of Group 1 took
comparatively more decisions to make to count the number
of answer sets on sharpASP(STD). One possible explana-
tion is that aspmc+STD and lp2sat+STD assign auxiliary
variables, which have higher activity scores compared to
original ASP program variables. Assigning auxiliary vari-
ables facilitates lp2sat+STD and aspmc+STD by assign-
ing fewer variables. However, sharpASP(STD) outperforms
others due to structural simplicity and low-cost BCP.

Our investigation has also revealed that Group 2 instances
are hard-to-decompose on sharpASP(STD) compared to
other counters – necessitating more variable assignments
to break down an instance into disjoint components. Since
sharpASP(STD) assigns the original set of variables; it ne-
cessitates a larger number of decisions to count answer sets
on hard-to-decompose instances compared to aspmc and
lp2sat based counters. Moreover, the structure of hard-to-
decompose instances also worsens the cache performance
of sharpASP. However, lp2sat+STD and aspmc+STD effec-
tively decompose the input formula by initially assigning
auxiliary variables.

In light of these findings, it is evident that the perfor-
mance of sharpASP is critically reliant on the decompos-
ability of input instances and the variable branching heuristic
employed. Notably, sharpASP demonstrates superior perfor-
mance when applied to structurally simpler input instances.
If a variable branching heuristic effectively decomposes
the input formula by assigning variables within the ASP
programs, sharpASP outperforms alternative ASP counters.
Conversely, when the input formula’s decomposability is
hindered, alternative approaches involving the introduction
of auxiliary variables prove to be more advantageous.

6 Conclusion
Our approach, called sharpASP, lifts the component
caching-based propositional model counting to ASP count-
ing without incurring a blowup in the size of the result-
ing formula. The proposed approach utilizes an alternative
definition for answer sets, which enables the natural lifting
of decomposability and determinism. Empirical evaluations
show that sharpASP and its corresponding hybrid solver can
handle a greater number of instances compared to other tech-
niques. As a future avenue of research, we plan to investigate
extensions of our approach in the context of disjunctive pro-
grams.
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aspmc lp2sat sharpASP
clingo ASProb DynASP D G STD D G STD D G STD

Hamil.
(405) 230 0 0 173 197 167 135 164 112 238 261 300

Reach.
(600) 318 149 2 187 288 421 317 471 167 293 458 463

aspben
(465) 321 39 208 278 285 252 278 193 193 282 273 260

Total
(1470)

869
(4285)

188
(8722)

210
(8571)

638
(5829)

770
(5015)

840
(4572)

730
(5282)

668
(5734)

776
(5082)

813
(4514)

992
(3473)

1023
(3372)

Table 1: The performance comparison of sharpASP vis-a-vis other ASP counters on different problems in terms of number of
solved instances and PAR2 scores.

(a) Time spent in BCP (seconds) (b) Number of decisions (10-base log). (c) Cache hit (percentage).

Figure 1: The ablation study of sharpASP(STD), lp2sat+STD, and aspmc+STD on Group 1 and Group 2 benchmarks.

clingo (≤ 105) +

clingo ASProb
aspmc
+STD

lp2sat
+STD

sharpASP
(STD)

Hamil.
(405) 230 123 167 128 302

Reach.
(600) 318 152 418 470 460

aspben
(465) 321 278 284 297 300

Total
(1470)

869
(4285)

553
(6239)

869
(4310)

895
(4205)

1062
(3082)

Table 2: The performance comparison of hybrid counters in
terms of number of solved instances and PAR2 scores. The
hybrid counters correspond to last 4 columns that employ
clingo enumeration followed by ASP counters. The clingo
(2nd column) refers to clingo enumeration for 5000 seconds.
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