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Abstract

The wavelet transform has emerged as a powerful tool in
deciphering structural information within images. And now,
the latest research suggests that combining the prowess of
wavelet transform with neural networks can lead to unpar-
alleled image deraining results. By harnessing the strengths
of both the spatial domain and frequency space, this inno-
vative approach is poised to revolutionize the field of image
processing. The fascinating challenge of developing a com-
prehensive framework that takes into account the intrinsic
frequency property and the correlation between rain residue
and background is yet to be fully explored. In this work, we
propose to investigate the potential relationships among rain-
free and residue components at the frequency domain, form-
ing a frequency mutual revision network (FMRNet) for image
deraining. Specifically, we explore the mutual representation
of rain residue and background components at frequency do-
main, so as to better separate the rain layer from clean back-
ground while preserving structural textures of the degraded
images. Meanwhile, the rain distribution prediction from the
low-frequency coefficient, which can be seen as the degrada-
tion prior is used to refine the separation of rain residue and
background components. Inversely, the updated rain residue
is used to benefit the low-frequency rain distribution predic-
tion, forming the multi-layer mutual learning. Extensive ex-
periments demonstrate that our proposed FMRNet delivers
significant performance gains for seven datasets on image de-
raining task, surpassing the state-of-the-art method ELFormer
by 1.14 dB in PSNR on the Rain100L dataset, while with sim-
ilar computation cost. Code and retrained models are avail-
able at https://github.com/kuijiang94/FMRNet.

1 Introduction
Images captured under adverse weather conditions, such as
rain, snow, and fog, suffer from noticeable degradation of
scene visibility and clarity. It is harmful to many outdoor
computer vision systems, such as autonomous driving (Te-
ichmann et al. 2018; Zhong et al. 2022) and video surveil-
lance (Bae 2019; Huang et al. 2018).

Image deraining, aiming to produce a high-quality rain-
free image from a given rain image, is a highly desir-
able component of intelligent decision-making in aforemen-
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Figure 1: Comparative results regarding PSNR plots on dif-
ferent wavelet coefficients on the R100L dataset. As ex-
pected, the wavelet-free based methods (MPRNet (Zamir
et al. 2021) and ELFormer (Jiang et al. 2022)) achieve con-
siderable performance on the horizontal coefficient, which
suffers from the lightest degradation. By contrast, our pro-
posed FMRNet still gains impressive scores on the vertical
and approximation coefficients, where the structure and tex-
tural information are seriously destroyed by the rain pertur-
bation due to similar directions to rain streaks.

tioned intelligence systems. Conventional methods (Bar-
num, Narasimhan, and Kanade 2010; Garg and Nayar 2005)
provide available schemes, but behave poor generalization
to the highly complex and varied rainy scenes because of
the specific hand-crafted priors and assumptions.

To rectify this weakness, deep-learning based meth-
ods (Fu et al. 2017a; Li et al. 2018; Wang et al. 2020) pro-
mote further progress in innovative architectures and train-
ing practices for rain removal tasks, and show considerable
superiority over conventional algorithms in visual quality
improvement. However, due to aliasing effects between rain
residue and background details, existing CNN-based meth-
ods (Ren et al. 2019; Deng et al. 2020) struggle with gener-
ating consistent distributions with missing details (Liu et al.
2020). One reason lies in that the rain residue and back-
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ground intrinsically overlap, inferring the pixel residue value
to eliminate the rain perturbation in an image inevitably de-
stroys the contextual and structural information.

To tackle this issue, the authors in (Jiang et al. 2021b) pro-
pose to learn the joint representation of rain residue and rain
streak, as well as their blending relations, and employ the
relations to refine the joint features in a coupled represen-
tation manner. Although these strategies have demonstrated
its effectiveness in eliminating rain perturbation while partly
recovering impaired background details, the image derain-
ing remains to be a non-trivial problem to reconstruct pixel
values as the output of network in image domain (refer to
Figure 1). As a result, learning the separation of rain residue
and background in image space fails to handle with aliasing
artifacts and preserve structure well.

By contrast, wavelet transform (Mallat 1996) can de-
pict the contextual and textural information of an image
at different levels and is reversible, which shows impres-
sive performance in deep networks for various computer vi-
sion tasks (Yu et al. 2021), including image super-resolution,
dehazing, deraining (Yang, Yang, and Wang 2020; Huang
et al. 2021) and so on. Although wavelet-based methods
are professional in capturing more structural information,
they mainly focus on the representation of individual coeffi-
cients, yet seldom consider the mutual relationship between
them. Apart from the independent learning, these methods
still ignore the aliasing effects among perturbation residue
and background in the frequency domain, showing unsatis-
fied robustness to the complex degradation on image content
by perturbation. Usually, it makes deraining results visually
vulnerable and inconsistent with real contents on the con-
trast. That in turn naturally raises a question.

Whether the coupling and association learning between
rain residue and background components can be extended to
the frequency domain to explore the mutual relation among
wavelet coefficients for better rain perturbation removal and
background restoration?

To find a reasonable solution, unlike (Jiang et al. 2021b;
Kui et al. 2022) characterising the coupling relation be-
tween rain residue and background in image domain, we
propose to learn their mutual representation and refinement
in the frequency space. In particular, we devise a multi-level
mutuality learning mechanism between the low-frequency
rain residue, complete rain residue and background to pro-
mote the model representation and compactness. The multi-
level mutual relations are featured as: i) the predicted low-
frequency rain residue can help the estimation of the com-
plete rain distribution; ii) the rain residue provides the degra-
dation prior (location and intensity) to promote background
recovery; iii) the rain residue and background components
are encoded jointly in a coupled learning manner, where the
complementary and redundant components are adaptively
extracted from each other for refinement.

To this end, we integrate the wavelet transform and mu-
tual learning into a unified framework, and construct a fre-
quency mutual revision network (FMRNet) for single im-
age deraining. The philosophies behind FMRNet involve i)
characterizing the rain residue and background distribution
from the predicted low-frequency degradation via associa-

tion representation; ii) refining the separation between rain
residue and background components via their mutual rela-
tion. Specifically, we devise a multi-level mutuality fusion
module (MMFM) to achieve the low-frequency and com-
plete rain residue estimation as well as background recov-
ery via the mutual representation. More details regarding
the design of MMFM are elaborated in Section 3.2. Simi-
lar to (Jiang et al. 2021b), the divide-and-conquer approach
is introduced by dividing the separation task into multiple
stages via a cascaded framework to progressively achieve
the separation and refinement of rain distribution and back-
ground. Finally, a reconstruction module (RM) is designed
to generate the predicted rain-free image and residual rain
image, while compositing the rainy image, approaching
to the original rainy input to form the closed loop self-
supervision.

Overall, the main contributions are summarized as
• We propose a frequency mutual revision network (FM-

RNet) to eliminate rain perturbation while preserving
background textures in frequency space. To the best of
our knowledge, this is the first attempt to investigate the
multi-level mutual representation of low-frequency rain
residue, rain residue and background in frequency space.

• A novel multi-level mutuality fusion module (MMFM)
is devised to characterize rain distribution while refining
background components via the mutual learning. In ad-
dition, the predicted low-frequency rain distribution pro-
vides prior knowledge to complete the rain residue while
guiding background recovery with degradation prior (lo-
cation and intensity).

• Extensive experiments on synthetic and real datasets
demonstrate that our FMRNet approach outperforms
state-of-the-art methods quantitatively and qualitatively
while enjoying considerable computational efficiency.

2 Related Work
In this section, we briefly review the advances in image de-
raining and wavelet transform.

2.1 Single Image Deraining
Prior to the deep learning, conventional methods (Kang, Lin,
and Fu 2012; Liu et al. 2013; Luo, Xu, and Ji 2015; Li et al.
2016) introduce hand-crafted priors into deraining task, and
provide available schemes. However, since the priors and as-
sumptions are designed for specific scenarios, these meth-
ods (Kang, Lin, and Fu 2012; Chen and Hsu 2013) strug-
gle with poor generalization to highly complex and varied
rainy scenes. Recently, deep learning technologies are intro-
duced for rain removal tasks (Jiang et al. 2021a; Li, Cheong,
and Tan 2017; Zhang and Patel 2017), which promote fur-
ther progress in innovative architectures, optimization strate-
gies and training practices, and show significant superiority
over the conventional algorithms in visual quality improve-
ment. For example, some researchers (Jiang et al. 2020; Za-
mir et al. 2021) view the complete rain distribution pre-
diction as the combination of multiple sub-spaces and fur-
ther estimate and aggregate the multi-scale features for tex-
tural reconstruction. Zou et al. (Zou et al. 2022) observe
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Figure 2: The architecture of our proposed frequency mutual revision network (FMRNet). It consists of a feature extraction
module (FEM), several cascaded multi-level mutuality fusion modules (MMFMs), and a reconstruction module (RM). FEM
learns the initial representation of rain residue FR,0, background FB,0 and low-frequency rain residue FR,A,0. MMFM takes
FR,0, FB,0 and FR,A,0 as inputs, where the predicted low-frequency rain distribution (FR,A,0) first provides the prior (local and
degree) to complete the rain residue estimation and background recovery. Then the rain residue and background are encoded
jointly to explore their mutual relations for further refinement. After that the refined rain residue is used to guide the repre-
sentation of low-frequency rain distribution prediction, forming the multi-level mutual revision. Followed by a reconstruction
module, the predicted rain residue (FR,n) and background components (FB,n) are transformed into the image domain to gen-
erate rain-free image (I∗B) and predicted rainy image (I∗Rain), composing the closed loop self-supervision.

that deep degradation representations can be clustered by
degradation characteristics (types of rain) while independent
of image content, and “dream” diverse in-distribution de-
graded images using a deep inversion paradigm, thus lever-
aging them to distill the pruned model. To further promote
background recovery, some researchers employ the associ-
ated learning (Jiang et al. 2021b, 2022) and semantic con-
text (Nanba, Miyata, and Han 2022) to encode the joint rep-
resentation of rain residue and background, where the pre-
dicted rain distribution serves as an extra prior to guide tex-
ture recovery. However, these methods still struggle with
generating results with visually pleasing contents since the
aliasing effects between rain residue and background are un-
able to be completely eliminated via the decomposition in
image domain, consequently destroying contextual and tex-
tural information.

2.2 Wavelet Transform
wavelet transform (Mallat 1989) are widely used for signal
processing tasks (Szu, Telfer, and Kadambe 1992) due to its
reversible property and preeminent ability in depicting the
contextual and textural information of an image at different
levels. Recent studies tend to harmonize the merits to boost
image deraining performance (Yang et al. 2019; Huang et al.
2021). However, besides overlooking the latent interaction
between rain residue and background, these methods (Yang
et al. 2019; Yang, Yang, and Wang 2020) adopt the same
framework or inference strategy for each wavelet coefficient,
ignoring the intrinsic relations and heterogenous representa-
tion among different coefficients. Unlike them, we incorpo-
rate the mutual learning into wavelet transform, and explore
the multi-level mutual revision among rain residue, back-
ground and low-frequency rain residue. Compared to the ex-
isting technologies (Yang et al. 2019; Jiang et al. 2021b),

our proposed frequency mutual revision network (FMRNet)
can take advantage of the predicted low-frequency rain pri-
ors and mutual relations to guide the rain residue prediction
and background recovery. It is more flexible and practical
regarding the learning process.

3 Method
This section first offers the overview of our frequency mu-
tual revision network (FMRNet) and then details the archi-
tecture of our proposed multi-level mutuality fusion module
(MMFM) and its essential components.

3.1 Architecture and Model Optimization
Architecture Overview. Figure 2 outlines the framework
of FMRNet, which involves wavelet transform, initial
rain (FR,0)/background (FB,0) feature extraction, mutual-
learning representation via multi-level mutuality fusion
module (MMFM), and wavelet reconstruction.

Given a rainy image IRain ∈ RH×W×3 and its clean ver-
sion IB ∈ BH×W×3, where H and W denote the spatial
height and width, we first use the Haar wavelet to generate
its corresponding frequency components with the same size
of W/2×H/2×C, including the approximation coefficient
map IR,A, vertical coefficient map IR,V , horizontal coeffi-
cient map IR,H , and diagonal coefficient map IR,D. As il-
lustrated before, the core concept of FMRNet is to learn the
mutual representation between rain residue and background.
We thus devise a feature extraction module (FEM) to encode
the initial distribution. Specifically, a feature mapping block
(FMB) takes these wavelet coefficients as inputs to gener-
ate the initial features. And then a mutual attention block
(MAB) and gated deconv feed-forward network (GDFN)
are used to aggregate the global response with the positive
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importance-weights, followed by two convolutions to gener-
ate the initial representation of rain residue FR,0 and back-
ground FB,0. Based on the previous observation in (Jiang
et al. 2022), the rain distribution in low-frequency wavelet
coefficient gets the similar statistical distribution with that
of the original rainy image space. We extract the initial fea-
ture FR,A,0 of rain distribution in the low-frequency wavelet
coefficient (IR,A) to help the estimation of rain distribution
and background recovery. The aforementioned procedures
are expressed as
Ffea = HGDFN,MAB(HFMB(IR,A, IR,V , IR,H , IR,D)),

FR,0 = Hconv,R(Ffea),

FB,0 = Hconv,B(Ffea),

FR,A,0 = HFMB,R,A(IR,A),
(1)

where HFMB(·) and HFMB,R,A(·) denote feature mapping
functions in FMB, involving an initial convolution and resid-
ual attention block. HGDFN,MAB(·) is the self-attention
calculation to aggregate global response, followed by two
convolutions to generate the initial representation.

Then we pack the initial representation of low-frequency
rain distribution, rain residue and background into multiple
multi-level mutuality fusion modules (MMFMs) to achieve
the progressive separation between rain and background
components. Specifically, the predicted rain distribution of
low-frequency coefficient help the complete rainy estima-
tion. Meanwhile the rain distribution provides the degrada-
tion prior (location and intensity) to guide the recovery of
background contents. More design details are shown in Fig-
ure 2, and the formulaic representation is depicted as
FR,A,n, FR,n, FB,n = GMMFM,n(FR,A,0, FR,0, FB,0).

(2)
Benefiting from the progressively multi-level mutual repre-
sentation, the network holds a perfect way to eliminate rain
perturbation while preserving the background contents. Fi-
nally, the inverse wavelet transform is performed on both
rain and background coefficients to produce the predicted
rain and derained results (Huang et al. 2017).
Model Optimization. Similar to existing studies (Wang
et al. 2023; Jiang et al. 2021b), the Charbonnier penalty
loss (Lai et al. 2017) is used to mediates between the pre-
dicted rain-free image (I∗B) and its ground-truth (IB). Mean-
while, the predicted rainy image I∗Rain is also to approach
the original rainy image IRain to form the closed loop self-
supervision. These constraints are formulated as

LRGB =
√

(I∗B − IB)2 + ε2+α·
√
(I∗Rain − IRain)2 + ε2,

(3)
where the penalty coefficient ε is set to 10−3 with the α set
to 0.2 to balance the loss components. To encourage the fi-
delity of both the structural information and texture restora-
tion, the structural similarity (SSIM) (Wang et al. 2004) loss
is introduced, depicted as
LY = SSIM(I∗B,Y , IB,Y ) + α · SSIM(I∗Rain, IRain). (4)

The final loss function is defined as L = LRGB + λ · LY,
where λ is used to balance the loss components, and experi-
mentally set as −0.15.

3.2 Multi-level Mutuality Fusion Module
For a better separation of rain residue and background, in
this paper, we propose the multi-level mutuality fusion mod-
ule (MMFM) to learn the multi-level mutual representa-
tion, involving the low-frequency rain residue, complete rain
residue and background contents. As shown in Figure 2,
MMFM contains three progressive operations: i) explor-
ing the association learning between the low-frequency rain
residue and complete rain residue and background where
the low-frequency degradation prior is used to guide the
refined representation of both complete rain residue and
background; ii) exploiting the mutual representation of rain
residue and background for a better perturbation elimination
and background restoration; ii) using the refined rain residue
to re-feed the low-frequency rain distribution prediction.

Taking the first MMFM as an example, the first opera-
tion in MMFM involves two feature fusion blocks (FFBs)
(HFFB,R(·) and HFFB,B(·)) and two improved residual
channel attention blocks (RCAB-Ds) (HRCABD,R(·) or
HRCABD,B(·)). The former takes the initial rain residue fea-
ture (FR,A,0) of low-frequency coefficient and rain residue
feature (FR,0) as inputs to learn the association represen-
tation with the guidance of FR,A,0; the latter is used for a
deep accurate learning of association representation and to
produce the refined rain residue prediction. In RCAB-D, the
standard convolution is replaced with depth-wise separable
convolutions (Mehta et al. 2019), which are computationally
more efficient while achieving similar or better performance.
The same operation is performed on the low-frequency rain
residue IR,A,0 and background IB,0. The procedure in the
first operation can be expressed as

fR,1 = HRCABD,R(HFFB,R(FR,0, FR,A,0)) + FR,0,

fB,1 = HRCABD,B(HFFB,B(FB,0, FR,A,0)) + FB,0,
(5)

where fR,1 and fB,1 respectively denote the updated fea-
tures of rain residue and background in the first operation.

The second operation takes fR,1 and fB,1 as in-
puts to learn the mutual representation of rain residue
and background, involving two mutual attention blocks
(MABs) (HMAB,R(·) and HMAB,B(·)) and two RCAB-Ds
(HRCABD,R(·) and HRCABD,B(·)). Specifically, the rain
residue and background components are encoded jointly
in MAB, where the complementary and redundant compo-
nents are adaptively extracted from each other for refine-
ment. Similarly, RCAB-D is used to achieve the deep rep-
resentation and generate the refinement prediction of rain
residue and background. The aforementioned procedures are
depicted as

FR,1 = HRCABD,R(HMAB,R(fR,1, fB,1)) + fR,1,

FB,1 = HRCABD,B(HMAB,B(fB,1, fR,1)) + fB,1,
(6)

where FR,1 and FB,1 refer to the refined representation of
rain residue and background in the second operation. Fol-
lowing that, the refined FR,1 is used to generate the updated
prediction of the low-frequency rain distribution FR,A,1.

Through wavelet transform and multi-level mutuality fu-
sion learning, these operations allow the network to explore
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intrinsic relations among spectra and the mutuality between
rain residue and background, which achieves more impres-
sive and effortless separation of rain residue and background
contents. Our innovative scheme not only outperforms tra-
ditional separation methods in the image space in terms of
accuracy, but also retains the intricate textures.

4 Experiments
To validate our proposed FMRNet, we conduct extensive
experiments on synthetic and real rain-image datasets and
compare it with typical image deraining methods. These
methods include DAWN (Jiang et al. 2023), DANet (Kui
et al. 2022), ELFormer (Jiang et al. 2022), MPRNet (Za-
mir et al. 2021), SWAL (Huang et al. 2021), DRDNet (Deng
et al. 2020), MSPFN (Jiang et al. 2020), IADN (Jiang et al.
2020), and PreNet (Ren et al. 2019).

4.1 Implementation Details
Data Collection. Following (Jiang et al. 2020), we use
13, 700 clean/rain image pairs from (Zhang, Sindagi, and
Patel 2020; Fu et al. 2017b) for training all compared meth-
ods to guarantee fairness since these methods are origi-
nally trained with different datasets. In particular, the com-
pared methods are retrained with the publicly released codes
by tuning the optimal settings. For testing, four synthetic
(Test100 (Zhang, Sindagi, and Patel 2020), Test1200 (Zhang
and Patel 2018), R100H, and R100L (Yang et al. 2017)) and
three real-world datasets (Rain in Driving (RID), Rain in
Surveillance (RIS) (Li et al. 2019) and Real127 (Zhang and
Patel 2018)) are considered for evaluation.
Experimental Setup. In our baseline, the number of multi-
level mutuality fusion module (MMFM) is empirically set
to 10. To obtain training samples, the training images are
coarsely cropped into small 256×256 patches. We use Adam
optimizer with the learning rate (2×10−4 with the decay rate
of 0.8 at every 80 epochs till 500 epochs) and batch size (8)
to train FMRNet on a single NVIDIA 3090 GPU.

4.2 Ablation Studies
Validation on Basic Components. We conduct ablation
studies to validate the contributions of individual compo-
nents, including the self-attention (SA) in feature extrac-
tion module (FEM), low-frequency prior guidance (LPG),
and mutual learning among rain residue and background in
multi-level mutuality fusion module (MMFM), depth-wise
separable convolutions (DSC), and “Y” channel (LY ) on
the Test1200 dataset, to the final deraining performance.
For simplicity, we denote our final model as FMRNet, with
the number of MMFM to 10. Then, we design a w/o SA
model to evaluate the global representation via self-attention
in FEM. We devise three models (w/o LPG, w/o ML and
w/o MMF) to investigate the effect of multi-level mutual-
ity fusion in MMFM, involving low-frequency guidance and
mutual learning. In addition, the w/o DSC model is designed
by replacing DSC in RCAB-D with standard convolutions to
analyze its effect. Moreover, the Y-channel (structure) loss
(LY) is also validated. It is worth noting that these models

Model SA LPG ML DSC LY PSNR SSIM Par. Time GFlops

Rain Image – – – – – 22.16 0.732 – – –
w/o SA × ✓ ✓ ✓ ✓ 32.98 0.919 1.548 0.136 86.57
w/o LPG ✓ × ✓ ✓ ✓ 33.01 0.920 1.513 0.148 90.02
w/o ML ✓ ✓ × ✓ ✓ 32.63 0.916 1.504 0.146 89.46
w/o MMF ✓ × × ✓ ✓ 32.34 0.914 1.459 0.139 87.28
w/o DSC ✓ ✓ ✓ × ✓ 32.96 0.919 1.576 0.155 92.48
w/o LY ✓ ✓ ✓ ✓ × 33.06 0.916 1.551 0.150 91.23
FMRNet ✓ ✓ ✓ ✓ ✓ 33.21 0.924 1.551 0.150 91.23

Table 1: Ablation study on the self-attention (SA) (mutual
attention block (MAB) and gated dconv feed-forward net-
work (GDFN)) in feature extraction module (FEM), low-
frequency prior guidance (LPG) and mutual learning (ML)
among rain residue and background in multi-level mutuality
fusion module (MMFM), depth-wise separable convolutions
(DSC), and “Y” channel (Ly) on the Test1200 dataset. We
obtain the model parameters (Million (M)), inference time
(Second (S)), and computation complexity (GFlops (G)) of
deraining on images with 512× 512 pixels.

consume approximately the same number of parameters as
that of FMRNet.

Quantitative results in terms of the deraining performance
and efficiency on the Test1200 dataset are presented in Ta-
ble 1, revealing that the complete deraining model FMR-
Net achieves significant improvements over its incomplete
variants. The results show that combining the low-frequency
guidance and mutual learning in MMFM exhibits consid-
erable superiority (gaining 0.87 dB) in terms of restoration
quality (referring to the results of FMRNet, w/o MMF mod-
els). We speculate that the predicted low-frequency rain dis-
tribution can provide valuable priors (location and intensity)
to help the complete rain residue estimation and background
restoration. Meanwhile, the mutual representation among
rain residue and background allows the network to explore
the complementary refinement to alleviate the aliasing ef-
fect, leading to more accurate separation. In addition, re-
moving the self-attention in FEM may decline the capability
of global fusion, leading to 0.23 dB performance drop (re-
ferring to the results of FMRNet and w/o SA models). More-
over, using the depth-wise separable convolutions allows in-
creasing the model depth with approximately the same pa-
rameters, thus enhancing the representation power. Remov-
ing LY may greatly degrade the representation capability on
the spatial structure, leading to an obvious performance drop
(0.15 dB in PSNR) (referring to the results of FMRNet and
w/o LY models).

4.3 Comparison with State-of-the-arts
Synthesized Data. We compare the performance of FMR-
Net with that of 8 representative methods on four commonly
used rain-image datasets. Quantitative results are provided
in Table 2. Meanwhile, the complexities of inference time,
computational cost and model parameters are also com-
pared with image size of 512 × 512. Our proposed FMR-
Net model has demonstrated exceptional restoration perfor-
mance, surpassing all other compared techniques. Specif-
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Methods IADN MSPFN DRDNet MPRNet SWAL DANet ELFormer DAWN FMRNet (Ours)

Test100/Test1200
26.71/32.29 27.50/32.39 28.06/26.73 30.27/32.91 28.47/30.40 29.90/33.10 30.45/33.38 29.86/32.76 30.66/33.21
0.865/0.916 0.876/0.916 0.874/0.824 0.897/0.916 0.889/0.892 0.893/0.919 0.909/0.925 0.902/0.919 0.915/0.924
0.924/0.958 0.928/0.960 0.925/0.920 0.939/0.960 0.936/0.950 0.938/0.962 0.945/0.964 0.941/0.960 0.936/0.964

R100H/R100L
27.86/32.53 28.66/32.40 21.21/29.24 30.41/36.40 29.30/34.60 29.96/35.85 30.48/36.67 29.89/35.97 30.69/37.81
0.835/0.934 0.860/0.933 0.668/0.883 0.889/0.965 0.887/0.958 0.889/0.962 0.896/0.968 0.889/0.963 0.900/0.974
0.875/0.942 0.890/0.943 0.797/0.903 0.910/0.969 0.908/0.963 0.911/0.967 0.915/0.972 0.911/0.969 0.920/0.978

Avg-PSNR 29.84 30.23 26.31 32.49 30.69 32.20 32.74 32.12 33.09

Par.(M) 0.980 13.35 5.230 3.637 9.792 2.943 1.532 1.489 1.551
Time (S) 0.132 0.507 1.426 0.207 0.116 0.109 0.125 0.087 0.150
FLOPs (G) 80.99 708.3 – 565.8 39.00 130.9 66.39 89.34 91.23

Table 2: Comparison of average PSNR/SSIM/FSIM scores. We obtain model parameters (Million), average inference time
(Second) and computational cost (Flops (G)) of deraining on images with the size of 512× 512.

Input MSPFN MPRNet SWAL ELFormer DAWN FMRNet (Ours) Ground Truth

Figure 3: Visual comparison of derained images obtained by seven methods on R100H/R100L/Test100/Test1200 datasets.

ically, it achieves significant superiority over the current
transformer-based (ELFormer) and wavelet-based (DAWN)
SOTA approaches on four datasets, with an average im-
provement of 0.35 dB and 0.97 dB. Additionally, FMRNet
has proven to be highly efficient, which consumes approxi-
mate parameters and computational cost to the SOTA, mak-
ing it a highly effective and cost-efficient solution. More-
over, we have observed that most of the deraining models
obtain impressive performance on light rain cases with high
consistency. However, only our FMRNet and ELFormer still
perform favorably well on heavy rain conditions, exhibiting
great superiority over other competing methods in terms of
PSNR and SSIM. On the Rain100L dataset, our proposed
FMRNet method surpasses the wavelet-based DAWN (Jiang
et al. 2023), transformer-based ELFormer (Jiang et al. 2022)
and CNN-based MPRNet (Zamir et al. 2021) in PSNR by
1.84 dB, 1.14 dB and 1.41 dB, respectively.

For more convincing evidence, we also provide additional
visual comparisons in Figure 3, involving light and heavy
rain conditions. As expected, FMRNet has shown its ex-
ceptional ability to eliminate rain streaks and produce re-
markable images in all kinds of rainy conditions, surpass-
ing all of its competitors with ease. By contrast, spatial-
domain-based methods, such as MPRNet (Zamir et al. 2021)

and ELFormer (Jiang et al. 2022) can partly eliminate rain
perturbation in the image domain and thus bring an im-
provement in visibility. But they fail to generate visually
appealing results due to the aliasing and residual arti-
fact in the frequency embedding space. In particular, they
tend to generate derained results with over-smooth contents
when the structure and textures have the similar direction
to rain streaks. Likewise, SWAL(Huang et al. 2021) and
DAWN (Jiang et al. 2023) promote the spatial and frequency
domains representation but shows unsatisfactory deraining
performance due to the inter-frequency conflicts and com-
promise, leading to obvious color distortion. Besides recov-
ering cleaner and more credible image textures, our FMR-
Net produces results with better contrast and less color dis-
tortion. In particular for the heavy rain condition of the
third and fourth scenarios in Figure 3 where the struc-
ture (“giraffe” and ”church” scenarios) is destroyed due
to the similar direction and distribution to rain streaks,
only FMRNet can infer credible details while the other
methods produce results with losing details and con-
trast distortion. We speculate these visible improvements
on restoration quality may benefit from elaborate deraining
scheme – wavelet-based multi-level mutuality fusion and re-
construction. These strategies encourage the network simul-
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Datasets IADN MSPFN DRDNet MPRNet ELFormer DAWN FMRNet (Ours)
Real127 3.769/29.12 3.816/29.05 4.208/30.34 3.965/30.05 3.735/29.16 3.762/29.19 3.714/29.27
RID (2495) 6.035/40.72 6.518/40.47 5.715/39.98 6.452/40.16 4.318/37.89 4.785/37.49 4.431/37.25
RIS (2348) 5.909/42.95 6.135/43.47 6.269/45.34 6.610/48.78 5.835/42.16 5.536/43.16 5.628/42.29

Table 3: Comparison of average NIQE/SSEQ scores by seven deraining methods on three real-world datasets. The Bold and
underline present the best and second performances, respectively.

Input MSPFN RCDNet MPRNet ELFormer DAWN FMRNet (Ours)

Figure 4: Visual comparison of derained images obtained by six methods on four real-world scenarios, covering heavy rain
(1st), light rain (2st) and rain veiling effect (3st-4st). Please zoom in for a close up comparison.

taneously focus on rain perturbation on pixel image and fre-
quency embedding spaces, while the mutual exploration fa-
cilitates the separation of rain residue and background.
Real-world Data. We further conduct experiments on real-
world datasets, including the Real127 (Zhang and Patel
2018), Rain in Driving (RID), and Rain in Surveillance
(RIS) (Li et al. 2019). The samples in RID and RIS are
collected from car-mounted cameras and networked traf-
fic surveillance cameras in rainy day, respectively involving
2,495 and 2,348 real-world rain samples. These images dif-
fer in rain types, image quality, object size, angle, etc., and
represent real application scenarios where deraining may
be desirable. Table 3 provides the comparison in terms of
the quantitative results of NIQE (Mittal, Soundararajan, and
Bovik 2012) and SSEQ (Liu et al. 2014), where smaller
NIQE and SSEQ scores indicate better perceptual quality
and clearer contents. Our FMRNet achieves competitive per-
formance, gaining the lowest average values of NIQE on
the Real127 and SSEQ on the RID datasets, and the second
best average scores on the RIS dataset. The visual compar-
isons are shown in Figure 4. Spatial-domain-based methods,
such as MPRNet (Zamir et al. 2021) and ELFormer (Jiang
et al. 2022), spatial-domain-based methods can partially mit-
igate the impact of rain perturbations, but they often result
in the loss of details, especially the structural information
that aligns with the direction of the rain streaks. Compared
to the wavelet-based DAWN (Jiang et al. 2023)), our FM-

RNet is still more effective in eliminating more rain pertur-
bation while preserving finer background details in the de-
rained images.

5 Conclusion
In this study, a novel frequency mutual revision network
(FMRNet) is devised to remove rain perturbation in both the
spatial and frequency spaces. More specifically, we investi-
gate the potential relationships among rain-free and residue
components at the frequency domain, where the mutual re-
lations among low-frequency rain residue, rain residue and
background are fully explored, so as to better separate the
rain layer from clean background while preserving struc-
tural textures of degraded images. Meanwhile, we construct
a multi-level mutuality fusion module (MMFM) to charac-
terize the mutual relations, which help accurate rain estima-
tion and background restoration. The effectiveness and ef-
ficiency of our proposed FMRNet is extensively validated
through experiments on both synthetic and real datasets.

Although this study specializes in eliminating the alias-
ing artifacts and preserving structure, one limitation is that it
behaves poor generalization to the hybrid degradation, like
heavy rain veiling effect. The specific framework and de-
composition pattern may be required to investigate and ex-
plore the intrinsic mutual relation of these complex degrada-
tion scenarios. In the future, we would explore how to solve
these limitations.
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