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Abstract
Length extrapolation has attracted considerable attention re-
cently since it allows transformers to be tested on longer se-
quences than those used in training. Previous research has
shown that this property can be attained by using carefully
designed Relative Positional Encodings (RPEs). While these
methods perform well on a variety of corpora, the conditions
for length extrapolation have yet to be investigated. This pa-
per attempts to determine what types of RPEs allow for length
extrapolation through a thorough mathematical and empiri-
cal analysis. We discover that a transformer is certain to pos-
sess this property as long as the series that corresponds to
the RPE’s exponential converges. Two practices are derived
from the conditions and examined in language modeling tasks
on a variety of corpora. As a bonus from the conditions, we
derive a new Theoretical Receptive Field (TRF) to measure
the receptive field of RPEs without taking any training steps.
Extensive experiments are conducted on the Wikitext-103,
Books, Github, and WikiBook datasets to demonstrate the vi-
ability of our discovered conditions. We also compare TRF
to Empirical Receptive Field (ERF) across different models,
showing consistently matched trends on these datasets. Code
is released at: https://github.com/OpenNLPLab/Rpe.

Introduction
Transformer (Vaswani et al. 2017) is advancing steadily in
the areas of natural language processing (Qin et al. 2023b;
Devlin et al. 2019; Liu et al. 2019; Qin et al. 2022b,a; Liu
et al. 2022; Qin and Zhong 2023), computer vision (Doso-
vitskiy et al. 2020; Sun et al. 2022b; Lu et al. 2022; Hao
et al. 2024), and audio processing (Gong, Chung, and Glass
2021; Akbari et al. 2021; Gulati et al. 2020; Sun et al.
2022a). Although it outperforms other architectures such as
RNNs (Cho et al. 2014; Qin, Yang, and Zhong 2023) and
CNNs (Kim 2014; Hershey et al. 2016; Gehring et al. 2017)
in many sequence modeling tasks, its lack of length extrap-
olation capability limits its ability to handle a wide range
of sequence lengths, i.e., inference sequences need to be
equal to or shorter than training sequences. Increasing the
training sequence length is only a temporary solution be-
cause the space-time complexity grows quadratically with
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the sequence length. Another option is to extend the infer-
ence sequence length by converting the trained full attention
blocks to sliding window attention blocks (Beltagy, Peters,
and Cohan 2020), but this will result in significantly worse
efficiency than the full attention speed (Press, Smith, and
Lewis 2022). How to permanently resolve this issue without
incurring additional costs has emerged as a new topic.

A mainstream solution for length extrapolation is to de-
sign a Relative Positional Encoding (RPE) (Qin et al. 2023c)
that concentrates attention on neighboring tokens. For ex-
ample, ALiBi (Press, Smith, and Lewis 2022) applies linear
decay biases to the attention to reduce the contribution from
distant tokens. Kerple (Chi et al. 2022) investigates shift-
invariant conditionally positive definite kernels in RPEs and
proposes a collection of kernels that promote the length ex-
trapolation property. It also shows that ALiBi is one of its in-
stances. Sandwich (Chi, Fan, and Rudnicky 2022) proposes
a hypothesis to explain the secret behind ALiBi and empir-
ically proves it by integrating the hypothesis into sinusoidal
positional embeddings.

In order to investigate transformer extrapolation, we first
establish a hypothesis regarding why existing RPE-based
length extrapolation methods (Qin et al. 2023a) have this
capacity to extrapolate sequences in inference based on em-
pirical analysis. Then we identify the conditions of RPEs
that satisfy the hypothesis through mathematical analysis.
Finally, the discovered conditions are empirically validated
on a variety of corpora. Specifically, we assume that due to
decay biases, existing RPE-based length extrapolation meth-
ods behave similarly to sliding window attention, i.e., only
tokens within a certain range can influence the attention
scores. A transformer can extrapolate for certain in this sce-
nario since the out-of-range tokens have no effect on the at-
tention outcomes. We derive that a transformer is guaranteed
to satisfy this hypothesis if the series corresponding to the
exponential of its RPE converges. Based on the observation,
we show that previous RPE-based methods (Press, Smith,
and Lewis 2022; Chi et al. 2022) can be seen as particular
instances under the conditions. Two new practices from the
conditions are derived and evaluated in language modeling.

The observed conditions not only shed light on the secret
of length extrapolation but also offer a new perspective on
computing the Theoretical Receptive Fields (TRF) of RPEs.
In contrast to prior approaches that require training gradients
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to compute TRF, we propose a new way to calculate TRF
that is solely based on the formulation of RPEs. Extensive
experiments on various datasets validate the conditions. TRF
calculated by our method substantially matches the trend of
the Empirical Receptive Field (ERF) in real-world scenarios.

Preliminary
Before embarking on the journey of exploring, we introduce
several preliminary concepts that will be used throughout
the paper, such as softmax attention, relative positional en-
coding, length extrapolation, and sliding window attention.
We also provide the necessary notations for the subsequent
analysis, i.e., we use M to denote a matrix and m⊤

i to repre-
sent the ith row of M. The complete math notations can be
found in Appendix. Following previous work (Press, Smith,
and Lewis 2022), we restrict our analysis to causal language
models and assume that the max sequence length during
training is m.

Softmax Attention
Softmax attention is a key component of transformers which
operates on query Q, key K and value V matrices. Each
matrix is a linear map that takes X ∈ Rn×d as input:

Q = XWQ, K = XWK , V = XWV ∈ Rn×d, (1)

where n is the sequence length and d is the dimension of the
hidden feature. The output attention matrix O ∈ Rn×d can
be formulated as:

O = Softmax(QKT/
√
d)V. (2)

To prevent information leakage in causal language model-
ing, a mask matrix M ∈ Rn×n is used to ensure that current
tokens can only see previous tokens and themselves. The
lower triangular elements of M are 0, and the upper triangu-
lar ones, except for the diagonal, are −∞. Then the output
attention matrix O for causal language models will be:

O = Softmax(QK⊤/
√
d+M)V. (3)

Note that Eq. 3 can be seen as a general form of attention,
i.e., when the elements of M are all 0, Eq. 3 is degenerated
to Eq. 2. For ease of discussion, we use Eq. 3 to represent
attention computation.

Relative Positional Encoding
Positional encoding is designed to inject positional
bias into transformers. Absolute Positional Encoding
(APE) (Vaswani et al. 2017; Gehring et al. 2017) and Rela-
tive Positional Encoding (RPE) (Su et al. 2021; Liutkus et al.
2021; Press, Smith, and Lewis 2022; Chi et al. 2022) are the
two most common types of positional encoding. In this pa-
per, we focus on RPE because it is the key for length ex-
trapolation, as shown in (Press, Smith, and Lewis 2022). An
attention with RPE can be written as:

O = Softmax(QK⊤/
√
d+M+P)V, (4)

where P ∈ Rn×n is a Toeplitz matrix that encodes relative
positional information, i.e., pij = pi−j . It is worth noting
that M and P can be merged, and the merged matrix is still
a Toeplitz matrix. We use R to represent the merged matrix
and rewrite Eq. 4 as:

O = Softmax(QK⊤/
√
d+R)V. (5)

Definition Of Length Extrapolation
The property of length extrapolation allows a model to be
tested on longer sequences than those used in training. Previ-
ous sequence modeling structures such as RNNs (Hochreiter
and Schmidhuber 1997) and CNNs (Gehring et al. 2017) of-
ten naturally possess this property, but it is a difficult task
for transformers. This property is only present in sliding
window transformers and a few transformer variants with
specifically designed RPEs (Chi et al. 2022; Press, Smith,
and Lewis 2022; Chi, Fan, and Rudnicky 2022). In language
modeling, one token can only see itself and previous tokens.
Therefore, regardless the sequence length, the performance
should be stable for the neighboring tokens that are within
the training sequence length (Beltagy, Peters, and Cohan
2020). For the tokens that are out of range, the performance
will degrade if the model does not support length extrapola-
tion (Press, Smith, and Lewis 2022). Based on the observa-
tion above, we give a definition of length extrapolation:
Definition 0.1. For a language model F , given dataset X ,
if for any n, there is,

|ppln(X ,F)− pplm(X ,F)|/pplm(X ,F) < δ, (6)

then F is considered to have the extrapolation property.
Here δ > 0 is a small constant, ppln(X ,F) means

that F calculates perplexity with a max sequence length
of n on the data set X . Empirically, if |ppln(X ,F) −
pplm(X ,F)|/pplm(X ,F) becomes very large(≫ 1) as n
increases, we consider that F does not have extrapolation
property.

Sliding Window Attention
For the convenience of subsequent discussions, we define a
window attention at position i and window size j as follows:

oj
i =

∑
i−j+1≤s≤i exp(q

⊤
i ks/

√
d) exp(ris)vs∑

i−j+1≤t≤i exp(q
⊤
i kt/

√
d) exp(rit)

≜

∑
i−j+1≤s≤i cisvs

Cij
,

(7)

where Cij =
∑

i−j+1≤t≤i cit, cij = aijbij , aij =

exp(q⊤
i kj/

√
d), bij = exp(rij), j ≤ i.

We further assume ∥xi∥ ≤ l,x ∈ {q,k,v}, where l > 0

is a constant. The oj
i represents the attention output of the

i-th token, which interacts with the j tokens preceding it.
Note that window attention naturally possesses the length
extrapolation ability.

There are two ways to infer window attention: nonover-
lapping inference and sliding window inference as shown
on the right of Figure 1. In sliding window inference, the
tokens within each sliding window must be re-encoded mul-
tiple times, making it substantially slower than the nonover-
lapping one. In Table 1 we compare the average inference
time over a group of window sizes between the sliding win-
dow inference and nonoverlapping window inference. The
sliding window one is more than 44 times slower than the
nonoverlapping one. However, as shown on the left of Fig-
ure 1, the sliding window inference has much lower ppl than
the nonoverlapping one.
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Figure 1: Sliding window inference vs Nonoverlapping inference. We illustrate the difference between sliding window inference
and nonoverlapping inference in the right figure. The left figure shows the curves of ”Sliding Window“ and ”Nonoverlapping
Window“corresponding to the ppls calculated by a language model at different inference window sizes.

Method Rel Avg infer time
Sliding Window 44.35
Nonoverlapping Window 1.00
Alibi 1.00

Table 1: Relative average inference time. We compute the
relative average inference time of sliding window inference
and nonoverlapping inference over a set of window sizes
{16,32,64,128,258,512}. We also include the Alibi infer-
ence time as a reference.

(a) Sliding window (b)Alibi linear decay

Figure 2: Visualization of attention reweighting. We plot the
reweighting schema of sliding window attention and Alibi
linear decay bias. They share a similar behavior in that only
neighboring tokens can influence the attention results.

Transformer Extrapolation Exploration
In this section, we first describe the hypothesis about why
existing RPE-based length extrapolation methods can ex-
trapolate sequences in inference and provide empirical ev-
idence for it. Then we derive the conditions for length ex-
trapolation in detail and demonstrate that recent RPE-based
length extrapolation methods (Chi et al. 2022; Press, Smith,
and Lewis 2022) satisfy the conditions.

The Hypothesis
A sliding window attention with window size w is equivalent
to the following RPE on full attention:

mij =

{
0, i− j ≤ w.

−∞, others.
(8)

By comparing Eq. 8 and the corresponding RPE of Al-
ibi (Press, Smith, and Lewis 2022) in Figure 2, we can see
that they both have the same behavior in that they both con-
centrate tokens inside a specified range. Also, in Figure 1,
we show that the performance of Alibi is similar to the slid-
ing window attention when the window size is sufficiently
large. Based on these two observations, we make the fol-
lowing hypothesis:

Hypothesis 0.1. A RPE that makes a transformer extrap-
olatable needs to have similar behavior to sliding window
attention, i.e., δ(i, j) should satisfy:

∀ϵ > 0, ∃j0, s.t, j > j0, δ(i, j) < ϵ, (9)

where δ(i, j) ≜ ∥oi
i − oj

i∥, and the window length j needs
to be sufficiently large.

In the following sections, we will derive the conditions for
RPEs that satisfy Eq. 9.

The Conditions
Let us introduce the first lemma:
Lemma 0.2. When the following condition is satisfied, Eq. 9
holds.

limi→∞Cii ≜ C < ∞. (10)

Proof. When i ≤ m, the test sequence length is smaller than
the max sequence length m during training, take j = i, we
get ∥oi

i − oj
i∥ = ∥oi

i − oi
i∥ = 0. When i > m, we can

reformulate Eq. 7 as:

oi
i =

∑
i−j+1≤s≤i cisvs +

∑
1≤s≤i−j cisvs

Cii

=

∑
i−j+1≤s≤i cisvs

Cij

Cij

Cii
+

∑
1≤s≤i−j cisvs

Cii − Cij

Cii − Cij

Cii

=

∑
i−j+1≤s≤i cisvs

Cij

Cij

Cii
+

∑
1≤s≤i−j cisvs

Cii − Cij

(
1− Cij

Cii

)
.

Therefore we have oi
i − oj

i =:(
1− Cij

Cii

)(∑
i−j+1≤s≤i cisvs

Cij
−
∑

1≤s≤i−j cisvs

Cii − Cij

)
.

(11)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18899



For the second part:∥∥∥∥
∑

i−j+1≤s≤i cisvs

Cij
−
∑

1≤s≤i−j cisvs

Cii − Cij

∥∥∥∥
≤
∑

i−j+1≤s≤i cis∥vs∥
Cij

+

∑
1≤s≤i−j cis∥vs∥
Cii − Cij

≤
∑

i−j+1≤s≤i cisl

Cij
+

∑
1≤s≤i−j cisl

Cii − Cij
= 2l

(12)

We have
δ(i, j) ≤ 2

(
1− Cij

Cii

)
l. (13)

According to Eq 10 and the tail of convergence series is
arbitrarily small. ∀C/2 > ϵ > 0, we can find a j0, s.t.
if i ≥ j > j0, Cii − Cij < ϵ. We can also find a j1,
s.t. if i ≥ j > j1, C − ϵ < Cii < C + ϵ. If we take
j2 = max(j0, j1), so if i ≥ j ≥ j2, we have:

Cii − Cij < ϵ,C − ϵ < Cii < C + ϵ (14)

So when i ≥ j ≥ j2, we have

δ(i, j) ≤ 2

(
1− Cij

Cii

)
l = 2

Cii − Cij

Cii
l ≤ 2

ϵ

C − ϵ
l

≤ 2lϵ

C − C/2
=

4lϵ

C

(15)

According to the definition of limitation, Eq. 10 holds.

This lemma implies that for any token if the attention of
the model focuses on its neighboring j(j ≥ j2) tokens, the
model has length extrapolation property. The lemma accom-
panies our intuitions. Does it mean that as long as a RPE fol-
lows the same principle, i.e., places more weights on neigh-
boring j tokens, the model is guaranteed to have the length
extrapolation property? In the following sections, we will
demonstrate that concentrating more weights on neighbor-
ing tokens does not guarantee the transformer has the length
extrapolation property. Specifically, we will provide a math-
ematical proof of the sufficient conditions for RPE to have
the length extrapolation property.
Theorem 0.3. When the following condition is satisfied,
Eq. 9 holds.

limi→∞Bii < ∞, Bii =
∑

1≤t≤i

bit < ∞. (16)

Proof. Since we assume ∥qi∥ ≤ l, ∥ki∥ ≤ l, then:

aij = exp(q⊤
i kj) ≤ exp(l2), (17)

cij = aijbij ≤ exp(l2)bij , Cii ≤ exp(l2)Bii. (18)

Therefore, Eq. 10 can be derived from Eq. 16. Combine with
Lemma 0.2, the proof is concluded.

By leveraging the property of RPE, Theorem 0.3 can be
further simplified as:
Theorem 0.4. When the following condition is satisfied,
Eq. 9 holds.

lim
i→∞

i∑
t=1

bi−t = lim
i→∞

i−1∑
t=0

bt < ∞. (19)

Proof. According to the definition of RPE:

Bii =
∑

1≤t≤i

bit =

i∑
t=1

bi−t =

i−1∑
t=0

bt. (20)

This means that Eq. 16 is equivalent to:

lim
i→∞

Bii = lim
i→∞

i−1∑
t=0

bt < ∞. (21)

Theorem 0.4 indicates that as long as the series of
exp(RPE) converges, the model is guaranteed to have length
extrapolation property. Based on this principle, we can math-
ematically determine whether an RPE allows for length ex-
trapolation before conducting experiments or designing a
variety of RPEs that can do length extrapolation. In Ap-
pendix, we show that previous methods such as Alibi (Press,
Smith, and Lewis 2022), Kerple (Chi et al. 2022), and Sand-
wich (Chi, Fan, and Rudnicky 2022) satisfy our derived con-
ditions for length extrapolation.

Theoretical Receptive Field
In the previous section, we established the conditions for
length extrapolation. As an extra bonus, we can derive Theo-
retical Receptive Fields (TRF) for any RPE-based length ex-
trapolation method. Let us start with the definition of Empir-
ical Receptive Field (ERF). ERF can be viewed as a window
containing the vast majority of the information contained
within the attention.

Recall Eq. 13, by setting 1− Cij

Cii
= ϵ, we can define:

Cij = Cii(1− ϵ), nemp(ϵ) = inf
j
(Cij > Cii(1− ϵ)),

nemp(ϵ) is the ERF that represents the minimal sequence
length required to maintain the performance within a gap
of ϵ. Intuitively, ERF can be viewed as the smallest window
that contains the majority of the information within an at-
tention. Since it is related to both aij and bij , it can only be
calculated after training.

Now we define TRF, which allows us to estimate the re-
ceptive field without training. To accomplish this, we con-
sider the upper bound of Cij . From the definition of Cij and
Eq. 17, Cij is upper bounded by Bij . Therefore, we can de-
fine the TRF nb

the(ϵ) respect to series bt as:

nthe(ϵ) = inf
j
(Bij > B(1− ϵ))

= inf
j

(
j−1∑
t=0

bt > B(1− ϵ)

)

= inf
j

∑
t≥j

bt < Bϵ


(22)

where B = limj→∞
∑j−1

t=0 bt. We may find it difficult to
give the analytical form of the partial sum of the series at
times, but we can still compute the TRF numerically or com-
pare the TRFs of different RPEs using the theorem below:
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Theorem 0.5. If the following conditions hold:

αt

α
≤ βt

β
, t → ∞, α ≜ lim

j→∞

j−1∑
t=0

αt, β ≜ lim
j→∞

j−1∑
t=0

βt. (23)

Then:
nα
the(ϵ) ≤ nβ

the(ϵ), ϵ → 0. (24)

Proof. According to Eq.23, there exists t0 > 0, such that,
when t > t0, we have:

αt

α
≤ βt

β
. (25)

Let ϵ < ϵ0, where
nβ
the(ϵ0) = t0, (26)

then we get: ∑
t≥n

β
the

(ϵ)

βt ≤ βϵ, nβ
the(ϵ) > t0. (27)

Finally: ∑
t≥n

β
the

(ϵ)

αt ≤
∑

t≥n
β
the

(ϵ)

αβt

β
≤ αβϵ

β
= αϵ.

According to Eq. 22, we have:

na
the(ϵ) ≤ nb

the(ϵ). (28)

The exp(RPE) series follows the same trend as TRF, the
smaller the series, the smaller the TRF.

We provide several examples of how to compute TRF in
the Appendix.

Two New RPEs
Based on the proven conditions of length extrapolation, we
can design infinite kinds of RPEs with the length extrapo-
lation property. Here, we propose two new RPEs to empiri-
cally prove the conditions and hypothesis, namely:

Type1 : bn =
1

n2
= exp(−2 lnn),

Type2 : bn = exp(− ln2 n);

The corresponding TRF of Type 1 is:

Bij =

j−1∑
i=0

1

(i+ 1)2
≈
∫ j

1

1

x2
dx = 1− 1

j
, B = 1.

nthe(ϵ) = inf
j
(Bij > B(1− ϵ))

= inf
j

(
1− 1

j
> 1− ϵ

)
= Θ

(
1

ϵ

) (29)

For Type 2, it is difficult to provide the analytical form of
its TRF. However, we can prove that the TRF of Type 2 is
smaller than the TRF of Type 1 using Theorem 0.5 and the
inequality below:

∀c1, c2 > 0,
exp(− ln2 n)

c1
<

1/n2

c2
, n → ∞.

Empirical Validation
Setting All models are implemented in Fairseq (Ott et al.
2019) and trained on 8 V100 GPUs. We use the same model
architecture and training configuration for all RPE variants
to ensure fairness. For Wikitext-103 (Merity et al. 2016),
since it is a relatively small dataset, we use a 6-layer trans-
former decoder structure with an embedding size of 512. For
other datasets, in particular, we used a 12-layer transformer
decoder structure with an embedding size of 768. The evalu-
ation metric is perplexity (PPL) and the max training length
during training is 512. The detailed hyper-parameter settings
are listed in Appendix.

Dataset We conduct experiments on Wikitext-103 (Mer-
ity et al. 2016), Books (Zhu et al. 2015), Github (Gao et al.
2020) and WikiBook (Wettig et al. 2022). Wikitext-103 is
a small dataset containing a preprocessed version of the
Wikipedia dataset. It is widely used in many NLP papers.
Books has a large number of novels, making it a good corpus
for long sequence processing. Github consists of a sizable
amount of open-source repositories, the majority of which
are written in coding languages. WikiBook is a 22-gigabyte
corpus of Wikipedia articles and books curated by (Wettig
et al. 2022). This corpus is used to validate the performance
of various models on large datasets.

Validating The Sufficiency. To empirically validate the
sufficiency of our discovered conditions, we integrate the
two RPEs that were proposed in the previous section into
transformers and test their length extrapolation capability on
Wikitext-103, Books, Github, and WikiBook datasets. We
increase the length of the inference sequence from 512 to
9216 tokens and plot the testing PPLs of our proposed RPEs
as well as those of existing methods such as Alibi, Kerple,
and Sandwich in Figure 3. All these methods demonstrate
good length extrapolation capability. However, the stabilized
PPL may vary due to the effectiveness of different posi-
tional encoding strategies, which are not considered in this
paper. We include the Sinusoidal (Vaswani et al. 2017) po-
sitional encoding as a reference method that cannot extrap-
olate, which grows rapidly as the inference sequence length
increases.

Validating The Necessity. Although we only provide
mathematical proof for the sufficiency of our discovered
conditions, we also attempt to verify their necessity empir-
ically in this section. Specifically, we pick two RPEs that
are very close to satisfying Theorem 0.4 as follows. Note
that both of them concentrate their weight on neighboring
tokens.

Example1 : bn =
1

n
, Example2 : bn =

1

n lnn

Below is a brief mathematical proof that the above RPEs do
not satisfy Theorem 0.4.

k∑
n=1

1

n
>

∫ k+1

1

1

x
dx = ln(k + 1),

k∑
n=3

1

n lnn
>

∫ k+1

3

1

x lnx
dx = ln ln(k + 1)− ln ln 3.
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Figure 3: Sufficiency validation on Wikitext-103, Books,
Github, WikiBook datasets (in top to down order). To test
length extrapolation capability, we lengthen inference se-
quences from 512 to 9216 tokens and plot the testing PPLs
of our proposed Type 1 and Type 2 RPEs, as well as Alibi,
Kerple, and Sandwich.

We then empirically test their length extrapolation ca-
pability on Wikitext-103, Books, Github, and WikiBook
datasets by scaling the inference sequence length from 512
to 9216 tokens. As shown in Figure 4, the PPLs of both RPEs
grow rapidly as the length of the testing sequence increases.
It demonstrates that both of them cannot extrapolate. We
also include Type 1 RPE in Figure 4 as a reference.

2000 4000 6000 8000
Inference length

25

30

35

40

45

50

55

P
P

L

1
n
1

nlnn
Type1

2000 4000 6000 8000
Inference length

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

P
P

L

1
n
1

nlnn
Type1

2000 4000 6000 8000
Inference length

0

10

20

30

40

50

60

70

P
P

L

1
n
1

nlnn
Type1

2000 4000 6000 8000
Inference length

25

50

75

100

125

150

175

200

P
P

L

1
n
1

nlnn
Type1

Figure 4: Necessity validation on Wikitext-103, Books,
Github, WikiBook datasets (in top to down order). We select
two RPEs that do not satisfying Theorem 0.4, e.g., bn = 1

n

and bn = 1
n lnn .

Validating TRF We validate our proposed TRF by com-
paring the trend between the TRF and ERF. We plot the
TRFs and ERFs of the Alibi, Kerple, Sandwich, and our pro-
posed RPEs on the aforementioned datasets. As observed in
Figure 6 and Figure 5, while the curves vary across datasets,
TRF estimates a similar overall trend of ERFs.

Visualizing RPE We visualize the weighting schemes of
Type 1 and 2 in Figure 7, i.e., the heatmap of exp(RPE).
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Figure 5: We plot the ERF for Alibi, Kerple, Sandwich and
our proposed Type 1 and Type 2 methods on Wikitext-103,
Books, Github, and WikiBook datasets using trained mod-
els. ERF is normalized for better visualization.

Type 2 concentrates weights on closer neighboring tokens
than Type 1, indicating a smaller TRF and ERF as shown in
Figure 6 and Figure 5. We also visualize other methods in
Appendix.

Conclusion
In this paper, we explore the secrets of transformer length
extrapolation in language modeling. We first make a hypoth-
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Figure 6: We numerically plot TRFs for existing methods
and our proposed method. TRF is normalized for visualiza-
tion. The TRF of Type 1 is larger than Type 2, which matches
the Theorem 0.5 and our analysis.

(a) Type1 (b) Type2

Figure 7: We plot the heatmap of exp(RPE) for Type 1 and
Type 2. Type 2 concentrates weights on closer neighboring
tokens than Type 1, indicating a smaller TRF.

esis about extrapolation and then derived the sufficient con-
ditions for RPE to have the length extrapolation property.
A thorough mathematical analysis reveals that a transformer
model is certain to be capable of length extrapolation if the
series that corresponds to the exponential of its RPE con-
verges. This observation brings an extra bonus: we can esti-
mate TRFs of RPEs solely based on their formulations. We
chose two new RPEs that satisfy the conditions and two that
do not to empirically prove the sufficiency of the conditions
on four widely used datasets. We also validated our TRFs by
comparing them with ERFs on these datasets as well. The
results show that our TRFs can accurately reflect the actual
receptive fields of RPEs before training.
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