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Abstract

Video grounding aims to locate a moment of interest match-
ing the given query sentence from an untrimmed video. Pre-
vious works ignore the sparsity dilemma in video annota-
tions, which fails to provide the context information between
potential events and query sentences in the dataset. In this
paper, we contend that exploiting easily available captions
which describe general actions, i.e., auxiliary captions de-
fined in our paper, will significantly boost the performance.
To this end, we propose an Auxiliary Caption Network (AC-
Net) for video grounding. Specifically, we first introduce
dense video captioning to generate dense captions and then
obtain auxiliary captions by Non-Auxiliary Caption Suppres-
sion (NACS). To capture the potential information in auxil-
iary captions, we propose Caption Guided Attention (CGA)
project the semantic relations between auxiliary captions and
query sentences into temporal space and fuse them into visual
representations. Considering the gap between auxiliary cap-
tions and ground truth, we propose Asymmetric Cross-modal
Contrastive Learning (ACCL) for constructing more negative
pairs to maximize cross-modal mutual information. Exten-
sive experiments on three public datasets (i.e., ActivityNet
Captions, TACoS and ActivityNet-CG) demonstrate that our
method significantly outperforms state-of-the-art methods.

Introduction
Video grounding (Gao et al. 2017; Zhang et al. 2020; Wang
et al. 2022b; Cao et al. 2022a; Mun, Cho, and Han 2020;
Anne Hendricks et al. 2017; Cao et al. 2022b; Zhang et al.
2022; Cao et al. 2023; Li et al. 2023) aims to identify the
timestamps semantically corresponding to the given query
within the untrimmed videos. It remains a challenging task
since it needs to not only model complex cross-modal inter-
actions, but also capture comprehensive contextual informa-
tion for semantic alignment.

Currently, due to the costly labeling process, the anno-
tations of existing video grounding datasets (Krishna et al.
2017; Regneri et al. 2013) are sparse, i.e., only a few ac-
tions are annotated despite the versatile actions within the
video. For example in Figure 1, the video from ActivityNet
Captions (Krishna et al. 2017) dataset lasts for 218 seconds
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Q1: A woman braids her hair slowly.
Q2: She then ties the braids together
and ties the end together.

D4: The woman finishes 
and smiles at the end.

D2: She then ties the braid on the side of 
the hair and ends by looking away.

D1: She holds a bottle. D3: She takes out a rubber band.

0.0s 77.31s 113.25s 217.78s

Figure 1: The sparse annotation dilemma in video ground-
ing. The annotated captions (marked by green) in the dataset
are sparse while there still exist many uncovered captions
(marked by red). This 218-second video from ActivityNet
Captions with 2 annotations.

and only 2 moment-sentence pairs (marked by green) are
annotated. Previous methods ignore the presence of these
unlabeled action instances (marked by red) associated with
the query, which will facilitate the grounding. As shown in
Figure 1, the missing D3 contains the process of “take
out a rubber band”, which is preparatory for the ac-
tion “tie the braids” in the queried sentence Q2.

However, it is labor-intensive to manually annotate all ac-
tions in the video. Recently end-to-end dense video caption-
ing (DVC) (Krishna et al. 2017; Li et al. 2018; Suin and Ra-
jagopalan 2020; Wang et al. 2021), which combines event
localization and video captioning together, has achieved sat-
isfactory advances. A straightforward solution is to resort
to dense video captioning for plausible caption generation.
Intuitively, we can incorporate the DVC generated captions
as a data augmentation (DA) strategy into the video ground-
ing training. This simple solution, however, suffers from two
inherent weaknesses: (1) The generated dense captions of
timestamps and sentences may be rough and unreliable. (2)
There may be overlaps between dense captions and ground
truth. The incorrect caption of the ground truth moment will
cause the model to learn incorrect information from training
samples. Experimentally, we implement this data augmenta-
tion idea on two representative methods (i.e., MMN (Wang
et al. 2022b) and 2D-TAN (Zhang et al. 2020)). The exper-
imental results on ActivityNet Captions dataset are shown
in Figure 2. We have seen that directly using such data aug-
mentation leads to performance degradation. For example,
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Figure 2: Performance comparison with ACNet and two
representative models (Wang et al. 2022b; Zhang et al.
2020) with dense caption data augmentation (w/ DA) on
ActivityNet Captions. lc denotes the number of additional
moment-sentence pairs per video.

when using 10 additional dense captions, the performance
drops by 1.01% in 2D-TAN.

Despite this intuitive data augmentation does not achieve
improvements, we still argue that these dense descriptions
contain beneficial information for video grounding. In this
paper, we first generate several dense captions from the
input video using the off-the-shelf dense video captioning
model. To improve the reliability of the generated captions,
we propose Non-Auxiliary Caption Suppression (NACS),
which selects high-quality and general moment-sentence
pairs from the dense captions, defined as auxiliary captions.
Unlike the intuitive data augmentation strategy, we propose
a novel Auxiliary Caption Network (ACNet) to maximize
the utilization of the generated captions rather than simply
as extra training data as shown in Figure 3. Our ACNet ex-
ploits the potential information embedded in the auxiliary
caption through the regression branch and contrastive learn-
ing branch.

In the regression branch, we propose Caption Guided At-
tention (CGA) to investigate the prior knowledge in the aux-
iliary caption. Our motivation lies in that the auxiliary cap-
tion is a well-established prior indication, i.e., it provides
an approximate temporal range for the action needed to be
grounded. Specifically, we obtain the correlation informa-
tion between the sentence of the auxiliary caption and the
input query through the cross-attention mechanism. Then,
we encode the timestamp of the auxiliary caption into a two-
dimensional temporal map and linearly project semantic re-
lations into the temporal map to obtain visual features with
prior knowledge. In this manner, video clips related to the
query semantics are assigned higher weights and unrelated
ones are assigned lower weights, providing prompt informa-
tion for the subsequent localization module.

In the contrastive learning branch, we introduce Asym-
metric Cross-modal Contrastive Learning (ACCL) to cap-
ture more negative samples in the auxiliary caption. Tra-

ditional cross-modal contrastive learning treats all classes
equally (Khosla et al. 2020; Wang et al. 2022a), which is
exhibited in video grounding as matched fragment-sentence
pairs are treated as positive pairs and mismatched fragment-
sentence pairs are treated as negative pairs while pulling is
applied within positive pairs and pushing among negative
pairs. However, the generated auxiliary moment-sentence
pairs are not as accurate as the manually annotated ones.
Additionally, there exist conflicts between auxiliary caption
and ground truth as they are independent of each other.
Therefore, while pulling the ground truth pairs together, we
push the auxiliary caption sentences away from the ground
truth moments but do not push the auxiliary caption mo-
ments away from the ground truth sentences. Auxiliary cap-
tions provide more descriptions related to the video content,
which are treated as hard negative pairs with the ground truth
moments. Our ACCL mines more supervision signals from
unannotated actions without compromising the original rep-
resentation capability.

Our main contributions are summarized in three fields:
• We present the sparse annotation dilemma in video

grounding and propose to extract information about po-
tential actions from unannotated moments to mitigate it.

• We propose Caption Guided Attention (CGA) to fuse
auxiliary captions with visual features to obtain prior
knowledge for video grounding. Moreover, we propose
Asymmetric Cross-modal Contrastive Learning (ACCL)
to mine potential negative pairs.

• Extensive experiments on three public datasets demon-
strate the effectiveness and generalizability of ACNet.

Related Work
Video Grounding. Video grounding also known as natu-
ral language video localization and video moment retrieval,
was first proposed by (Gao et al. 2017; Anne Hendricks
et al. 2017). Existing methods are primarily categorized
into proposal-based methods and proposal-free methods.
Proposal-based methods focus on the representation, rank-
ing, quality and quantity of proposals. They perform various
proposal generation methods such as sliding windows (Gao
et al. 2017; Anne Hendricks et al. 2017; Ning et al. 2021),
proposal networks (Xiao et al. 2021; Chen and Jiang 2019),
anchor-based methods (Chen et al. 2018; Liu et al. 2020;
Zhang et al. 2020) to extract candidate moments and then
semantically match a given query sentence with each candi-
date through multi-modal fusion. The proposal-free method
directly predicts video moments that match query sentences.
Specifically, the regression-based method (Yuan, Mei, and
Zhu 2019; Chen et al. 2020; Lu et al. 2019; Zeng et al. 2020)
calculates the error of time pair with ground truth for model
optimization. Span-based method (Zhao et al. 2021; Zhang
et al. 2021a) predicts the probabilities of each video frame
being the starting, ending and content location of the tar-
get moment. Existing methods ignore the annotation sparsity
in video grounding, DRN (Zeng et al. 2020) is the pioneer
to notice this issue which uses the distance between frames
within the ground truth and the starting (ending) frame as
dense supervision signals. However, DRN does not exploit
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moment-sentence pairs of unannotated video frames. In this
paper, we leverage potential information in them to signifi-
cantly improve the grounding performance.
Dense Video Captioning. Dense video captioning (Krishna
et al. 2017; Li et al. 2018; Suin and Rajagopalan 2020;
Yang, Cao, and Zou 2023; Mao et al. 2023) techniques
typically consist of event detection and caption generation.
Most approaches enrich event representations through con-
textual modeling (Wang et al. 2018), event-level relation-
ships (Wang et al. 2020), or multimodal fusion (Iashin and
Rahtu 2020b,a). (Wang et al. 2021) proposed a simple yet
effective framework for end-to-end dense video captioning
with parallel decoding (PDVC). In practice, by stacking a
newly proposed event counter on the top of a transformer de-
coder, the (Wang et al. 2021) precisely segments the video
into several event pieces under the holistic understanding of
the video content. In this work, we introduce PDVC (Wang
et al. 2021) to generate dense video captions.

Method
Problem Formulation
Given an untrimmed video and a query sentence, we aim to
retrieve a video moment that best matches the query sen-
tence, i.e., the start time ts and end time te. We denote the
video as V = {xi}Ti=1 frame by frame, where xi is the i-
th frame in the video and T is the total number of frames.
We also represent the given sentence query as Q = {wi}

Nq

i=1
word-by-word, where wi is the i-th word and Nq is the total
number of words.

Feature Encoder
Video encoder. We extract visual representations from the
given video and encode them into a 2D temporal moment
feature map following (Zhang et al. 2020; Wang et al. 2022b;
Cao et al. 2022c). We first segment the input video into
small video clips and then perform fixed interval sampling
to obtain Nv video clips V = {vi}Nv

i=1. We extract visual
features using a pre-trained CNN model (e.g., C3D) and
fed them into the convolutional neural network and average
pooling to reduce their dimensions. Then, We construct 2D
visual feature maps Fv ∈ RNv×Nv×dv referring to previous
works (Zhang et al. 2020; Wang et al. 2022b) based on vi-
sual features by max pooling and L layer convolution with
kernel size K, where Nv and dv are the numbers of sampled
clips and feature dimension, respectively.
Language encoder. Most of the existing works employ
glove embedding with manually designed LSTM as the lan-
guage encoder (Gao et al. 2017; Zhang et al. 2020), in-
stead of uniformly employing pre-trained models for encod-
ing as in the case of video processing. For a given query
sentence, we generate tokens for the words Q by the tok-
enizer and then feed them into pre-trained BERT (Kenton
and Toutanova 2019) with text aggregation to get sentence
embedding Fq ∈ R1×ds , where ds is the feature dimension.
Unified visual-language feature embedding. We apply two
parallel convolutional or linear layers after the encoders to
project Fv and Fq to the same feature dimension dn and

Algorithm 1: Non-Auxiliary Caption Suppression
(NACS)

Input: E = [e1,..., eM ], ei = (si, ti),
C = [c1,..., cM ],
lc, θ, F
E is the set of generated moment-sentence pairs
C contains the corresponding confidence scores
lc and θ are predefined values
F records the annotated video intervals
Output: U ← {}
begin

while E ̸= empty and U .length < lc do
m← argmax C ;
U ← U ∪ em; E ← E − em;
C ← C − cm; F ← F ∪ tm;
for ei in E do

ci ← exp(− IoU(F,ti)
2

θ )ci, ∀ti /∈ U ;
end

end
return U

end

employ them for regression (Vr, Qr) and cross-modal con-
trastive learning (Vc, Qc), respectively.

Auxiliary Caption Generation
In general, queries in video grounding should be visually
based on the temporal region, but the boundaries of the gen-
erated dense captions are rough. Moreover, due to the com-
plexity of the video content, there are overlaps between the
dense caption intervals and the ground truth intervals. The
incorrect descriptions of ground truth are detrimental to the
learning of the model. To solve the above issues, we propose
to exploit a reliable moment-sentence pair from the gener-
ated dense caption, i.e.auxiliary caption.

Specifically, we first feed the input video into an off-
the-shelf dense video captioning model (i.e.PDVC (Wang
et al. 2021)) to generate the dense caption set E =
{si, ti, csi , c

p
i }Mi=1, where si and ti are the generated descrip-

tions and corresponding timestamps, respectively; csi and cpi
are the confidence scores of sentences and proposals, respec-
tively; M is the pre-defined number of dense captions per
video. Then, we propose Non-Auxiliary Caption Suppres-
sion (NACS) inspired by (Bodla et al. 2017) for set E. The
computation process is shown in Algorithm 1. To minimize
the interval overlap between auxiliary captions and between
auxiliary captions and ground truth, we define F to record
the intervals that the video is currently annotated with, which
is initialized to all ground truth intervals. We calculate the
confidence scores C and sort E in descending order accord-
ingly by C. For each ei, its confidence score ci is defined as
follows:

ci = (csi + cpi )
tei − tsi
di

(1)

where tsi and tei are the start and end timestamps, respec-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18510



Feature Encoders

Video 
Encoder

Video

CNN

CNN

PDVC

{𝑠1, 𝑡1}
{𝑠2, 𝑡2}
…

{𝑠𝑖, 𝑡𝑖}

NTCS
𝑡𝑛 2D Map

𝑠𝑛
Text

Encoder
MLP

MLP

He took out a pan. Text
Encoder

MLP

MLP

Prediction Module

•

Norm

Norm 𝑃𝑠𝑡𝑎𝑟𝑡

𝑃𝑒𝑛𝑑Norm

Norm

Loss Function

ADMSCL

Regression

Add

M
ulti-head 

attention

A
dd &

 N
orm

A
dd &

 N
orm

Feed Forw
ard

Linear 
A

pproxim
ation

Query

Figure 3: Overview of the proposed Auxiliary Caption Network (ACNet). Auxiliary Caption is filtered through our proposed
Non-Auxiliary Caption Suppression algorithm (NACS) from PDVC (Wang et al. 2021) outputs. We convert the timestamp of
the auxiliary caption to the 2D map form following (Zhang et al. 2020; Wang et al. 2022b). Then, video segments and query
sentences are encoded by the respective feature encoders for regression learning and cross-modal contrastive learning. In the
regression branch, Caption Guided Attention (CGA) calculates semantic relations between query features Qr and auxiliary
caption features Qt

r. Then we project them to visual space to obtain visual representations V ′
r with prior knowledge. V ′

r and
query features Qr are used for prediction and loss computation. In the cross-modal learning branch, the encoded video features
Vc and query features Qc are directly fed into the prediction module and loss function. ⊗ and ⊙ indicate matrix multiplication
and Hadamard product, respectively.

tively, and di is the duration of the whole video. The action
described by ei is considered a general action if it has a long
duration, and is given a higher score. Then, the ei with the
highest ci is selected and the annotated video interval F is
updated. Finally, the confidence scores ci of other ei are de-
cayed with a Gaussian penalty function (Bodla et al. 2017)
according to the degree of overlap with F . The above op-
erations are repeated until E is empty or the number of ele-
ments in U is equal to lc. Finally, as with the query sentence,
sentences of auxiliary captions are encoded as Qt

c and Qt
r

for two branches, respectively. We refer to 2D-TAN (Zhang
et al. 2020) to encode timestamps of auxiliary captions as
two-dimensional temporal maps Ft ∈ Rlc×Nv×Nv , where lc
is the number of auxiliary captions. We provide details of
the 2D temporal map in the supplementary material.

Caption Guided Attention (CGA)

The CGA is responsible for extracting the prior knowledge
and coarse-grained estimation about the target moment from
the auxiliary caption as shown in Figure 4. We first employ
the co-attention mechanism to obtain the semantic relations
Fµ between the sentence features Qt

r of auxiliary caption
and the query sentence features Qr:

Fµ = MHA(Qt
r, Qr, Qr) (2)

where MHA stands for standard multi-head atten-
tion (Vaswani et al. 2017) which consists of m parallel
heads and each head is defined as scaled dot-product

Timestamp Video Feature

Highlight

Correlation

Project

Figure 4: Illustration of our Caption Guided Attention
(CGA).

attention:

Atti(X,Y ) = softmax

(
XWQ

i

(
YWK

i

)T
√
dm

)
YWV

i (3)

MHA(X,Y ) = [Att1(X,Y ); . . . ; Attn(X,Y )]WO (4)

where X ∈ Rlx×d and Y ∈ Rly×d denote the Query matrix
and the Key/Value matrix, respectively; WQ

i , WK
i , WV

i ∈
Rd×dn and WO ∈ Rd×d are learnable parameters, where
dm = d/m. [·; ·] stands for concatenation operation.

Then, we linearly project the semantic relation feature Fµ

onto the two-dimensional temporal map Ft to obtain prior
knowledge Vµ:

Vµ = MLP(Fµ ⊗ Ft) (5)

where ⊗ represents the matrix multiplication. Note that the
value in the temporal map Ft represents the intersection over
union (IoU), i.e.temporal correlation, between the current
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clip and the corresponding clip of Qr. Finally, we obtain
V ′
r used to predict the target moment by integrating prior

knowledge Vµ to visual features Vr by a fully connected
feed-forward network:

V ′
r = max (0, (Vr + Vµ)Wf + bf)Wff + bff (6)

where max(0, ∗) represents the ReLU activation function;
Wf and Wff denote learnable matrices for linear transfor-
mation; bf and bff represent the bias terms. In this way, we
assign different weights to the video features according to
the semantic and temporal position of the auxiliary caption,

Asymmetric Cross-modal Contrastive Learning
(ACCL)
For traditional cross-modal contrastive learning, matched
pairs are considered as positive pairs and mismatched pairs
are considered as negative pairs. However, the temporal
boundaries of auxiliary caption may be coarse and should
not be pulled close to the corresponding sentences for the lo-
calization task. In addition, the intervals of auxiliary caption
may overlap with ground truth so as to disagree on the same
moment. Therefore, we propose asymmetric cross-modal
contrastive learning (ACCL). We consider video ground-
ing as a dual matching task, i.e.moment to text and text
to moment. Figure 5 illustrates the core idea of ACCL:
ACCL applies pulling and pushing in ground truth pairs,
and applies pushing between ground truth moments and
prompt sentences. We adopt the noise contrastive estima-
tion (NCE) (Gutmann and Hyvärinen 2010) to calculate our
ACCL loss, which is defined as:

Lc = λvIv→s + λsIs→v (7)

Iv→s=−
1

|P|
∑
i∈P

log
exp(f(vi)

⊤f(si)/τv)∑
j∈As

exp(f(vi)⊤f(sj)/τv)
(8)

Is→v=−
1

|P|
∑
i∈P

log
exp(f(si)

⊤f(vi)/τs)∑
j∈Av

exp(f(si)⊤f(vj)/τs)
(9)

where i and j are indexes of video moment v or sentence s
from Vc, Qc and Qt

c; λv and λs are hyperparameters to bal-
ance the contribution of contrastive loss for each direction;
τv and τs are temperatures. At first glance, Iv→s and Is→v

seem identical to the vanilla cross-modal contrastive learn-
ing loss. However, the key difference lies in the definitions
of P , As and Av , as we detail below.

Asymmetry of Positive pairs and Negative pairs
(APN). We do not pull moments of the auxiliary caption
and sentences together, i.e., P = G. This design is moti-
vated by the fact that we cannot guarantee the accuracy of
the auxiliary caption. The boundaries of the auxiliary cap-
tion moments are rough, while video grounding is an exact
and frame-level matching task. If we construct them as pos-
itive pairs, which will hinder cross-modal learning for exact
matching.

Asymmetry of Negative pairs in Dual Matching
(ANDM). Moment-sentence pairs of auxiliary caption are
only contained in As and not in Av , i.e., As = Gs ∪ Ds,
Av = Gv . We only push target moments away from aux-
iliary caption sentences, but do not push query sentences

Video momentSentence PullPush

Figure 5: Illustration of our asymmetric push-and-pull strat-
egy, in contrast to those in the original supervised contrastive
learning, where elements with the same color mean they
come from the same moment-sentence pair. G and D are the
sets of moment-sentence pairs of ground truth and auxiliary
caption, respectively.

away from auxiliary caption moments. Since auxiliary cap-
tion moments and target moments are independent of each
other and they may refer to the same video moments, i.e.,
it is possible for auxiliary caption moments to match with
query sentences. On the other hand, the auxiliary caption
sentences provide more descriptions of the video content,
and we treat the moment-sentence pairs they form with the
ground truth moments as hard negative pairs to enhance joint
representation learning.

Training and Inference
Training. In the regression branch, we employ cross-
entropy loss to optimize the model:

Lr =
1

C

C∑
i=1

yi log pi + (1− yi) log (1− pi) (10)

where pi is the prediction score of a moment and C is the to-
tal number of valid candidates. Our contrastive loss relies on
the binary supervision signal to learn cross-modal alignment
and the regression loss counts on the IoU supervision signal
for moment ranking. Finally, we employ these two comple-
mentary losses for training. The overall training loss L of
our model is

L = λcLc + λrLr (11)
where λc and λb are hyperparameters to balance the contri-
bution of each loss.

Inference. During inference, we calculate the cosine sim-
ilarity of the video moments and queries as the prediction
scores

Sr = σ(f(Qr)f(V
′
r )

⊤), Sc = f(Qc)f(Vc)
⊤ (12)

where σ is the sigmoid function.
Due to the difference in the value region of Sr and Sc

(especially the negative regions), we fuse them after scaling
to obtain the final prediction scores S .

S = Sr ⊙ (
Sc + 1

2
)γ (13)

where⊙ denote the element-wise multiplication and γ is the
hyperparameter. Finally, We rank all the moment propos-
als according to S followed by a non-maximum suppression
(NMS) function.
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Method
ActivityNet Captions TACoS

R@1 R@1 R@1 R@5 R@5 R@5 R@1 R@1 R@1 R@5 R@5 R@5
IoU0.3 IoU0.5 IoU0.7 IoU0.3 IoU0.5 IoU0.7 IoU0.1 IoU0.3 IoU0.5 IoU0.1 IoU0.3 IoU0.5

CTRL 47.43 29.01 10.34 75.32 59.17 37.54 24.32 18.32 13.30 48.73 36.69 25.42
CBP 54.30 35.76 17.80 77.63 65.89 46.20 – 27.31 24.79 – 43.64 37.40
SCDM 54.80 36.75 19.86 77.29 64.99 41.53 – 26.11 21.17 – 40.16 32.18
2D-TAN 59.45 44.51 26.54 85.53 77.13 61.96 47.59 37.29 25.32 70.31 57.81 45.04
DRN – 45.45 24.39 – 77.97 50.30 – – 23.17 – – 33.36
FVMR 60.63 45.00 26.85 86.11 77.42 61.04 53.12 41.48 29.12 78.12 64.53 50.00
RaNet – 45.59 28.67 – 75.93 62.97 – 43.34 33.54 – 67.33 55.09
DPIN – 47.27 28.31 – 77.45 60.03 – 46.74 32.92 – 62.16 50.26
MATN – 48.02 31.78 – 78.02 63.18 – 48.79 37.57 – 67.63 57.91
CBLN 66.34 48.12 27.60 88.91 79.32 63.41 49.16 38.98 27.65 73.12 59.96 46.24
SMIN – 48.46 30.34 – 81.16 62.11 – 48.01 35.24 – 65.18 53.36
GTR – 50.57 29.11 – 80.43 65.14 – 40.39 30.22 – 61.94 47.73
MMN 65.05 48.59 29.26 87.25 79.50 64.76 51.39 39.24 26.17 78.03 62.03 47.39
SPL – 52.89 32.04 – 82.65 67.21 – 42.73 32.58 – 64.30 50.17
G2L – 51.68 33.35 – 81.32 67.60 – 42.74 30.95 – 65.83 49.86

ACNet 66.82 52.51 32.51 87.11 79.89 66.68 57.66 48.13 36.79 80.11 69.08 58.10
ACNet♢ 67.07 53.55 34.68 88.21 80.94 67.78 58.76 48.74 37.14 82.43 71.47 60.66
ACNet♮ 70.31 56.39 38.19 89.26 82.87 70.77 62.76 51.64 38.84 86.83 74.73 62.86

Table 1: Performance comparisons on ActivityNet Captions and TACoS. ♢ denotes using the generated auxiliary captions and
♮ denotes introducing manual annotations from other moments within the video as auxiliary captions during inference.

Experiments
Datasets and Evaluation
ActivityNet Captions. ActivityNet Captions (Krishna et al.
2017) contains 20,000 untrimmed videos and 100,000 de-
scriptions from YouTube (Caba Heilbron et al. 2015), cov-
ering a wide range of complex human behavior. The aver-
age length of the videos is 2 minutes, while video clips with
annotations have much larger variations, ranging from a few
seconds to over 3 minutes. Following the public split, we use
37417, 17505 and 17031 sentence-video pairs for training,
validation and testing, respectively.

TACoS. TACoS (Regneri et al. 2013) contains 127 videos
from the cooking scenarios, with an average of around 7
minutes. We follow the standard split (Gao et al. 2017),
which has 10146, 4589 and 4083 video query pairs for train-
ing, validation and testing, respectively.

ActivityNet-CG. ActivityNet-CG (Li et al. 2022) aims to
evaluate how well a model can generalize to query sentences
that contain novel compositions or novel words. It is a new
split of ActivityNet Captions, which is re-split into four sets:
training, novel-composition, novel-word, and test-trivial.

Evaluation. Following previous work (Gao et al. 2017;
Zhang et al. 2020), we adopt “R@n, IoU=m” as the evalua-
tion metric. It calculates the percentage of IoU greater than
“m” between at least one of the top “n” video moments re-
trieved and the ground truth.

Implementation Details
Following (Zhang et al. 2020; Wang et al. 2022b), we em-
ployed a 2D feature map to generate moment proposals. For
the input video, we used exactly the same settings as in the
previous work (Wang et al. 2022b) for a fair comparison,

including visual features (both C3D features), NMS thresh-
olds (0.5, 0.4), number of sampled clips (64, 128), num-
ber of 2D convolution network layers (3, 4) and kernels
(4, 2) for ActivityNet Captions and TACoS, respectively.
For the query sentence, the pre-trained BERT (Kenton and
Toutanova 2019) was employed for each word of the query.
Specifically, the average pooling results of the last two lay-
ers are used to obtain the embedding of the whole sentence.
During the training, we used AdamW (Loshchilov and Hut-
ter 2018) optimizer to train our model with learning rate of
8 × 10−4. The batch size B was set to 48 and 8 for Activi-
tyNet Captions and TACoS, respectively. We employed the
same settings as ActivityNet Captions on ActivityNet-CG.

Comparison with State-of-the-art Methods
Benchmark. We compare our ACNet with state-of-the-art
methods in Table 1. ACNet achieves significant improve-
ments compared with all other methods. Specifically, on Ac-
tivityNet Captions, our ACNet achieves performance im-
provements of up to 6% compared with the cutting edge
method SPL (Liu and Hu 2022). SPL (Liu and Hu 2022)
investigates the imbalance of positive and negative frames
in video grounding and develops a coarse-grained and fine-
grained two-step framework, but does not consider the rela-
tionship between potential actions and queries. In contrast,
our method encodes the video feature under the guidance
of the auxiliary caption with a stronger correlation to the
query. For TACoS, our ACNet outperforms the strongest
competitor MATN (Zhang et al. 2021b) by up to 7 points.
MATN (Zhang et al. 2021b) proposes a multi-level aggre-
gated transformer, but it can easily overfit to the point of
confusing similar actions due to the neglect of the sparse an-
notation dilemma. Our ACNet mines more supervision sig-
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Method
Test-Trivial Novel-Comp

R@1 R@1 R@1 R@1
IoU0.5 IoU0.7 IoU0.5 IoU0.7

TMN 16.82 7.01 8.74 4.39
TSP-PRL 34.27 18.80 14.74 1.43
VSLNet 39.27 23.12 20.21 9.18
LGI 43.56 23.29 23.21 9.02
2D-TAN 44.50 26.03 22.80 9.95
VISA 47.13 29.64 31.51 16.73

ACNet 51.81 33.52 33.30 17.09
ACNet† 46.33 28.67 30.71 15.80

Table 2: Performance comparison on ActivityNet-CG. “†”
denotes without NACS.

NACS CGA ACCL Reg R@1 R@1 R@1
IoU0.3 IoU0.5 IoU0.7

✓ 62.73 46.74 27.12
✓ 64.57 47.28 28.09

✓ ✓ 66.74 51.83 32.29
✓ ✓ 67.70 52.08 32.02

✓ ✓ 65.03 50.24 30.02
✓ ✓ ✓ 68.83 54.85 36.48

✓ ✓ ✓ 68.36 55.27 36.91

✓ ✓ ✓ ✓ 70.31 56.39 38.19

Table 3: Component ablations on ActivityNet Captions.

nals from the unannotated moments and employs two com-
plementary loss functions to improve the grounding quality.
Notably, most methods cannot achieve the best performance
on both datasets simultaneously due to the differences be-
tween the two datasets, but ACNet does, which demonstrates
the superiority of our method.

Compositional Generalization. Table 2 shows the
result comparison between state-of-the-art methods on
ActivityNet-CG. Unlike ActivityNet Captions and TACoS,
ActivityNet-CG focuses on verifying the generalizability
of the model on novel compositions or novel words, pro-
posed by VISA (Li et al. 2022). We observe that our AC-
Net brings performance improvement of up to 4% compared
with VISA (Li et al. 2022), demonstrating the excellent com-
positional generalization of our model. Notably, our variant
“†” model is weaker than VISA on all splits, indicating that
auxiliary caption is crucial for generalizability.

Ablation Study
Main Ablation Study. In Table 3, we conduct a thorough
ablation study on the proposed components to verify their
effectiveness. The first two rows of Table 3 show our single-
branch base model. Based on these, we add NACS and CGA
respectively. it can be noticed that the performance is im-
proved by about 4% and 5% respectively, as shown in the
third and fourth rows of Table 3. Row 5 of Table 3 shows
our two-branch base model, which improves “IoU=0.5” to

Model Training Inference

2D-TAN (Zhang et al. 2020) 0.13s 32s
MMN (Wang et al. 2022b) 0.32s 37s

Base Model 0.39s 40s
ACNet 0.94s 53s

Table 4: Time consumption on ActivityNet-Captions.

Model R@1 0.3 R@1 0.5 R@1 0.7

CL 66.25 48.59 30.34
w/o APN 67.43 53.79 37.68
w/o ANDM 67.54 53.58 37.70

Full ACCL 70.31 56.39 38.19

Table 5: Ablation studies of ACCL on ActivityNet Captions.

50.24. In rows 6 and 7 of Table 3, we add NACS and CGA,
respectively, to the two-branch model and find that the per-
formance improves again by about 5%. The last row of Ta-
ble 3 shows the performance of our full model, which further
improves the “IoU=0.5” to 56.39% and achieves the best
performance among ablation variants.

Comparisons of Time Consumption. In Table 4, we
compute the average training time per iteration and total in-
ference time. Our method requires more computational costs
but these are worth compared to the significant performance
improvements.

Effect of Asymmetric Components. To evaluate the de-
tailed components in ACCL more deeply, we conduct an ab-
lation study of APN and ANDM on ActivityNet Captions in
Table 5. We observe that removing any of the components
brings significant performance degradation, indicating that
this asymmetric design is capable of mining more hard neg-
ative samples from the auxiliary caption and thus improving
the representation learning.

Conclusion
In this paper, we propose an Auxiliary Caption Network
(ACNet) for video grounding. Firstly, we propose Non-
Auxiliary Caption Suppression (NACS) to obtain auxiliary
captions from dense captions. Then, we design a simple but
effective Caption Guided Attention (CGA) to extract prior
knowledge from the auxiliary captions and approximately
locate the target moment. Moreover, we propose Asym-
metric Cross-modal Contrastive Learning (ACCL) to fully
mine negative pairs and construct extra supervision signals
from unannotated video clips. Extensive experiments have
demonstrated that ACNet can achieve excellent performance
and superior generalizability on public datasets.
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