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Abstract
In this paper, we introduce a new challenge for synthesiz-
ing novel view images in practical environments with lim-
ited input multi-view images and varying lighting condi-
tions. Neural radiance fields (NeRF), one of the pioneering
works for this task, demand an extensive set of multi-view
images taken under constrained illumination, which is of-
ten unattainable in real-world settings. While some previous
works have managed to synthesize novel views given im-
ages with different illumination, their performance still re-
lies on a substantial number of input multi-view images. To
address this problem, we suggest ExtremeNeRF, which uti-
lizes multi-view albedo consistency, supported by geomet-
ric alignment. Specifically, we extract intrinsic image com-
ponents that should be illumination-invariant across different
views, enabling direct appearance comparison between the
input and novel view under unconstrained illumination. We
offer thorough experimental results for task evaluation, em-
ploying the newly created NeRF Extreme benchmark—the
first in-the-wild benchmark for novel view synthesis under
multiple viewing directions and varying illuminations.

Introduction
Neural radiance fields (NeRF) (Mildenhall et al. 2020) have
recently made a substantial impact on 3D vision. Through
optimizing a multi-layered perceptron (MLP) for mapping
3D point locations to color and volume density, NeRF sig-
nificantly outperforms prior works (Lombardi et al. 2019;
Sitzmann, Zollhöfer, and Wetzstein 2019; Mildenhall et al.
2019) in novel view synthesis.

However, what if only a few images collected from the in-
ternet or mobile phones taken under unconstrained illumi-
nation conditions are available? In most cases, NeRF-based
novel view synthesis under such a practical environment is
often limited since it 1) requires a massive amount of data
for reliable synthesis results, and 2) assumes constrained il-
lumination conditions among input views to encode a view-
dependent color. These are key drawbacks for practical us-
age of NeRF, as they disable view synthesis on images that
were casually collected or captured in daily life.

NeRF-W (Martin-Brualla et al. 2021) pioneered view
synthesis with inputs under varying illumination, en-
abling novel view synthesis from internet-collected tourism
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Two sets of sparse inputs with varying illuminations

NeRF-W (CVPR’21) RegNeRF (CVPR’22) ExtremeNeRF (Ours)

Figure 1: Few-shot view synthesis results on few inputs with
varying illuminations. Our ExtremeNeRF demonstrates reli-
able results in comparison to baseline methods for two spe-
cific scenarios: NeRF under varying illuminations (NeRF-
W) and few-shot view synthesis (RegNeRF).

images (Snavely, Seitz, and Szeliski 2006). Subsequent
work (Chen et al. 2022) enables appearance hallucination
of the synthesized image given unconstrained image collec-
tions, by learning a view-consistent appearance of the scene.
However, these works are hindered by the limited number
of input images (see Fig. 1). Moreover, previous works that
deal with few-shot view synthesis (Yu et al. 2021; Jain, Tan-
cik, and Abbeel 2021; Kim, Seo, and Han 2022; Niemeyer
et al. 2022; Deng et al. 2022; Yang, Pavone, and Wang 2023)
are often hindered by the illumination variation due to the
characteristic of NeRF that learns radiance dependent on
viewing direction and illumination.

In this paper, we address the problem of novel view syn-
thesis of scenes given only sparse input images taken under
unconstrained illumination, for the first time. Our proposed
method, dubbed ExtremeNeRF, leverages intrinsic decom-
position to mitigate the problem. The color of the scene re-
ferred to as albedo, plays an essential role in maintaining
consistency regardless of changes in viewing direction or il-
lumination conditions (see Fig. 2).
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Figure 2: Intrinsic decomposition on multi-view images un-
der varying illumination. Estimated albedo maps exhibit
more illumination invariance compared to color maps, re-
sulting in lower differences across multiple views.

Since NeRF often struggles in rendering a large-size patch
due to the complexity, it is challenging to infer intrinsic
components from the rendered images that are largely de-
pendent on global contexts (Ye et al. 2022). To overcome
this, we first extract the global context-aware pseudo-albedo
ground truth of the inputs in the offline process. By enforc-
ing a patch-wise module to decompose the same albedo as
the pseudo-ground-truth, we then achieve global context-
aware intrinsic decomposition during NeRF’s optimization
with minimum computational costs in an end-to-end man-
ner. This albedo consistency loss is supported by the geo-
metric alignment and depth consistency loss, which provides
correspondences between pixels to compare and encourages
correct geometry synthesis.

In evaluating our proposed method, we utilize the bench-
mark datasets (Snavely, Seitz, and Szeliski 2006; Chen et al.
2022) as well as our newly developed NeRF Extreme bench-
mark. NeRF Extreme represents the first-of-its-kind bench-
mark for in-the-wild novel view synthesis, capturing scenes
under multiple viewing directions and varying illumination.

Related Work
Neural radiance fields. Since the introduction of
NeRF (Mildenhall et al. 2020), various extensions have
been proposed (Pumarola et al. 2021; Park et al. 2021; Jain
et al. 2022; Poole et al. 2022; Yuan et al. 2022b; Kuang et al.
2023). However, NeRF still relies on a massive amount
of images taken under consistent illumination. Some of
the works investigate ways to synthesize novel views with
sparse input views. Yu et al. (Yu et al. 2021) has proved
that leveraging knowledge priors leads to better few-shot
view synthesis. The following works (Wang et al. 2021;
Jain, Tancik, and Abbeel 2021; Wang et al. 2022; Kim,
Seo, and Han 2022; Deng et al. 2023) have suggested a
variety of priors to improve the performance. Other works
have focused on building geometry constraints to address
the distortions that arise from sparse input views. Deng
et al. (Deng et al. 2022) and Xu et al. (Xu et al. 2022)
have presented depth prior-based methods, as (Attal et al.

RegNeRF NeRF-W NeROIC Ours
Varying-illum. ✗ ✓ ✓ ✓
Few-shot ✓ ✗ ✓ ✓
Frontal-facing ✓ ✓ ✗ ✓

Table 1: Our method enables few-shot view synthesis given
non-object-centric images taken under varying illumination.

2021; Roessle et al. 2022; Johari, Lepoittevin, and Fleuret
2022; Yuan et al. 2022a). Some of the other methods (Chen
et al. 2021; Johari, Lepoittevin, and Fleuret 2022; Watson
et al. 2022; Wynn and Turmukhambetov 2023) utilize
implicit geometry priors for the task. Recently, RegN-
eRF (Niemeyer et al. 2022) suggest depth smoothness
constraints enhance the rendered novel view geometry,
while FreeNeRF (Yang, Pavone, and Wang 2023) add
frequency regularization on it. View synthesis with inputs
taken under varying illuminations is covered by some of
the previous works (Martin-Brualla et al. 2021; Chen et al.
2022), however, they rely on a massive amount of input
images (see Tab. 1) rather than sparse input views.

Illumination decomposition. Various frameworks have
been developed to tackle the problem of decomposing mul-
tiple scene properties including illumination, some of which
rely on large datasets of paired images and ground truth in-
formation (Li et al. 2020, 2021; Choi et al. 2023). Other
approaches, such as those proposed in works like (Li and
Snavely 2018; Liu et al. 2020; Das, Karaoglu, and Gevers
2022), have explored methods to address the problem of de-
composing illumination-invariant color from the scene. With
the help of NeRF, some of the recent works (Boss et al.
2021a,b, 2022; Toschi et al. 2023) include NeROIC (Kuang
et al. 2022) deal with a neural decomposition of an image.
However, they require massive multi-view sampling of an
object, rather than a scene. Decomposing illumination from
a scene involves the complex interaction of indirect illumi-
nation and scene geometries, aspects that are not extensively
addressed in object-level neural decomposition. Other recent
works (Ye et al. 2022; Rudnev et al. 2022; Kuang et al. 2023;
Yang et al. 2023) deal with NeRF-based inverse rendering
of a scene, however, focusing on disentanglement of a scene
component rather than view synthesis.

Preliminaries
Neural radiance field. NeRF (Mildenhall et al. 2020) is
a view-synthesis framework that maps 5D inputs (3D coor-
dinate and viewing direction of a ray) to color and volume
density, denoted by c and σ, respectively. Specifically, with a
ray rx(t) = o+ tdx, where o, dx, and t indicate camera ori-
gin, ray direction, and scene bound at pixel location x ∈ R2,
respectively, a view-dependent color ĉ(x) ∈ [0, 1]

3 can be
rendered such that

ĉ(x) =

∫ tf

tn

T (t)σ(t)c(t)dt, (1)

while T (t) = exp(−
∫ t

tn
σ(s)ds) and σ(·), c(·) are density

and color predictions from the network, respectively. Simi-
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Figure 3: Overall architecture of our ExtremeNeRF. PIDNet extracts intrinsic components from the synthesized patch ĉ(x) while
enforcing extracted albedo to be identical with the pseudo-albedo ground truth. A weight term ω(x) and depth consistency loss
Ldc encourage proper correspondence matching between two views. A bold, crimson arrow indicates the inference phase.

larly, a depth value d̂(x) at x can also be rendered as

d̂(x) =

∫ tf

tn

T (t)σ(t)tdt. (2)

Optimization in NeRF relies on a mean squared error on
synthesized color ĉ(x) as

Lcolor =
∑
x∈S

∥ĉ(x)− cgt(x)∥22, (3)

where S indicates the set of sampled pixels, and cgt(x) in-
dicates ground-truth color at x. Since volume density σ is
also optimized based on the color consistency across differ-
ent views, violation of the consistent illumination assump-
tion results in inaccurate geometry.

Intrinsic decomposition. Intrinsic decomposition aims to
decompose an image into illumination-invariant color, re-
ferred to as albedo, and shading, based on the Lambertian
assumption that every observed surface is diffuse. Specifi-
cally, a pixel color c(x) is formulated as a multiplication of
the albedo (a(x)) and the shading (s(x)) as follows:

log c(x) = log a(x) + log s(x). (4)

However, most real-world objects have surfaces whose re-
flectances vary upon viewing directions and are often lit by
colored lights. Thus, Eq. 4 can be rewritten as follows:

log c(x) = log a(x) + log s(x) + l +R, (5)

which takes light color vector l and non-Lambertian residu-
als R into account (Li and Snavely 2018).

Real-world image intrinsic decomposition remains a chal-
lenging, imperfectly solved task. While recent works (Li and
Snavely 2018; Liu et al. 2020; Das, Karaoglu, and Gevers

2022) demonstrate reliable performance, they still face lim-
itations with unseen and challenging cases. Additionally, re-
lying on global context for large-resolution image rendering
in NeRF incurs computational and memory expenses.

Method
Overview
The objective of this work is to build an illumination-robust
few-shot view synthesis framework by regularizing albedo
that should be identical across multi-view images regardless
of illumination. Our major challenges are to 1) achieve re-
liable geometry alignment between different views and 2)
decompose the albedo of a rendered view without extensive
computational costs.

Instead of directly addressing NeRF-based intrinsic de-
composition, we integrate a pre-existing intrinsic decompo-
sition network with NeRF optimization. Our approach in-
volves a few-shot view synthesis framework that employs
an offline intrinsic decomposition network, offering global
context-aware pseudo-albedo ground truth without the com-
putational overhead. As illustrated in Fig. 3, FIDNet pro-
vides pseudo-albedo ground truths for the input images be-
fore the start of the training, guiding PIDNet to extract in-
trinsic components for novel synthesized views based on
these pseudo truths and multi-view correspondences. This
allows our NeRF to learn illumination-robust few-shot view
synthesis through cross-view albedo consistency. Subse-
quent subsections detail each framework component.

Albedo Estimation
Building upon our hypothesis that albedo aids in view syn-
thesis with varying illumination inputs, it is crucial to de-
compose intrinsics from both the input and the novel views.
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DTU PT NeRD ReNe Ours
Indoor ✓ ✗ ✓ ✓ ✓
Outdoor ✗ ✓ ✓ ✗ ✓
Real-world ✓ ✓ ✓ ✓ ✓
In-the-wild ✗ ✓ ✗ ✗ ✓
Frontal-facing ✗ ✓ ✗ ✗ ✓

Table 2: Multi-illumination dataset comparison. Our NeRF
Extreme dataset provides in-the-wild, non-object-centric,
and varying illumination images taken indoors and outdoors.

Instead of relying on optimization-based methods (Boss
et al. 2021a,b, 2022; Ye et al. 2022), which may yield
sub-optimal outcomes with limited data (0.06 times less),
we propose a concise two-stage intrinsic decomposition
pipeline: a full-image and patch-wise intrinsic decomposi-
tion network, called FIDNet and PIDNet, respectively. FID-
Net, formulated with a pre-trained intrinsic decomposition
model, extracts the albedo of the input images - pseudo-
albedo ground truths - offline, to guide PIDNet with global
contexts. Given the guidance, PIDNet extracts albedo (â(x))
of the synthesized color patch with the size of Spatch at
the novel view (ĉ(x)), minimizing the difference with the
pseudo-ground truth, Lac (Eq. 8), supported by multi-view
alignment process described below.

Geometry Alignment and Regularization
For any 3D point xw ∈ R3 in a world coordinate, a cam-
era projection from xw to pixel location x can be defined by
the inverse of camera-to-world transformation T ∈ SE(3)
and camera intrinsics K ∈ R3×3. Likewise, a mapping from
pixel location to 3D point can be defined by the inverse op-
eration and d(x), the depth at the pixel location, as:

x = KT−1xw, xw = Td(x)K−1x̄. (6)

Note that x̄ = [xT , 1], a homogeneous representation of x.
Given a pixel x in the novel view, we need the pixel x′

in the input view depicting the same 3D point xw as x for
cross-view consistency. If the depth of a given image pixel
d(x) is known, x′ can be obtained by Eq. 6 as follows:

x′ = (K ′T ′−1T )d(x)K−1x̄, (7)

where K ′, T ′ and K,T indicate camera intrinsics and
camera-to-world matrices of the input and novel view, re-
spectively.

Albedo consistency. Based on the pixel correspondence
obtained above, we can impose image consistency between
inputs and novel views. However, under varying illumina-
tion, Eq. 3 cannot regularize view-dependent color as it
does under constrained illumination, for its different inter-
actions within illumination (see Fig. 2). To overcome this,
we present L-2 normalized albedo consistency loss Lac for-
mulated as follows:

Lac =
∑
x∈P

ω(x)∥â(x)− â(x′)∥22, (8)

where â(x), â(x′) indicate the extracted albedo from the
novel and the input view, respectively, while P denotes all
the pixels in the novel view. A weight term ω(x) is described
below.

Visibility mask. The projective transformation often uti-
lizes incorrect synthesized depth values. For all cases, a pro-
jection error on x′, denote by Eproj can be defined as follow:

Eproj(x′) = (d̂(x′)− d̃(x′))2, (9)

where d̂(x′) and d̃(x′) indicate rendered depth and projected
depth, a byproduct of Eq. 7, repsectively. A projection er-
ror Eproj should be close to zero if there exists neither self-
occlusion nor ill-synthesized floating artifacts.

We define visibility mask to exclude invalid cases for
multi-view consistency. First, we set the mask as 0 if the pro-
jected pixel x′ is outside of the field of view. Secondly, we
exclude the unrelated pixel pairs caused by the scene geom-
etry (occlusions). To distinguish the projection errors caused
by the scene geometry from the ones caused by the floating
artifacts, we define a weight term ω as

ω(x) = re(1− (Eproj(x)/Mproj)), (10)

where re and Mproj indicate the error rate coefficient and
the maximum projection error, respectively. The role of w
is to control the weight of the cross-view consistency con-
cerning the amount of projection error. As inaccurate geom-
etry alignments are rectified during optimization while oc-
clusions persist, re diminishes toward the end criteria, lead-
ing to a reduction in the number of pairs that are enforced to
maintain cross-view consistency.

Depth consistency. A direct minimization of Eproj can be
counterproductive due to occlusion, by smoothing two unre-
lated surface depths. Instead, we present a depth consistency
loss Ldc that regularizes the amount of projection error be-
tween adjacent pixels. Depth consistency loss Ldc in the in-
put view can be defined such that

Ldc =
∑

x′∈P′

∑
y∈N (x′)

(Eproj(y)− Eproj(x′))2, (11)

where y indicates one of the 4-neighbor adjacent pixels
N (x′) for x′. P ′ denotes all the pixels in the input view.

Total Loss
In addition to the loss functions Lac and Ldc, we incorporate
several constraints for the optimization of NeRF and PID-
Net: the depth smoothness loss Lds (Niemeyer et al. 2022),
the edge-preserving loss Ledge (Godard, Mac Aodha, and
Brostow 2017), the intrinsic smoothness loss Lpid (Li and
Snavely 2018), the chromaticity consistency loss Lchrom (Ye
et al. 2022), and the frequency regularization mask, pro-
posed by FreeNeRF (Yang, Pavone, and Wang 2023). Fur-
ther details are provided in the supplementary material.

Experiments
In this section, we provide extensive comparisons with the
baselines using our newly proposed datasets. Further results
and details can be found in the supplementary material.
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NeRF under varying-illumination Few-shot NeRF Few-shot NeRF under varying-illumination
NeRF-W (CVPR’21) Ha-NeRF (CVPR’22) RegNeRF (CVPR’22) FreeNeRF (CVPR’23) NeROIC-Geom. (SIG’22) ExtremeNeRF (Ours)

Figure 4: Qualitative comparison on Phototourism F3 benchmark. Synthesized novel views of ‘Brandenburg Gate’, ‘Sacre
Coeur’, and ‘Trevi Fountain’ (from top to bottom), generated by the baselines and our proposed method in 3 view input images.

Brandenburg Gate Sacre Coeur Trevi Fountain

SSIM ↑ LPIPS ↓ Abs Rel ↓ SSIM ↑ LPIPS ↓ Abs Rel ↓ SSIM ↑ LPIPS ↓ Abs Rel ↓
NeRF-W (CVPR’21) 0.39 0.59 0.84 0.46 0.52 0.94 0.16 0.64 0.65
Ha-NeRF (CVPR’22) 0.50 0.43 0.78 0.46 0.52 0.94 0.39 0.48 0.52
RegNeRF (CVPR’22) 0.27 0.56 3.54 0.39 0.44 2.44 0.43 0.37 0.64
FreeNeRF (CVPR’23) 0.31 0.50 4.53 0.32 0.45 3.62 0.45 0.36 0.57

NeROIC-Geom. (SIG’22) 0.30 0.63 0.89 0.34 0.66 0.85 0.11 0.70 0.79
ExtremeNeRF (Ours) 0.56 0.36 0.78 0.49 0.38 1.28 0.57 0.36 0.59

Table 3: Quantitative comparison on Phototourism F3 in 3 view setting proves that our model succeeded in synthesizing fine
geometry details.Bold texts for the best performance, and underline for the 2nd best.

Datasets
In Table 2, Phototourism (PT) and its variants (Snavely,
Seitz, and Szeliski 2006; Chen et al. 2022) are the only
benchmarks that exhibit both pose and illumination varia-
tions. However, these datasets are not suitable for few-shot
view synthesis due to their randomness. For extensive ex-
periments, we construct two datasets for the evaluation of
few-shot view synthesis under varying illumination.

Phototourism F3. Phototourism F3(Frontal Facing Few-
shot), a subset of Phototourism (Snavely, Seitz, and Szeliski
2006) dataset, is specifically curated for evaluating few-shot
view synthesis under varying illumination. Frontal-facing
scenes within similar depth bounds and significant illumi-
nation variation in ‘Brandenburg Gate’, ‘Sacre Coeur’, and
‘Trevi Fountain’ are selected for the task. The ground truth
depth maps are provided by Phototourism. The rationale be-
hind building a frontal-facing subset can be found in the sup-
plementary material.

NeRF Extreme. To build a benchmark that fully reflects
unconstrained environments, we collected multi-view im-

ages with varying light sources such as multiple light bulbs
and the sun using the the mobile phone camera. We took 40
images per scene - 30 images in the train set and 10 images
in the test set. The training sets are captured with at least
three different lighting conditions. The camera poses and
depth maps are obtained using the COLMAP (Schönberger
et al. 2016) and multi-view stereo method (Giang, Song, and
Jo 2022), respectively. NeRF Extreme is the first in-the-wild
multi-view dataset with varying illumination, whose scenes
are not limited to object-centric or outdoor scenes.

Experimental Settings
Baselines. Since there is no previous work that deals with
scene-level few-shot view synthesis under varying illumina-
tion, we compare our proposed method against three types
of baselines. 1) NeRF under varying illumination: NeRF-
W (Martin-Brualla et al. 2021), Ha-NeRF (Chen et al.
2022), 2) Few-shot NeRF: RegNeRF (Niemeyer et al. 2022),
FreeNeRF (Yang, Pavone, and Wang 2023), and 3) Few-shot
NeRF under varying-illumination: NeROIC (Kuang et al.
2022). For NeROIC, we report NeROIC-Geom results as
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NeRF under varying-illumination Few-shot NeRF Few-shot NeRF under varying-illumination
NeRF-W (CVPR’21) Ha-NeRF (CVPR’22) RegNeRF (CVPR’22) FreeNeRF (CVPR’23) NeROIC-Geom. (SIG’22) ExtremeNeRF (Ours)

mip-NeRF RegNeRF ExtremeNeRF (Ours)

Figure 5: Qualitative comparison on NeRF Extreme benchmark. A synthesized novel view of ‘Cafe’, ‘Kitchen’, and
‘Flower’ (from top to bottom), generated by the baselines and our proposed method.

Cafe Kitchen Flower

SSIM ↑ LPIPS ↓ Abs Rel ↓ SSIM ↑ LPIPS ↓ Abs Rel ↓ SSIM ↑ LPIPS ↓ Abs Rel ↓
NeRF-W (CVPR’21) 0.32 0.55 0.64 0.60 0.47 0.35 0.62 0.42 0.55
Ha-NeRF (CVPR’22) 0.36 0.54 0.62 0.54 0.52 0.37 0.65 0.43 0.70

RegNeRF (CVPR’22) 0.36 0.48 0.66 0.55 0.39 0.34 0.58 0.49 0.78
FreeNeRF (CVPR’23) 0.39 0.43 0.90 0.55 0.40 0.81 0.60 0.42 0.86

NeROIC-Geom. (SIG’22) 0.25 0.67 0.80 0.47 0.58 0.49 0.49 0.55 0.54
ExtremeNeRF (Ours) 0.48 0.38 0.51 0.62 0.34 0.35 0.67 0.40 0.49

Table 4: A quantitative comparison of NeRF Extreme in 3 views demonstrates the superior performance of our ExtremeNeRF.

NeROIC-Full exhibits some divergence. Note that NeROIC
is tailored for object-centric scenes, not frontal-facing ones.

For comparison, we used the mean SSIM, LPIPS metric
of the synthesized image, and Abs Rel (Absolute Relative
Error) of the synthesized depth map. Similar works (Martin-
Brualla et al. 2021; Chen et al. 2022; Kuang et al. 2022)
have evaluated performance using PSNR after relighting to
match the target illumination. However, our main aim is to
highlight improved geometry details rather than relighting.
Moreover, the baselines struggle with proper relighting in a
few-shot setting, making PSNR unsuitable for evaluation.

Implementation details. Our framework is based on the
implementation of RegNeRF (Niemeyer et al. 2022). For
FIDNet, the official code and model of IIDWW (Li and
Snavely 2018) trained with BigTimes dataset are used with-
out fine-tuning. An image size of 300 × 400 is used for the
training, with Spatch = 32 × 32. We train every scene for
70K using 4 NVIDIA A100 GPUs.

Computational complexity. Except for a few-shot NeRF,
most methods require about 10 to 20 hours of training time
to achieve optimal performance on 4 NVIDIA A100 GPUs.

For few-shot NeRFs, RegNeRF (Niemeyer et al. 2022), our
proposed method, and FreeNeRF (Yang, Pavone, and Wang
2023) take 2,4 and 1.5 hours in 3 views, respectively.

Experimental Results
Comparisons with the baselines. Fig. 4 and Fig. 5 show
the qualitative comparison between our ExtremeNeRF and
other baseline methods on Phototourism F3 and NeRF Ex-
treme, respectively. In the 1st and 2nd rows, baselines deal-
ing with varying illumination lack input images, resulting
in smoothed geometry details. For few-shot NeRF methods
(the 3rd and 4th rows), synthesized geometries face chal-
lenges due to inconsistent illumination. Particularly, base-
lines exhibit higher distortion when confronted with sig-
nificant illumination variations, as observed in the ‘Bran-
denburg Gate’ and ‘Cafe’ scenes, respectively. The results
are further supported by quantitative comparisons in Tab.3
and Tab.4, especially with a large improvement in SSIM
and LPIPS (bold texts for the best performance, and under-
line for the 2nd best). In the case of NeROIC (Kuang et al.
2022), synthesized results from NeROIC-Geom., which is
a partially optimized version of the method, are reported.
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Cafe Kitchen Flower

SSIM ↑ LPIPS ↓ Abs Rel ↓ SSIM ↑ LPIPS ↓ Abs Rel ↓ SSIM ↑ LPIPS ↓ Abs Rel ↓
1-1. w/o AC 0.414 0.42 0.92 0.60 0.35 0.79 0.63 0.41 0.86
1-2. w/ AC - w/o FIDNet 0.413 0.42 0.92 0.60 0.35 0.80 0.63 0.42 0.88
1-3. w/ AC - Albedo MLP 0.413 0.42 0.92 0.59 0.35 0.85 0.64 0.41 0.89
1-4. w/ AC (PIENet) 0.445 0.39 0.89 0.60 0.35 0.79 0.62 0.42 0.88

2-1. w/o DC 0.470 0.39 0.89 0.62 0.35 0.81 0.62 0.44 0.88
2-2. w/o Visibility Mask 0.404 0.43 0.92 0.60 0.36 0.80 0.62 0.43 0.89

ExtremeNeRF (Ours) 0.476 0.38 0.51 0.62 0.34 0.36 0.67 0.40 0.49

Table 5: Ablation study of our ExtremeNeRF. Ablation studies on two different groups are provided, in terms of 1) albedo
consistency (AC) and 2) depth consistency (DC).

Ha-NeRF FreeNeRF Ours w/o AC ExtremeNeRF (Ours)

Figure 6: Depth map comparison. Depth maps paired with
synthesized images of ‘Cafe’ scene of NeRF Extreme
benchmark are selected (Best viewed in color).

SSIM ↑ LPIPS ↓ Abs Rel ↓
NeRF-W (CVPR’21) 0.38 0.51 0.79
RegNeRF (CVPR’22) 0.44 0.35 0.76
ExtremeNeRF (Ours) 0.45 0.34 0.76

Table 6: Quantitative comparison on the ‘fern’ scene of the
LLFF (Mildenhall et al. 2020) in 3 view settings.

Note that the entire model shows diverged results on frontal-
facing scenes. In all cases, our method demonstrates plausi-
ble synthesized results with fine geometry details. Addition-
ally, Fig. 6 illustrates that our model exhibits reliable depth
synthesis, leading to the expectation of achieving plausible
video synthesis performance, even when the Abs Rel score
is compatible with each other (‘Brandenburg Gate’ scene).

Ablation studies. Tab. 5 shows groups of ablation stud-
ies to validate the design choices of our work. Each studies
related to albedo consistency (1-1 to 1-4) and depth con-
sistency (2-1 to 2-2). The additional ablation studies on the
patch size and learned priors can be found in the supplemen-
tary material.

The experiments in the first group demonstrate that in-
corporating albedo consistency between the input and novel
views contributes to the regularization of geometry. Quan-
titative results in 1-2, reveal that removing albedo consis-
tency leads to sub-optimal performance, indicating the im-
portance of this constraint for well-constrained optimization

of a novel view. A qualitative comparison of the synthesized
maps in Fig. 6 supports the idea that incorporating albedo
consistency contributes to reliable depth estimation. In 1-3
and 1-4, we provide empirical evidence that FIDNet serves
as a suitable guide for achieving cross-view consistency,
rather than MLP that synthesizes albedo. In 1-4, we replace
the FIDNet model from IIDWW (Li and Snavely 2018) with
the other intrinsic decomposition model (Das, Karaoglu, and
Gevers 2022), however, shows degraded performance. Note
that FIDNet can be substituted with other models in our
framework if they exhibit superior performance.

The experiments in the second group illustrate that depth
consistency, when taken into account with proper consid-
eration of scene geometry, contributes to improved geom-
etry. Ablating depth consistency (2-1) and visibility mask
(2-2) results in unreliable depths, as enforcing consistency
between unrelated surfaces leads to undesirable outcomes.

Comparisons on LLFF. To assess performance on the
benchmark with constrained illumination, Table 6 compares
results on the ’fern’ scene from the LLFF (Mildenhall et al.
2019) dataset. RegNeRF (Niemeyer et al. 2022) shows mi-
nor differences compared to our method when illumina-
tion is shared among inputs, while NeRF-W (Martin-Brualla
et al. 2021) significantly degrades with few-shot inputs.

Conclusion and Further Work
In this paper, we proposed ExtremeNeRF, which can synthe-
size a novel view in practical environments, where neither
a large amount of multi-view images nor consistent illumi-
nation is available. By regularizing albedo which should be
identical across different views, our method can directly reg-
ularize appearance instead of interpolating view-dependent
color as vanilla-NeRF did. We have proved that the pro-
posed method outperforms other previous works with new
benchmarks in a few-shot view synthesis under an uncon-
strained illumination environment. Any few-shot NeRF can
obtain illumination-robust regularization by utilizing our
proposed albedo consistency constraints on their optimiza-
tion. However, similar to other optimization-based NeRF ap-
proaches, relighting a scene given sparse inputs remains a
challenge. Further, significant illumination variation may re-
sult in noisy input camera poses. Addressing these problems
could be a potential direction for our future work.
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