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Abstract

While text-3D editing has made significant strides in leverag-
ing score distillation sampling, emerging approaches still fall
short in delivering separable, precise and consistent outcomes
that are vital to content creation. In response, we introduce
FocalDreamer, a framework that merges base shape with ed-
itable parts according to text prompts for fine-grained editing
within desired regions. Specifically, equipped with geometry
union and dual-path rendering, FocalDreamer assembles in-
dependent 3D parts into a complete object, tailored for con-
venient instance reuse and part-wise control. We propose ge-
ometric focal loss and style consistency regularization, which
encourage focal fusion and congruent overall appearance.
Furthermore, FocalDreamer generates high-fidelity geome-
try and PBR textures which are compatible with widely-used
graphics engines. Extensive experiments have highlighted the
superior editing capabilities of FocalDreamer in both quanti-
tative and qualitative evaluations.

1 Introduction
Art reflects the figments of human imagination and creativ-
ity. Recently, the rapid development of neural generative
models (Dhariwal and Nichol 2021) has significantly low-
ered the barriers for humans to engage in artistic creation
with just a few words. However, these black-box models also
deprive humans of a significant portion of control, which
means the generation isn’t often aligned with expectations.
In this work, we take a step towards precise editing for 3D
creation, enabling networks to naturally expand user’s inten-
tions, rather than controlling the entire generative process.

In the realms of animation, gaming, and the recent ad-
vance of virtual augmented reality, 3D models and scenes
are commonly constructed as an assembly of semantically
distinct base parts, which support the practice of rendering
multiple copies of the same part across scenes with different
transform matrices, called geometry instancing or instance
reuse (Fig. 1). We believe that an ideal 3D editing workflow
should possess the following good properties:

• Separable. Given a base shape, it should produce struc-
turally separate parts (Li, Niu, and Xu 2020) facili-
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Figure 1: Given the prompt “a butterfly over a tree stump”,
our method delivers high-fidelity geometry and photorealis-
tic appearance using PBR materials. Lines (b-c) showcase
FocalDreamer’s capability for separable and precise edits.

tating for instance reuse and part-wise post-processing,
grounded in widespread understanding.

• Precise. It should provide fine-grained and local editing,
enabling precise control in the desired area (Zhuang et al.
2023), while maintaining other regions untouched.

• Consistent. After the editing process, the resultant shape
should respect the characteristics of the source shape in
harmonious appearance (Xie et al. 2023), while visually
adhering to the text specifications.

Emerging approaches in text-3D editing have achieved
noteworthy development, yet they often fall short in deliv-
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“a butterfly over a tree stump” “Flash Gordon wear the red velvet cape with a 

golden trim over his shoulder, highly detailed”

“a deer standing 

on two separate wooden skateboards”

“a red rose with four green leaves” “a highly detailed pegasus with two wings” “a blue headset with a microphone”

“a Chinese white ceramic vase with 

slender neck on a wooden stool” “the anime character Naruto with a backpack”

“a baby turtle lies on the back of a big turtle” “a human skull wearing a pair of dark glasses”

“a lounge chair with four rollers”

“a cat with an orange larger tail like fox”

Figure 2: FocalDreamer can generate meticulously detailed and photo-realistic 3D editing. The left column displays base
meshes with focal regions. The three right columns showcase edited overall appearance, assembled geometry, and editable part.

ering separable, precise, and consistent outcomes that are
vital to content creation. Some approaches (Lin et al. 2023;
Haque et al. 2023) struggle to pinpoint the focused local
regions, leading to undesired alterations to the base shape.
Others (Sella et al. 2023; Zhuang et al. 2023) overlook the
stylistic consistency of the 3D edited portions. Furthermore,
nearly all past methods directly modify base shape, neglect-
ing the need for instance reuse and part-wise control (i.e.,
enabling fine-grained edits to individual parts of an object).

We introduce the following key contributions to meet our
outlined criteria: (1) Separable: we propose FocalDreamer,
a user-friendly framework that permits intuitive object mod-
ifications using text prompts and a rough focal region for
the intended edits. Instead of direct modifications to the base
shape (e.g., the horse in Fig. 3), a novel editable part (wings
in Fig. 3) is generated in the focal region, facilitating in-
stance reuse and precise control. Equipped with geometry
union and dual-path rendering, this part is merged with base
mesh into a semantically unified shape in a lossless and dif-
ferentiable manner, then optimized using a powerful text-to-
image model to align the prompts and shapes. Furthermore,
our decoupled learning of geometry and appearance yields
detailed geometry and PBR textures, ensuring compatibil-
ity with prominent graphics engines. (2) Precise: Users de-
lineate one or several ellipsoid focal regions, in which a
spherical editable part initializes, acting as a smooth prior
for the geometry network. The geometric focal loss is also
introduced, discouraging edits beyond specified regions. (3)
Consistent: a smooth, coherent surface is essential in certain
scenes. Hence, a soft geometry union operator and a style

consistency regularization are proposed to ensure a seam-
less geometric transition and stylistically consistent texture
between the learnable part and base shape.

To our knowledge, this is the first component-based edit-
ing method with separate learnable parts. Rich experiments
and detailed ablation studies highlight the superior editing
capabilities of our approach, as shown in Fig. 2.

2 Related Work
Text-guided Image Generation and Editing. Significant
progress in Text-to-Image (T2I) generation with diffusion
models (Ho, Jain, and Abbeel 2020) is witnessed in re-
cent years. More recently, with the availability of scalable
generator architectures and extremely large-scale image-
text paired datasets, they’ve demonstrated impressive perfor-
mance in high-fidelity and flexible image synthesis (Rom-
bach et al. 2022). Due to their comprehension of com-
plex concepts, diffusion models are also amicable for var-
ious editing tasks, such as image inpainting (Lugmayr et al.
2022), image stylization (Zhang et al. 2023). The most rel-
evant field to us among those is inpainting, which provides
flexible control of the inpainted content, and a mask to con-
strain the shape of the inpainted object. SmartBrush (Xie
et al. 2023) introduces a precision factor into the masks for
multiple-grained controls on inpainting regions.

Text-to-3D Content Generation. Driven by the aspira-
tion to produce high-fidelity 3D content using semantic in-
puts like text prompts, the field of text-to-3D has garnered
a significant boost in recent years (Poole et al. 2022). Ear-
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Figure 3: An overview of FocalDreamer. (a) During geometry learning, given a base shape, we first initialize an ellipsoid as
editable geometry within each focal region. Then we render the normal map of merged shape as shape encoding of pre-trained
T2I models, to optimize the editable geometry according to prompts. (b) During appearance learning, resultant shape is rendered
in a dual-path manner with base and editable textures. The outcomes are then blended by Pixel-wise Discriminative Mask for a
unified appearance. (c) Several regularizations are introduced to improve the editing quality, including LGF , LCA, and LSC .

lier approaches either align shapes and images in the latent
space by CLIP supervision (Radford et al. 2021) to generate
3D geometries (Mohammad Khalid et al. 2022) or synthe-
size new perspectives (Jain et al. 2022), or they train text-
conditioned 3D generative models from the ground up (Li
et al. 2023). DreamFusion (Poole et al. 2022) first employs
large-scale T2I models with a combination of score distil-
lation sampling to distill the prior, and achieves impressive
results. Magic3D (Lin et al. 2023) further improved the qual-
ity and performance of generated 3D shapes with a 2-step
pipeline. TextMesh (Tsalicoglou et al. 2023) modify the 3D
representation to extract detailed mesh. However, all these
methods present semantic misalignment between the local
content and global text description when editing, leaning to-
wards distorted background and inconsistent results.

3D Content Editing. Semantic-driven 3D scene editing is
a much harder task compared with 2D photo editing because
of the high demand for multi-view consistency, the scarcity
of paired 3D data and its entangled geometry and appear-
ance. Previous approaches either rely on laborious anno-
tation (Kania et al. 2022; Yang et al. 2022), only support
object deformation or translation (Tschernezki et al. 2022;
Kobayashi, Matsumoto, and Sitzmann 2022), or only per-
form global style transfer (Chen et al. 2022; Chiang et al.
2022; Fan et al. 2022; Huang et al. 2022) without strong
semantic meaning. Recently, thanks to the development of
score distillation sampling technique, text-guided editing
has emerged as a promising direction with great potential.
SKED (Mikaeili et al. 2023) possesses the capability to edit
3D scenes with multi-view sketches. Latent-NeRF (Metzer
et al. 2023) and Fantasia3D (Chen et al. 2023) realize sketch-
shape guidance by relaxed geometric constraints. Instruct-
NeRF2NeRF (Haque et al. 2023) can edit an existing NeRF
scene by iterative dataset update. However, it manipulates
the entire space, and the preservation of undesired regions
is absent. Vox-E (Sella et al. 2023) allows local edits on an
existing NeRF, but it suffers from subpar editing quality and

noticeable noise as shown in Section 4, because of coupling
geometry and textures. Most related to our work, DreamEd-
itor (Zhuang et al. 2023) locally edits a mesh-based neural
field. However, it doesn’t achieve separable editing which
is vital for instance reuse and part-wise control. Moreover,
DreamEditor cannot change the number of vertices, support-
ing only minor shape insertion and replacement of objects of
the same type (e.g., a horse to a deer). In contrast, our work
not only brings about reasonable and noticeable geometric
changes but also generates realistic appearances.

3 Method
As illustrated in Fig. 3, a complete object is conceptualized
as a composition of base shape and learnable parts, wherein
both of them possess their own geometry and texture, tai-
lored for convenient instance reuse and part-wise control.
Furthermore, a two-stage training strategy is adopted to se-
quentially learn the geometry and texture of the editable
shape, to avoid the potential interference that can occur
when geometry and texture learning are intertwined. For in-
stance, in the case of zebra modeling, geometric protrusions
might be learned instead of the desired black stripes. Such
a disentangled representation not only stabilizes the training
process but also yields high-fidelity geometry and textures,
especially when compared to popular text-to-3D models.

3.1 Preliminary
Score Distillation Sampling. Score distillation sampling
(SDS) is a way to distill the priors hidden in large T2I mod-
els for 3D generation proposed by DreamFusion (Poole et al.
2022). DreamFusion represents 3D scenes as a series of
learnable parameters θ. Utilizing a differentiable renderer, it
converts the 3D scenes into 2D image sets x. Subsequently,
it employs large-scale models ϕ to optimize the parameters
of the 3D scenes with a score function as follows:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵ̂ϕ(zt; y, t)− ϵ)

∂x

∂θ

]
, (1)
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where w(t) controls the weight of SDS guidance depending
on noise level t. ϵ̂ϕ(zt; y, t) and ϵ are the predicted noise and
actual noise, respectively. y is the condition.

DMTet. DMTet (Munkberg et al. 2022) is a hybrid repre-
sentation that has two components, i.e., a deformable tetra-
hedral grid and a differentiable Marching Tetrahedral (MT)
layer. The Signed Distance Function (SDF) values and the
position offsets of deformable tetrahedral vertices are learn-
able, followed by the MT layer to extract meshes.

3.2 Geometry Editing
Focal Region. The starting point of our algorithm is a base
shape (Ψb for geometry and Γb for texture) to be edited,
which can be the reconstruction from images, crafted shapes
by artists (Munkberg et al. 2022), and even the novel shapes
from the generative method (Chen et al. 2023). Then the
base model is modified by compositing with a new learnable
part according to prompts. To offer more precise control over
the generation process, users are requested to select one or
multiple ellipsoid areas (depending on the editing needs) as
focal/target regions. Each focal region Ω′ is deformed from
a standard sphere Ω by an affine transformation with 9 de-
grees of freedom (DOF), 3 DOF for stretching, 3 DOF for
rotation, and 3 DOF for translation along the {X, Y, Z}-axis:

Ω′ = Rxyz(α, β, γ) · T (tx, ty, tz) · S(sx, sy, sz) · Ω. (2)

The selection of the focal region doesn’t require exact preci-
sion for it merely serves as a rough expression of the regional
prior from user intent. Our model will optimally generate ge-
ometry driven by the text input. Furthermore, we initialize
ellipsoids within specified regions, offering a smooth prior
that enhances the stability of the geometric modeling.

Geometry Learning and Fusion. We adopt DMTet as
our 3D scene representation optimized by the prior knowl-
edge distilled from pre-trained T2I model. More specifically,
keeping the base shape Ψb(vi) frozen, we parameterize the
SDF values (inner is positive) of editable parts using MLP
Ψe(vi) for each vertex vi within the tetrahedral grid. Subse-
quently, a soft geometry union (Quilez and Jeremias 2018) is
performed between Ψb(vi) and Ψe(vi), resulting in Ψu(vi)
for a smooth junction:

Ψu(vi) = max {Ψb(vi),Ψe(vi)}+
0.1× h2

k
, (3)

where h = max {(k − |Ψb(vi)−Ψe(vi)|), 0} , (4)

where k determines the extent of the soft merge and is set
to 0.15 by default. After geometry fusion, a differentiable
MT layer transforms Ψu(vi) and the vertex offset ∆vi into
a triangular surface mesh M. Finally, the rendered normal
map n and the object mask o extracted from the meshM are
fed into pre-trained T2I models with SDS loss to update Ψe:

∇ΨeLSDS(ϕ, ñ) = Et,ϵ

[
w(t)(ϵ̂ϕ(z

ñ
t ; y, t)− ϵ)

∂ñ

∂Ψ

∂zñ

∂ñ

]
,

(5)
where ϕ parameterized pre-train T2I model, ñ represents the
augmentation of n concatenated with o, zñ is latent encod-
ing of ñ. We observed using normal map n promotes the

expression of geometric details and training stability (Chen
et al. 2023). This improvement from n is partly attributed
to disentangling the geometry from the intertwinement of
texture, and its sufficient expressiveness to depict complex
geometric details.

Geometric Concentration. One of the main criteria for a
proficient 3D editing algorithm is its ability to retain the ge-
ometry and color of the base object throughout the editing
process. However, the aforementioned pipeline cannot en-
sure locality in editing. We have observed global changes
and a loss of characteristics from the base shape (Fig. 7). To
counteract it, we introduce distance-aware geometric focal
loss LGF . During each iteration, a certain number of points
pi ∈ R3 are sampled outside the user-specified focal re-
gion Ω′, with their SDF values Ψe(pi) and their distances
di to the focal region Ω′. The objective of LGF is punish-
ing the editable shape when it produces topological struc-
tures (Ψe(pi) > 0) outside Ω′. Moreover, the closer pi is to
the target region, the less the penalty, for this distance-aware
setting permits geometry to overrun beyond the rough focal
region slightly. The geometric focal loss is defined as:

LGF = Epi /∈Ω′

[
(1− e

−d2i
σ1 ) · tanh(max {Ψe(pi) + ξ, 0}

σ2
)

]
,

(6)
where σ1 = 0.05 and σ2 = 0.01 control how sensitive the
loss is, i.e., lower σ1,2 values tighten the constraint on the
optimization such that only the editable region is modified
strictly. The hyperparameter ξ is a small positive threshold to
prevent topological structures from minor positive SDF val-
ues. For computational efficiency, we sample query points
on the tetrahedral vertex vi, and pre-compute their distance
di to Ω′ before the geometry generation process begins.

Collision Avoidance. Another essential criterion is to re-
spect the purity of the editing results, i.e., the editable shape
should not overlap with the base shape, as they are semanti-
cally independent and distinct parts. We enforce it by penal-
izing the query points pi that reside both within the learnable
shape and the base shape with the collision avoidance loss:

LCA = Epi [max {Ψb(pi), 0} ·max {Ψe(pi), 0}] . (7)

Intuitively, this reduces the likelihood of overlap between
the editable shape and the original mesh, resulting in cleaner
editing outcomes. For computational efficiency, we sample
query points at vi as the same as geometric focal Loss.

3.3 Appearance Editing
Dual-path Physically Based Rendering. After the opti-
mization of the geometry network, the resultant mesh M
is obtained from the soft fusion and MT layer. Following
Physically Based Rendering (PBR) material model, we use
hash-grid-based texture neural fields Γ for M to produce
the diffuse term kd, the roughness and metallic term krm,
and the normal term kn as (kd, krm, kn) = Γ(pi). In or-
der to retain the appearance of the base shape untouched,
a naive and straightforward idea would be to initialize the
learnable texture neural fields Γe with the base texture fields
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Fantasia3D* Vox-E-Global Vox-E OursBase shape
“a human skull 

wearing a pair of 

dark glasses”

Prompts

“Flash Gordon wear the 

red velvet cape with a 

golden trim over his 

shoulder, highly detailed”

“a labrador wears a 

crown with sapphires”

“a deer standing 

on two separate 

wooden skateboards”

Figure 4: Visual comparison. Our approach synthesizes high-quality edits while preserving the base mesh perfectly.

Figure 5: Comparison with SOTA image editing methods.
The gray areas in input images indicate the inpainting re-
gion. We observed that 2D editing methods exhibit view-
inconsistent, and their quality varies with viewpoints.

Method CLIPsim ↑ CLIPdir ↑

Fantasia3D* 0.284 0.0180
Vox-E-Global 0.299 0.0204
Vox-E 0.293 0.0178
FocalDreamer (ours) 0.329 0.0519

Table 1: Quantitative evaluation results across 15 scenes.

Γb derived from the base shape reconstruction, then the en-
tire shape’s appearance is modeled by Γe exclusively. How-
ever, this simple pipeline has two shortcomings: 1) As the
number of iterations increases, it suffers from sub-optimal
convergence and loss of the original material (in Fig. 7). In
essence, the texture of the base shape isn’t adequately re-
tained due to the overly strong knowledge supervision from
T2I models. 2) Although learnable parts have independent
semantics, such as “the wings”, their texture cannot be ex-
tracted alone. This impediment makes the reuse and driving
of materials for these editable parts unfeasible.

To tackle this issue, we re-design the rendering pipeline

Figure 6: Boxplot illustration of user study. FocalDreamer
demonstrates better performance (high means) and stability
across scenes (narrow interquartile range).

in a dual-path manner. Central to this redesign is a Pixel-
wise Discriminative Mask (PDM) generated in the rasteriza-
tion process, which discerns whether each pixel comes from
the face of the base mesh or the editable mesh. As depicted
in Fig 3, throughout the dual-path rendering process, both
parts are rendered based on their own neural texture fields,
and the outcomes are then blended by PDM, which is called
texture composition, culminating in a unified merged view.
Similarly, the merged view is inputted into the T2I model for
texture optimization with SDS loss. By truncating the gradi-
ent towards Γb, the texture of the base shape is precisely pre-
served, while the editable shape has its independent trainable
texture Γe. Dual-path rendering balances the preservation of
the base shape structure with flexible part-wise control, as
well as the seamless integration of both parts.

Style Consistency. In some instances, local changes are
anticipated to be realized seamlessly, as well as in a harmo-
niously coordinated style, as shown in Fig. 7. This problem
is modeled as follows: let Me ∈ R3 be a closed subspace to
represent the editable parts with boundary ∂Me. Let f∗ be a
known mapping function defined over R3 minus the interior
of Me to be preserved, and let f be the unknown function
defined over the interior of Me. A classical interpolant f is
defined as the solution (Pérez, Gangnet, and Blake 2003):

min
f

∫∫∫
Me

|∇f |2 with f |∂Me = f∗|∂Me . (8)

We propose two consistency regularization items to imi-
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LGF LCA LSC Dual-path Render CLIPsim CLIPdir

✓ ✓ ✗ ✓ 0.312* 0.0402*

✓ ✓ ✓ ✓ 0.319* 0.0495*

✗ ✓ ✓ ✓ 0.316 0.0433
✓ ✗ ✓ ✓ 0.329 0.0517
✓ ✓ ✓ ✗ 0.313 0.0401

✓ ✓ ✓ ✓ 0.329 0.0519

Table 2: Ablation study. Since not all scenes require style
consistency, we report the editings require LSC with ∗.

tate the interpolant process :

Lg = Epi∈Me

[
∥Γe(pi)− Γe(pi + δ)∥2

]
, (9)

Lb = Epi∈∂Me

[
∥Γe(pi)− Γb(pi)∥2

]
, (10)

LSC = Lg + λLb. (11)

Intuitively, the Lb ensures that the editable texture Γe is con-
sistent with the base texture Γb in the adjoining areas ∂Me

as Dirichlet boundary condition, while the Lg extends the
consistent style throughout the whole learnable part Γe with
gradient constrain on small noise δ.

4 Experiments
4.1 Experimental Setups
Implementation Details. We use the Stable Diffusion im-
plementation by HuggingFace Diffusers for SDS, and adopt
DMTet to learn geometry and texture separately with NVD-
iffRast as a differentiable renderer. FocalDreamer usually
takes less than 30 minutes (3000 steps) for geometry and
20 minutes (2000 steps) for texture to converge on 4 Nvidia
RTX 3090 GPUs, where we use AdamW optimizer with the
respective learning rates of 1×10−3 and 1×10−2. UV edge
padding techniques are utilized to remove the seams in the
texture maps. More details are provided in the appendix.

Synthetic Object Dataset. We assemble the dataset with
15 high-quality meshes found on the internet. We paired
each object in our dataset with a detailed edit prompt to
showcase our approach’s ability to perform expressive, pre-
cise, and diverse edits which are absent in other approaches.

Evaluation Criteria. Following Vox-E, we report auxil-
iary quantitative metrics on our dataset: (1) CLIP Similarity
(CLIPsim) measures the alignment of the performed 3D ed-
its with the text descriptions, and (2) CLIP Direction Sim-
ilarity (CLIPdir) evaluates the edits with the editing direc-
tions from the input to edit results, by measuring the di-
rectional CLIP similarity between changes of text and 3D
shapes, first introduced by (Gal et al. 2022).

Baselines. We compare FocalDreamer with three base-
lines. (1) Fantasia3D*: as claimed in Fantasia3D, it is able
to generate shapes initialized with a low-quality customized
3D mesh. In order to additionally endow it with preservation
of texture from base shape, the texture field Γ(pi) is super-
vised by base texture with reconstruction loss on the base

mesh surface, as one of the baselines. (2) Vox-E (Sella et al.
2023): to show our superior editing within desired regions,
SOTA editing work Vox-E is also compared. To the best of
our knowledge, Vox-E is the only open-source method that
directly performs text-guided localized edits for 3D objects.
(3) Vox-E-Global: Vox-E also supports global editing to bet-
ter align with the prompts without constraining from base
shape. More details are provided in the appendix.

4.2 Qualitative Results
The qualitative comparison with 3D editing baselines is
shown in Fig. 4 over our dataset. As illustrated in the fig-
ure, Fantasia3D* results in an appearance vastly different
from the base mesh, even with the texture reconstruction
loss, because the whole shape is re-optimized according to
prompts. While Vox-E-Global occasionally produces edits
that align with prompts, it suffers from subpar editing qual-
ity and noticeable outliers. Vox-E demonstrates a limited ca-
pacity to filter out undesired changes and noise based on
Vox-E-Global, since it heavily relies on a keyword, such as
cape or glasses. Vox-E sometimes misidentifies the focal re-
gions, i.e., placing glasses on the top of the skull. In contrast
to them, our editings align perfectly with the prompts while
faithfully preserving the details of base mesh, achieving pre-
cise and meaningful changes to both geometry and texture.

2D Image Editing Comparisons. We demonstrate that
2D image editing methods cannot effectively handle 3D
object editing tasks, because 2D editing does not yield
satisfactory view-consistent results. We sample renderings
from three different viewpoints and apply SOTA image
editing methods, namely Instruct Pix2Pix (IP2P) (Brooks,
Holynski, and Efros 2023) and ControlNet-inpainting (Con-
trolNet) (Zhang and Agrawala 2023). We input the same
prompts in Fig. 2 for FocalDreamer, ControlNet and IP2P.
As depicted in Fig. 5, the quality of editing by 2D methods
drops significantly from less canonical views (e.g., the tur-
tle’s left view), and they severely lack view-consistency.

4.3 Quantitative Results
We perform a quantitative evaluation in Tab. 1 on our
dataset. To perform a fair comparison, all metrics are cal-
culated with renderings from the same 100 views across
different methods. As illustrated in the table, FocalDreamer
achieves noticeably higher CLIPdir. This is attributed to its
capability to accurately execute the desired editing direction,
primarily due to the geometric concentration. Additionally,
our editing fidelity (CLIPsim) stands out as the best, stem-
ming from the enhanced part-wise details brought by the
separable framework and decoupled learning.

User Study. While CLIP mainly evaluates the matching
degree of rendered views and text prompts, it fails to assess
the extent to which the base shape is properly preserved. We
conduct user studies with 65 participants to evaluate differ-
ent methods based on user preferences across 15 scenes. We
ask the participants to give a preference score (range from
1 ∼ 10) in terms of prompt relevance and base shape preser-
vation for 5 random views per scene from anonymized meth-
ods’ generation. As shown in Fig. 6, we report the distribu-
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Base shape

w/o Geometric Concentration
resultant shape editable part

Full Modelw/o Style Consistencyw/o Collision Avoidance w/o Dual-path Rendering
resultant shape editable part resultant shape editable part resultant shape editable part resultant shape editable part

Figure 7: Ablation study. We visually illustrate the effect of each technique we propose. Please refer to Section 4.4 for details.

w/o soft unionDifferent 𝑘 𝑘 = 0.15𝑘 = 0.1 𝑘 = 0.2

Figure 8: Geometry union sensitivity. The smoothness of the
junction varies with different k in Eq. 3 and 4.

Figure 9: Progressive editing. The horse is first edited by
adding two wings, then a horn is added in a subsequent edit.

tion of the scores, including the medians, means, quartiles
and outliers. We find that FocalDreamer is significantly pre-
ferred over all baselines in terms of source preservation (i.e.,
mean = 9.14) and prompt relevance (i.e., mean = 8.40).
The narrow interquartile range in our method also demon-
strates a more stable editing effect across various scenes.

4.4 Ablation Study
We conduct the ablation study both qualitatively and quan-
titatively. By setting LGF , LCA and LSC to zero respec-
tively, we investigated the effects of our proposed Geometric
Concentration, Collision Avoidance, and Style Consistency
strategies. To validate the dual-path rendering, we employ
the single rendering outlined in Section 3.3. Specifically, it
involves rendering the entire shape with a learnable texture
Γe, which is initialized with the base texture Γb.

As illustrated in Fig. 7 and Tab. 2, LGF significantly con-
strains geometric alterations outside the focal region, result-
ing in localized edits. LCA effectively prevents undesirable
geometric overlap within the base mesh, especially at the
junction like the root of wings and capes. Since LCA pre-
dominantly affects the purity of the editable part and has
minimal impact on the overall appearance, its quantitative
metrics closely align with the full model. In the absence of
dual-path rendering, the base mesh texture experiences un-
intended alterations due to the update of the whole texture
network during appearance learning. Moreover, editing with
LSC exhibits a harmonious overall style and nature transi-
tion in certain instances, but it is not universally required
(e.g., a butterfly over a tree stump). In Tab. 2, we use ∗ to
denote scenes that require LSC for a fair comparison.

Progressive Editing. Our method can be used as a sequen-
tial editor for users’ requirements, and progressively edits
base mesh. In Fig. 9, we exhibit a two-step editing by first
generating two wings on horse, followed by adding a horn.

Geometry Union Sensitivity. We also demonstrate the
smoothness of the junction between the editable part and
base mesh with various k (Eq. 3 and 4) in Fig. 8. It is ev-
ident that larger k leads to a more natural but pronounced
transition region. We set k = 0.15 for a moderate transition.

5 Conclusion
In this paper, we present FocalDreamer, a text-driven frame-
work that supports separable, precise, and consistent lo-
cal editing for 3D objects. Technically, we equipped Focal-
Dreamer with geometry union and dual-path rendering to
assemble independent 3D parts, facilitating instance reuse
and part-wise control. Geometric focal loss and style con-
sistency regularization are proposed to encourage focal fu-
sion and congruent overall appearance. Comprehensive ex-
periments and detailed ablation studies have demonstrated
our approach possesses superior local editing power through
a well-conceived framework design. We hope that Focal-
Dreamer will help pave the way for expressive, localized 3D
content editing for casual artists, bringing us closer to the
goal of democratizing 3D content creation for all.
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