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Abstract

Information sharing through communication is essential for
tackling complex multi-agent reinforcement learning tasks.
Many existing multi-agent communication protocols can be
viewed as instances of message passing graph neural net-
works (GNNs). However, due to the significantly limited
expressive ability of the standard GNN method, the agent
feature representations remain similar and indistinguishable
even though the agents have different neighborhood struc-
tures. This further results in the homogenization of agent be-
haviors and reduces the capability to solve tasks effectively.
In this paper, we propose a multi-agent communication pro-
tocol via identity-aware learning (IDEAL), which explicitly
enhances the distinguishability of agent feature representa-
tions to break the diversity bottleneck. Specifically, IDEAL
extends existing multi-agent communication protocols by in-
ductively considering the agents’ identities during the mes-
sage passing process. To obtain expressive feature represen-
tations for a given agent, IDEAL first extracts the ego network
centered around that agent and then performs multiple rounds
of heterogeneous message passing, where different parameter
sets are applied to the central agent and the other surrounding
agents within the ego network. IDEAL fosters more expres-
sive communication between agents and generates more dis-
tinguishable feature representations, which promotes action
diversity and individuality emergence. Experimental results
on various benchmarks demonstrate IDEAL can be flexibly
integrated into various multi-agent communication methods
and enhances the corresponding performance.

Introduction
Communication is crucial for multi-agent systems as each
individual typically has limited visibility or capabilities of
the environment. Through effective communication, humans
are able to function as a team rather than a mere collection
of individuals. To emulate the human team, multi-agent re-
inforcement learning (MARL) has investigated to develop
agents that can autonomously learn to coordinate to solve
complex tasks in real-world environments. Multiple agents
must consider the behaviors of other agents, making it vital
to allow agents to share information in MARL. Since the in-
troduction of pioneering works such as DIAL (Foerster et al.
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Figure 1: An example on the football game.

2016) and CommNet (Sukhbaatar, Fergus, and et al. 2016),
how to achieve efficient multi-agent communication learn-
ing has been a popular research area.

Recently, graph neural network (GNN) has been devel-
oped as an efficient representation learning method, which
can process the topological information and attribute infor-
mation of the graph-structured data to feature representa-
tion learning for the final tasks. GNN has been widely em-
ployed in constructing multi-agent communication. In this
context, agents are typically represented as nodes within a
graph, where the communication channels between them
are depicted as edges. Many state-of-the-art MARL methods
fall into this GNN-based communication paradigm, includ-
ing CommNet (Sukhbaatar, Fergus, and et al. 2016), IC3Net
(Singh, Jain, and Sukhbaatar 2019), TarMAC (Das, Gervet,
and Romoff 2019), MAGIC (Niu, Paleja, and Gombolay
2021), DGN (Jiang, Dun, and Huang 2020), LSC (Sheng
et al. 2022), DICG (Li et al. 2021), G2ANet (Liu, Wang,
and Hu 2020). Other MARL methods such as DIAL (Foer-
ster et al. 2016), and SchedNet (Kim et al. 2019) do not fall
within the GNN-based communication paradigm as they uti-
lize a fixed message-passing structure (Morris, Barrett, and
Pretorius 2022).

However, recent studies have demonstrated that the ex-
pressive capabilities of these traditional GNNs are upper-
bounded by the 1-WL test (Morris et al. 2019), further lim-
iting the expressivity of multi-agent communication con-
structed using them. Specifically, in the context of multi-
agent communication utilizing current GNNs, a significant
limitation arises where agents with distinct neighborhood
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structures can result in identical computational graphs, ren-
dering them indistinguishable. As shown in Figure 1, con-
sider a football game where different agents have similar ob-
servations. We assume that the agent selects the two nearest
neighbor agents within its field of view to establish a com-
munication edge and construct the graph. For convenience,
Figure 1 only shows the neighborhood structure of Agents
A and Agent B, and it can be seen that Agent A and Agent
B have different neighborhood structures.

However, it can be observed that after using the previ-
ous GNN-based communication learning protocol, Agent A
and Agent B still generally chose a similar behavior, that
is, to move forward together to intercept the football. Since
the neighborhood structures of Agent A and Agent B are
different, we expect them to take different actions, such as
defending different players or one of them backing up to
defend and the other moving forward to intercept the foot-
ball. The limited expressive ability of traditional GNN leads
to the similar feature representation of Agent A and Agent
B, which results in similar behavior. The homogenization of
behavior tends to lead to local optimization of cooperative
strategies, which seriously hinders effective exploration and
reduces the final performance.

In our work, we investigate the expressive multi-agent
communication from a perspective of identity informa-
tion. We present a multi-agent communication protocol via
identity-aware learning (IDEAL) to break diversity bottle-
neck and achieve expressive communication by explicitly
improving the distinguishability of agent feature represen-
tations. IDEAL introduces the identity information to GNN-
based multi-agent communication protocol by applying in-
ductive identity coloring and multiple rounds of heteroge-
neous message passing. Specifically, for a specific agent,
IDEAL constructs the ego network centered around the
agent. Subsequently, the message passing process is applied,
with different sets of parameters utilized to compute the
message representations from the center agent and the rest
of the agents. Compared with existing GNN-based com-
munication methods, IDEAL produces more distinguishable
agent feature representations and fosters more expressive
communication between agents, thus facilitating the emer-
gence of action diversity and individuality. IDEAL can be
flexibly combined with existing multi-agent communication
protocols. We select 8 baselines and conduct experiments on
4 popular MARL benchmarks, and the results demonstrate
improved performance over these baselines, which empha-
size the effectiveness and versatility of IDEAL. Our key con-
tributions include:

• We investigate the expressiveness of multi-agent commu-
nication, which is a key factor in effectively accomplish-
ing multi-agent tasks, but has been largely ignored by the
existing communication protocol.

• We propose a novel communication protocol with
identity-aware learning (IDEAL) to promote expressive
communication by explicitly encouraging feature rep-
resentation distinguishability. IDEAL imposes no con-
straints on the GNN architecture, making it easily appli-
cable to various communication protocols.

Related Work
Graph Neural Network The term graph neural network
(GNN) can cover a large variety of different models. In our
work, we define it as corresponding to the definition of Mes-
sage Passing Graph Neural Network (Gilmer, Schoenholz,
and Riley 2017), which is considered to be the most gen-
eral GNN architecture. Prominent examples of this GNN
architecture contain GCN (Duvenaud et al. 2015), GAT
(Veličković et al. 2017), and GraphSAGE (Hamilton, Ying,
and Leskovec 2017). Recently, several GNN models have
been presented that possess expressive capability beyond the
1-WL test, as discussed in (Chen et al. 2019; Li et al. 2020).
However, these works often introduce additional compo-
nents that are typically specific to certain tasks or domains,
extending beyond the standard GNN.

Some GNN models utilize node coloring techniques with
augmented features to enhance the performance of existing
GNNs (Veličković et al. 2020; Xu et al. 2019). However,
these coloring techniques are problem and domain-specific,
focusing on tasks such as link prediction, without general
applicability to node-level tasks. On the contrary, ID-GNN
(Jiaxuan et al. 2021) stands out as a versatile method that
can be utilized for various node-level and edge-level tasks.
It takes a more inclusive approach by adopting a heteroge-
neous message passing method. It is compatible with sce-
narios, where edges or nodes possess plentiful and diverse
features. In our work, we manage to bring this advantage to
the multi-agent communication setting.

GNN-based MARL Various MARL works have utilized
GNNs to establish a communication protocol among agents.
In our work, we use the following GNN-based MARL meth-
ods as the baselines. CommNet (Sukhbaatar, Fergus, and
et al. 2016) defines a learnable communication channel that
enables agents to enter and exit the other agents’ commu-
nication range. It can be directly mapped to GNN methods
where the mean is utilized for aggregation. IC3Net (Singh,
Jain, and Sukhbaatar 2019) operates similarly to Comm-
Net, with the distinction that its communication is controlled
by a gating mechanism. TarMAC (Das, Gervet, and Ro-
moff 2019) utilizes a soft attention mechanism to determine
the extent to which a message is processed by an agent.
This method implicitly generates a complete communication
graph, which can be effectively modeled using GAT.

MAGIC (Niu, Paleja, and Gombolay 2021) constructs a
communication graph and utilizes GAT for multiple rounds
of communication. DGN (Jiang, Dun, and Huang 2020) op-
erates on graphs derived deterministically from the environ-
ment. It is worth noting that DGN is the only value-based
one among our selected baselines. LSC (Sheng et al. 2022)
introduces a hierarchical GNN to facilitate efficient multi-
agent communication learning through exchanging mes-
sages among agents and groups. G2ANet (Liu, Wang, and
Hu 2020) proposes a game abstraction technique that com-
bines both hard and soft-attention mechanisms, which en-
ables dynamical learning of interactions between agents.
DICG (Li et al. 2021) comprises a module dedicated to infer-
ring the structure of a dynamic coordination graph, and then
utilizes GNN to learn implicit reasoning about joint actions.
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Preliminaries
A graph can be denoted as G = (V,E), in V = {1, ..., n}
represents the node set and E ⊆ V × V denotes the edge
set. Nodes have the feature X = {xi | ∀i ∈ V }, while edges
can be paired with the feature F = {fij | ∀eij ∈ E}. A
GNN contains multiple message passing layers, where each
layer updates the node features/embeddings/labels (these
terms can be used interchangeably). The target of a GNN is
to learn meaningful embeddings hi for nodes through itera-
tive aggregation of local neighborhoods network. For node
i, the l-th iteration of the message passing, or the l-th layer
of a GNN, can be represented as follows:

ml
i = MEl

(
hl−1
i

)
, (1)

hl
i = AGl

({
ml

i, i ∈ N(i)
}
, hl−1

i

)
, (2)

where hl
i denotes the node embedding after l iterations,

h0
i = xi, ml

i denotes the message representation and N(i)
denotes the local neighbor nodes of node i. Different GNN
methods have a variety of definitions of MEl(·) and AGl(·).
For instance, GraphSAGE utilizes the definition (W l , U l

are trainable weights) as follows:

ml
i = RELU

(
W lhl−1

i

)
, (3)

hl
i = U l CON

(
MAX

({
ml

j , j ∈ N(i)
})

, hl−1
i

)
, (4)

where CON denotes the concatenate operation. The node
embeddings hl

i, ∀i ∈ V are then utilized for node, edge pre-
diction tasks.

Methodology
Here we present expressive multi-agent communication via
identity-aware learning (IDEAL), which can make any mes-
sage between agents more expressive in GNN-based MARL
methods. It is worth noting that IDEAL is universal and any
existing GNN-based MARL methods can be flexibly inte-
grated with IDEAL.

Overview of IDEAL
In general, a fundamental limitation of existing communi-
cation in these methods is that two agents with different
neighborhood structures may have the same computational
graph, making the feature embeddings of agents appear in-
distinguishable. As shown in Figure 2, we assume that the
agents have similar observations, so there are no distinguish-
ing features initially. In multi-agent tasks, we need to distin-
guish the final feature embeddings of Agent A and Agent B
with different neighbor structures. However, all GNN-based
MARL methods, regardless of their communication rounds
i.e., the number of GNN layers, always assign similar final
feature embeddings to both Agent A and Agent B because
their computational graphs are the same (as shown in the
middle row). On the contrary, IDEAL provides a colored
computational graph that can clearly distinguish the feature
embeddings of Agent A and Agent B, because the colored
computational graphs of two agents are no longer the same.

A B

B

B

Example of two agents 
A and B with different 
neighborhood 
structures

Existing
computational
graphs of GNN-
based MARL
methods

Agent with augmented identity

A

A
Computational
graphs
of IDEAL

Agent without augmented identity

≠

=

Figure 2: An overview of the proposed IDEAL.

Problem Formulation
We investigate the Decentralized Partially Observable
Markov Decision Process (DEC-POMDP) (Oliehoek 2012)
setting augmented with multi-agent communication. In this
setting, at each timestep t, each agent i receives a local par-
tial observation oti, then selects and takes an action ati, and
obtains a reward rti . Two paradigms of MARL are consid-
ered: value-based and actor-critic. To maintain conciseness,
the term “actor network” is utilized to refer collectively to
the Q-network in the value-based paradigm and the policy
network in the actor-critic paradigms. In our work, we as-
sume parameter sharing by default among the networks of
different agents. Parameter sharing is a commonly employed
technique in MARL to facilitate faster and more stable train-
ing. Most successful multi-agent communication protocols
can be modeled within the framework as follows.

At each time step, we construct graph G = (V,E) where
nodes V (G) represent all agents and edges E(G) represent
communication channels (i, j) between agents i and j. Be-
sides, the node i in the graph is labeled with the local ob-
servation of agent i. Then we fed this graph into a GNN,
which produces high-level feature embeddings for each
agent. These embeddings are subsequently passed through
the actor network of the corresponding agent. We assume
that the actor networks employ shared weights, and use them
to replace a final GNN layer L. In this case, ai = D(hL

i ),
where hL

i represents the feature representation after passing
through layer L and D represents the shared actor network.

Based on the definition provided in (Morris, Barrett, and
Pretorius 2022), communication protocols that fit within this
framework are referred to as graph decision network (GDN).
Assuming shared weights of the actor network, any GDN
simplifies to an issue of labeling nodes in GNN. For a given
node, the correct label is the output of the corresponding
actor network that aims to maximize the reward. From here
on, we focus solely on GDNs with a shared actor network.
Although action selection is analogous to the node-labeling
problem, the agents are trained not in a supervised learning
way but in the typical MARL way (using reward signal).
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Inductive Identity Coloring
IDEAL consists of two crucial components: 1) inductive
identity coloring, which involves injecting identity infor-
mation into each agent; 2) heterogeneous message passing,
which utilizes identity information during the process of
message passing. Specifically, we utilize the inductive iden-
tity coloring technique to differentiate the agent itself (the
root agent in the computational graph as shown in Figure 2)
from other neighboring agents within their respective com-
putational graphs. To embed the feature of a specific agent
i ∈ G utilizing a L− layer GNN with IDEAL, we first ex-
tract the L− hop ego network GL

i of agent i.
Next, we distribute a unique coloring to the central agent

of the ego network GL
i . In total, agents in GL

i are classified
into two classes during the embedding procedure: agents
with coloring and agents without coloring. This coloring
technique is considered inductive as it enables the center
agent of the ego network to be distinguished from other
neighboring agents, regardless of the permutation of their
order. In MARL, the policy of an agent should not be based
on the order that messages are obtained at a given time step,
essentially being permutation invariant. Contrarily, methods
like ATOC (Jiang and Lu 2018) utilize LSTMs for message
aggregation, which are not permutation invariant and thus
do not fall within the GNN-based communication paradigm.
Since the order of agents can often be permuted in MARL,
this coloring technique is more effective compared to label-
ing each agent feature with a one-hot encoding, which is
transductive and cannot be generalized to unseen graphs.

Heterogeneous Message Passing
We subsequently conduct L rounds of message passing on
all the extracted ego networks. To obtain the feature em-
bedding of agent j ∈ GL

i , we extend Eq.(1) and Eq.(2) to
facilitate heterogeneous message passing as follows:

ml
c = MEl

I[c=i]

(
hl−1
c

)
, (5)

hl
j = AGl

({
ml

c, c ∈ N(j)
}
, hl−1

j

)
, (6)

where only hL
i is utilized as the feature embedding for agent

i after applying L rounds of Eq.(6). Unlike Eq.(1), we uti-
lize two sets of MEl functions, where MEl

1(·) is utilized
for agents with identity coloring, and ME

(l)
0 (·) is applied

to agents without coloring. We utilize the indicator function
I[c = i] to index the selection of these functions, where
I[c = i] = 1 if c = i else 0. This enables the encoding
of inductive identity coloring into the IDEAL computational
graph. An advantage of this message passing technique is its
applicability to any GNN-based MARL. For instance, con-
sider the following message passing strategy, which expands
upon the definition of GNNs in Eq.(5) and Eq.(6) by incor-
porating edge attributes fcj during the process of message
passing:

ml
cj = MEl

I[c=i]

(
hl−1
c , fcj

)
, (7)

hl
j = AGl

({
ml

cj , c ∈ N(j)
}
, hl−1

j

)
. (8)

Algorithm 1: IDEAL
Input: G(V ;E), agent observations {oi, ∀i ∈ V }, number
of layers L ; trainable functions MEl

1(·) for agents with
identity coloring, MEl

0(·) for the rest of agents; EGO(i, l)
extracts the L -hop ego network centered at agent i, indica-
tor functionI[c = i] = 1 if c = i else 0
Output: ai for all i ∈ V

1: for i ∈ V do
2: xi ← EN(oi)
3: GL

i ← EGO(i, L)
4: h0

j ← xj , ∀j ∈ GL
i

5: for l = 1, . . . , L do
6: for j ∈ GL

i do
7: hl

j ← AGl
(

8:
{
MEl

I[c=i]

(
hl−1
c

)
, l ∈ N(j)

}
, hl−1

j

)
9: hi ← hL

i

10: ai ← D(hL
i )

Algorithm of IDEAL

Algorithm 1 shows the instantiation of IDEAL. Given the
agent observations {oi, ∀i ∈ V }, we use the encoder to pro-
cess it and generate the initial agent feature {xi, ∀i ∈ V }.
Then xi is fed to IDEAL, which consists of two crucial com-
ponents: inductive identity coloring and heterogeneous mes-
sage passing. After L rounds of message passing, we obtain
the expressive feature representation hL

i . Assuming that the
actor networks utilize shared weights, we can utilize them
to replace the final GNN layer L. Next, we use the actor
networks to obtain the action ai = D(hL

i ). IDEAL gen-
erates more distinguishable feature representations, which
promotes diversity of actions.

Given the objective of analyzing expressivity, it is not es-
sential to consider how the IDEAL agent is trained. The fo-
cus is solely on the capability of the method to generate the
desired output, rather than the specifics of the training pro-
cess leads to convergence. What matters is that there exist
“optimal” outputs for each agent in the actor network, deter-
mined by some metric of optimality. We can then evaluate
the model’s ability to produce these outputs. Even in scenar-
ios involving heterogeneous agents, this paradigm can still
be applied by incorporating a portion of the observations
to indicate the agent’s class, often achieved through one-
hot encoding. Methods incorporating recurrent networks can
still fit into this framework, in which the cell or hidden states
of the networks can be regarded as part of the observations.

In addition to introducing identity coloring and two
classes of message passing, the computation of IDEAL
closely resembles the widely used GNNs in other multi-
agent communication methods. The simplicity of IDEAL
holds promise for further exploration into the expressiveness
of multi-agent communication. In the experiment, when the
number of trainable parameters is matched, the training time
of the MARL method using IDEAL and traditional GNN is
almost identical.
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Figure 3: Illustration of the four selected MARL benchmarks.

Experiments
To demonstrate the effectiveness of IDEAL, we conduct
various experiments on four MARL benchmarks: Predator-
Prey, Traffic Junction, Battle, and SMAC. For each bench-
mark, we chose two different GNN-based MARL meth-
ods as the baselines. Table 1 summarizes these baselines.
All implementations have been extended to support multi-
ple rounds of message-passing, and the capability for base-
line communication to be masked by the environment has
been enhanced. The detailed hyper-parameters are given in
the Appendix. All baseline methods have been introduced in
related work and are briefly summarized as follows.
• TarMAC utilizes GAT with a soft attention mechanism to

determine the extent to which a message is processed.
• MAGIC constructs a communication graph and utilizes

GAT for multiple rounds of communication.
• CommNet can be directly mapped to GNN methods,

where the mean is utilized for aggregation.
• IC3Net has complete communication and uses a gating

mechanism to control communication.
• DGN operates on graphs derived deterministically from

the environment and is the only value-based method.
• LSC introduces a hierarchical GNN to facilitate efficient

multi-agent communication learning.
• G2ANet utilizes GAT that combines both hard and soft-

attention mechanisms to learn communication.
• DICG utilizes GNN to learn communication and implicit

reasoning about joint actions.

Baseline GNN structure Benchmark
TarMAC Implicit GAT Predator-Prey
MAGIC Explicit GAT Predator-Prey
CommNet Sum aggregation Traffic Junction
IC3Net Sum aggregation Traffic Junction
DGN Explicit GCN Battle
LSC Explicit GCN Battle
G2ANet Explicit GAT SMAC
DICG Explicit GCN SMAC

Table 1: GNN structure and benchmark of baselines.

Predator-Prey
We employ the Predator-Prey benchmark introduced in
(Singh, Jain, and Sukhbaatar 2019). As shown in Figure
3(a), there are multiple predators with limited sight, whose
goal is to find stationary prey. The predators are able to select
actions such as moving left, right, up, or down. We use the
“mixed” mode of the Predator-Prey environment, where the
predators receive a reward of -0.05 for each time step until
they find the prey. The success of an episode is determined
by whether all the predators find the prey before reaching
a predefined maximum limited time. We have designed two
difficulty levels in the Predator-Prey benchmark. The diffi-
culty level increases with the number of predators and grid
size, requiring more effective communication among the
predators to achieve success. The two difficulty levels are
defined as follows: 10 × 10 grid with 5 predators, and 20 × 20
grid with 10 predators. In this domain, a higher-performing
method is defined as one that minimizes the average number
of steps required to complete an episode.

Table 2 illustrates the average number of steps taken
to complete an episode at convergences (predator capture
the prey). In two scenarios, TarMAC-IDEAL and MAGIC-
IDEAL capture prey faster than the corresponding baseline
TarMAC and MAGIC, respectively. Figure 4(a) illustrates
the learning curves of IDEAL and baseline methods in the
high-difficulty benchmark with size 20 × 20. In this scenario,
there is a significant improvement over the baselines, with
an average gap of nearly 5 steps in terms of performance.
Figure 5(a) depicts the average number of epochs required
to converge with different numbers of agents. TarMAC-
IDEAL and MAGIC-IDEAL maintain more quick conver-
gence compared with the corresponding baseline as the
number of agents increases.

Method 10 × 10 20 × 20
TarMAC 13.26 ± 0.10 36.22 ± 0.95
TarMAC-IDEAL 10.94 ± 0.07 31.57 ± 0.62
MAGIC 12.81 ± 0.05 33.12 ± 0.17
MAGIC-IDEAL 9.72 ± 0.03 28.45 ± 0.11

Table 2: The average number of steps required to complete
an episode at convergence in Predator-Prey.
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Figure 4: Learning curves of IDEAL and baseline methods in four benchmarks.

Traffic Junction
We utilize the Traffic Junction benchmark as introduced
in (Sukhbaatar, Fergus, and et al. 2016). This environment
serves as a useful benchmark for evaluating the effectiveness
of communication. It consists of intersecting routes and cars
acting as agents, each with limited visibility. The primary
objective in this environment is to ensure effective commu-
nication among the cars to prevent collisions. In this environ-
ment, cars enter the junction from various entry points with
a probability denoted as p. The maximum number of cars
Nc allowed in the junction at any given time is constrained.
At each time step, cars have two possible actions: “gas” or
“brake”. The task is designed with three levels of difficulty,
which differ based on the number of potential routes, entry
points, and junctions present in the scenario.

We evaluate the performance of IDEAL and other base-
lines on two difficulty levels. In the medium difficulty level,
as shown in Figure 3(b), the traffic junction benchmark con-
tains two, two-way roads arranged on a 14 × 14 grid, and
the maximum number of agents in the domain is ten (Nc=
10, p = 0.2). The hard difficulty level involves four, two-way
roads on a 18 × 18 grid, and the maximum number of agents
in the domain is twenty (Nc= 20, p = 0.05). The objective
is to maximize the success rate, defined as the absence of
collisions within an episode.

Table 3 presents the success rate achieved by each method
at convergence in the two difficulty levels. Figure 4(b) il-
lustrates the learning curve for each method in the medium
difficulty level. In both scenarios, CommNet-IDEAL and
IC3Net-IDEAL outperform their respective baseline meth-
ods, CommNet and IC3Net. Figure 5(b) displays the average
number of epochs required for each method to converge. As
the number of agents grows, IC3Net-IDEAL and CommNet-
IDEAL exhibit faster convergence rates compared to their
corresponding baseline methods.

Method Medium Hard
CommNet 53.62 ± 13.81 51.56 ± 2.37
CommNet-IDEAL 65.27 ± 11.07 67.04 ± 4.28
IC3Net 87.83 ± 3.06 73.26 ± 8.72
IC3Net-IDEAL 92.15 ± 2.63 82.45 ± 6.81

Table 3: The win rate of IDEAL and baseline methods in
Traffic Junction.

Battle
We select Battle scenario from MAgent (Zheng et al. 2018).
Figure 3(c) displays the Battle scenario, consisting of Y ally
agents and Z enemy agents. The objective for the ally agents
is to learn to defeat all enemy agents. Each agent can choose
between two actions: move or attack. While individual en-
emy agents possess more capabilities than individual ally
agents, the ally agents must develop cooperative strategies,
such as encircling, to effectively fight against the enemies.
Since the Battle scenario tends to become unbalanced af-
ter the death of agents, we introduce stochastic additions of
new ally or enemy agents to maintain balance. In our experi-
ments, IDEAL and other baseline methods are trained under
the same settings, with Y = 40 and Z = 24. an agent re-
ceives a positive reward of +5 when successfully attacking
an enemy. A negative reward of -2 is incurred when an agent
is killed by an enemy, and a negative reward of -0.01 is given
when an agent hits a blank grid.

Figure 4(c) illustrates the mean reward for each method in
Battle scenario. It is observed that LSC-IDEAL and DGN-
IDEAL outperform their corresponding baselines, LSC and
DGN, respectively. When dealing with an individual enemy,
agents trained with IDEAL demonstrate the ability to coor-
dinate their actions, surround the enemy, and achieve vic-
tory. Table 4 presents the performance of IDEAL and base-
line methods in Battle scenario. IDEAL consistently outper-
forms the other baselines in terms of kills, kill-death ratio,
and mean reward. To investigate the scalability of IDEAL
in large-scale multi-agent scenarios, we compared it with
other baselines in Battle scenario under different numbers
of agents Y ∈ {20, 30, 40, 50}. As depicted in Figure 5(c),
IDEAL consistently outperforms the baselines as the num-
ber of agents grows. This demonstrates the scalability ability
of IDEAL, highlighting its effectiveness in handling large-
scale multi-agent communication problems.

Method Kills K/D ratio Mean reward
DGN 216 ± 6 2.32 ± 0.16 0.92 ± 0.17
DGN-IDEAL 225 ± 8 2.41 ± 0.19 0.96 ± 0.21
LSC 247 ± 5 2.60 ± 0.21 1.12 ± 0.03
LSC-IDEAL 252 ± 5 2.68 ± 0.23 1.16 ± 0.02

Table 4: Performance of IDEAL and baseline methods in
Battle scenario.
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Figure 5: Performance of IDEAL and baseline methods as the number of agents increase in four benchmarks.

SMAC

The StarCraft Multi-Agent Challenge (SMAC) (Vinyals
et al. 2019) is a benchmark designed within the popular
strategy game StarCraft II. In SMAC, all the ally agents are
trained using MARL methods, while the enemy agents are
controlled by the built-in AI. The action space for the agents
in SMAC consists of four actions: move, attack, no-op (no
operation), and stop. The attack action allows ally agents to
fire at enemy agents within a range of 6. At each time step,
ally agents can choose to attack to obtain a global reward.
Additionally, they receive an additional reward for killing
an enemy agent or winning the game. To provide a more
challenging coordination task for the ally agents, we have
fine-tuned the default experimental settings, which reduces
the scope of vision for ally agents from 9 to 2.

Figure 4(d) displays the win rates achieved by different
methods in scenario 1o10b vs 1r in SMAC. This scenario
contains an Overseer, 10 Baneling, and an enemy Roach.
The objective for the teammates of 1 Overseer and 10 Banel-
ing is to eliminate this Roach to obtain the winning reward.
In an effective communication strategy, the Banelings have
the option to remain silent while the Overseer encodes its po-
sition features and communicates it to the Banelings. Table
5 exhibits the performance of different methods in the other
two scenarios: MMM2 and 1c3s5z. In MMM2, symmetric
teams comprising 7 Marines, 2 Marauders, and 1 Medivac
spawn at fixed points, with the enemy team assigned the
task of attacking the ally team. To emerge victorious, agents
must learn to effectively communicate their health status to
Medivac. 1c3s5z scenario consists of Colossus, Stalkers, and
Zealots for both the ally agents and enemy agents. In this
scenario, the ally agents must learn numerous tactics to win.
The presence of efficient information interaction makes it
easier for agents to learn these strategies and coordinate their
actions effectively.

Method MMM2 1c3s5z
G2ANet 80.24 ± 4.37 91.25 ± 1.73
G2ANet-IDEAL 85.31 ± 3.62 94.12 ± 0.94
DICG 83.45 ± 5.42 93.46 ± 1.26
DICG-IDEAL 89.23 ± 3.32 95.13 ± 1.13

Table 5: The win rate of IDEAL and baseline methods in
some scenarios in SMAC.

As depicted in Figure 4(d) and Table 5, DICG-IDEAL
and G2ANet-IDEAL methods exhibit superior performance
compared to their respective baselines, DICG and G2ANet.
Generally, as the number and classes of agents grow,
the interactions between diverse classes of agents become
more intricate, therefore learning policies become progres-
sively challenging. To validate the scalability of the pro-
posed method, we conduct experiments in scenarios 1c3s5z,
2c3s5z, and 3c5s7z, where the types of agents are the same
but the number is increasing. Figure 5(d) illustrates that as
the number of agents increases, the difficulty of communica-
tion learning intensifies, leading to a drop in the win rate of
the baselines. However, even in the face of these challenges,
IDEAL consistently maintains a remarkably high win rate
while the number of agents grows.

Conclusions
We have introduced IDEAL as a versatile and powerful ex-
tension to existing GNN-based communication protocols.
IDEAL enhances multi-agent communication protocols by
incorporating agents’ identity information in the message
passing process. By facilitating more expressive communi-
cation among agents and generating distinct feature repre-
sentations, IDEAL promotes the emergence of action di-
versity and individuality. Experimental results on various
benchmarks validate that IDEAL can be flexibly integrated
into diverse multi-agent communication methods and im-
prove the performance of these methods.

The simplicity of IDEAL holds great promise for further
exploration of expressive multi-agent communication. Our
work encourages additional research into GNN-based multi-
agent communication approaches as well as more generic
yet powerful forms of communication learning. We antici-
pate that the enhanced expressiveness and proven practical
applicability of the proposed IDEAL will enable exciting
new applications and advancements in multi-agent commu-
nication. In future work, we intend to further investigate the
relationship between communication expression ability and
the performance of downstream real-world tasks.
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Veličković, P.; Ying, R.; Padovano, M.; Hadsell, R.; and
Blundell, C. 2020. Neural execution of graph algorithms.
In International Conference on Learning Representations
(ICLR).
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; and et al.
2019. Grandmaster level in StarCraft II using multi- agent
reinforcement learning. Nature, 575(7782): 350–354.
Xu, K.; Li, J.; Zhang, M.; Du, S. S.; Kawarabayashi, K.-
i.; and Jegelka, S. 2019. What can neural networks reason
about? In International Conference on Learning Represen-
tations (ICLR).
Zheng, L.; Yang, J.; Cai, H.; Zhou, M.; Zhang, W.; Wang,
J.; and Yu, Y. 2018. Magent: A many-agent reinforcement
learning platform for artificial collective intelligence. In
AAAI Conference on Artificial Intelligence (AAAI).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17361


