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Abstract

This paper introduces a novel approach called ”friendly attack”
aimed at enhancing the performance of error correction chan-
nel codes. Inspired by the concept of adversarial attacks, our
method leverages the idea of introducing slight perturbations
to the neural network input, resulting in a substantial impact
on the network’s performance. By introducing small perturba-
tions to fixed-point modulated codewords before transmission,
we effectively improve the decoder’s performance without
violating the input power constraint. The perturbation design
is accomplished by a modified iterative fast gradient method.
This study investigates various decoder architectures suitable
for computing gradients to obtain the desired perturbations.
Specifically, we consider belief propagation (BP) for LDPC
codes; the error correcting code transformer, BP and neural
BP (NBP) for polar codes, and neural BCJR for convolu-
tional codes. We demonstrate that the proposed friendly attack
method can improve the reliability across different channels,
modulations, codes, and decoders. This method allows us to in-
crease the reliability of communication with a legacy receiver
by simply modifying the transmitted codeword appropriately.

Introduction
Channel coding plays a crucial role in modern communica-
tion systems, ensuring reliable information transmission over
noisy channels. Over the past 70 years, remarkable progress
has fueled the continuous development of this field, yielding
robust and efficient communication protocols that employ a
wide range of hand-crafted codes. Contemporary standards
such as Long Term Evolution (LTE) and 5G (3GPP 2018)
have been significantly influenced by the development of
near-optimal channel codes, including linear block codes
such as polar codes (Arikan 2008) and low density parity
check (LDPC) codes (Gallager 1962), alongside linear codes
with memory, such as turbo codes (Berrou, Glavieux, and
Thitimajshima 1993) based on convolutional codes (Elias
1955). These codes demonstrate capacity-approaching per-
formance (Shannon 1948) on additive white Gaussian noise
(AWGN) channels; however, their optimal decoding is still a
challenging problem.

Despite progress, a gap persists between achievability
bounds based on random coding (Polyanskiy, Poor, and Verdú
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2010) and the performance of hand-crafted codes in the short
block length regime. Maximum likelihood decoding of linear
codes is known to be NP-hard. Iterative algorithms, such
as belief propagation (BP) operating over the code Tanner
graph, present an efficient alternative. However, BP decoding
demonstrates near-capacity performance primarily for LDPC
codes with large block lengths (MacKay and Neal 1997). For
polar codes, BP decoding performance lags behind succes-
sive cancellation (SC) decoding (Arikan 2008) attributed to a
great number of short cycles in their Tanner graphs.

Decoding of channel codes can be considered as a classi-
fication problem, where the aim is to infer the transmitted
codeword from its noisy version. Therefore, the recent suc-
cess of deep learning methods for a wide range of classifica-
tion problems and their ability to capture complex patterns
have motivated exploring their applications to channel decod-
ing. Neural BP (NBP), which introduces trainable weights to
conventional BP graphs, has gained popularity due to its sim-
plicity and efficiency (Nachmani, Be’ery, and Burshtein 2016;
Nachmani et al. 2018; Lugosch and Gross 2017). Neural BP
decoding of polar code has enhanced the code performance
(Xu et al. 2017; Doan et al. 2018a). Recently, a significant
improvement is achieved in NBP decoding with two-stage
decimation (Buchberger et al. 2020).

There are other model-based neural decoding approaches
that leverage existing non-neural decoders’ structure to
enhance performance with trainable architectures. No-
tably, neural successive cancellation for polar codes (Doan,
Ali Hashemi, and Gross 2018), neural BCJR (NBCJR) for
convolutional codes (Kim et al. 2018), KO-codes for Reed-
Muller codes (Makkuva et al. 2021) have shown promising
results. Conversely, model-free deep learning decoding ap-
proaches, like (Gruber et al. 2017) and (O’Shea and Hoydis
2017), which do not use any existing decoding algorithm as
a baseline, are limited to short block lengths (k < 16) due to
the curse of dimensionality. Syndrome-based schemes (Ben-
natan, Choukroun, and Kisilev 2018) and the error correction
code transformer (ECCT) (Choukroun and Wolf 2022) have
recently achieved performance improvements by embedding
the code structure through the syndromes into the learnable
decoding architecture.

The improvement in transmission performance extends
beyond the enhancement of channel decoders. In real-world
transmission, fixed-constellation modulation is usually em-
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ployed, involving a uniform mapping of a bit sequence (or
a codeword) into a sequence of symbols from a finite set
of constellation points. Examples of such modulations in-
clude commonly used binary phase shift keying (BPSK)
modulation (with constellation {1,−1}) and higher order
modulations like quadrature phase shift keying (QPSK), 2n
quadrature amplitude modulation (QAM). It was shown that
the traditional choice of the constellation may not be optimal
for various communication systems, therefore the modulation
performance can be enhanced by the technique called signal
shaping (Qu and Djordjevic 2019). There are two prevalent
approaches allowing the selection of more suitable modula-
tions for transmission: geometrical shaping and probabilistic
shaping. The first method involves locating optimal transmis-
sion constellation points according to specific criteria, while
the second method adjusts the probabilities of transmitted
symbols to maximize the mutual information between the
channel input and the output.

Learning based techniques employing an autoencoder ar-
chitecture have also been used for geometric shaping (O’Shea
and Hoydis 2017; Jones, Yankov, and Zibar 2019; Gümüş
et al. 2020) as well as joint geometric and probabilistic shap-
ing (Aref and Chagnon 2022). While they provide consid-
erable gains, they rely on modifying both the encoder and
decoder architectures, which may not be viable in some prac-
tical systems. In contrast, the goal in this work is to increase
the reliability of communication with a fixed oblivious re-
ceiver, by only modifying the transmitted signals. This can
allow, for example, higher reliability in the downlink of cellu-
lar communication networks or digital radio/TV broadcasting
systems without upgrading mobile devices.

We treat the modifications to the transmitted symbols as
perturbations to the modulated codewords. The goal is to
identify the ideal perturbations that are more likely to result
in correct decoding given a fixed decoding rule, e.g., fixed de-
coding boundaries. This can be considered as the converse of
adversarial attacks on neural networks (Goodfellow, Shlens,
and Szegedy 2015). We propose a new concept of ‘friendly
attacks’ for channel encoding, where the goal is to find a
perturbation to the modulated codeword that improves the
decoding performance without violating the average power
constraint at the transmitter.

The underlying idea of a ‘friendly attack’ is as follows.
The space of the codewords is divided by the decoder into
decision regions. Modulated codewords may be suboptimal
for these decision regions, particularly when the decoding
algorithm is suboptimal. The optimal codeword locations
should be as far from the decision boundaries as possible.
Hence, a friendly attack seeks a perturbation vector (or, an
attack vector) that shifts the modulated codeword towards the
center of the corresponding decision region.

We design the attack vector by finding gradients dur-
ing noisy channel transmission and subsequent decoding,
akin to white-box adversarial attacks (Goodfellow, Shlens,
and Szegedy 2015; Kurakin, Goodfellow, and Bengio 2016,
2017). The computed attack vector is added to the modulated
codeword before transmission. We highlight the differences
of friendly attacks compared to conventional adversarial at-
tacks on neural networks: The most obvious difference is

that our goal is to improve the quality of decisions made by
the receiver, while adversarial attacks try to fool the neural
network. Moreover, in adversarial attacks, we determine a
specific attack for a specific input that deterministically re-
sults in a wrong decision. In the case of channel decoding,
codewords are decoded correctly in most cases, while errors
happen rarely, when the random channel noise moves the
received codeword to the wrong decision region. Hence, our
goal is to modify the channel input to increase the correct
decoding probability. Finally, in adversarial attacks, perturba-
tions are bounded in order to limit their perception by humans.
Here, perturbations are bounded to guarantee that the average
power of the transmitted codeword remains the same after its
application. We also would like to emphasize that, thanks to
the linearity of the code, there is no need to find a distinct
specific perturbation for each codeword. It is sufficient to find
a perturbation for the all-zero codeword, which can then be
applied to any codeword resulting in a similar improvement
to the decoding performance.

The friendly attack approach to channel coding proposed
here is applicable to any code, and any neural or differen-
tiable decoding algorithm. We provide the results of suc-
cessful friendly attacks for following scenarios: LDPC code
n = 64, k = 32 for BP decoder with BPSK and 4-QAM
modulations; polar code n = 64, k = 32 for BP, NBP and
ECCT decoders with BPSK and 4-QAM modulations and
also for fading channel with BPSK; long block length po-
lar code with n = 512, k = 256 for BP and NBP with
BPSK modulation; convolutional code k = 100, R = 1

2 with
NBCJR decoder over AWGN and bursty channels. We show
that the proposed friendly attack can improve the decoding
performance significantly for a suboptimal decoder in the
high SNR regime. Our results show that thoroughly designed
attack vector enhancing BP decoding for a chosen code can
also improve the performance of a BP decoder with trainable
weights for the same code and the same number of itera-
tions. Moreover, for the considered codes the improvement
by friendly attack for the BER of BP decoding with several
iterations is greater than improvement achieved by adding
trainable weights to BP decoding (NBP). The idea of perturb-
ing the modulated codeword with an attack vector was also
proposed in (Hameed, György, and Gündüz 2021), but there
the goal is to prevent an eavesdropper trying to detect the
modulation scheme of the transmitted waveform; hence, it
follows the conventional adversarial attack framework.

Background
We use the following notations for vectors: xn =

{x1, x2, . . . , xn}, xji = {xi, xi+1, . . . , xj}; a bold notation
xn for a vector with fixed values and Xn for the correspond-
ing vector of random variables.

Communication Scheme
Communication scheme, as shown in Fig. 1, utilizes a chan-
nel code for encoding information at the transmitter and
decoding information from a noisy sequence at the receiver.
For encoding and decoding we assume traditional transmis-
sion setting with a linear (n, k) code C over a binary field
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Figure 1: The studied coded communication scenario with AWGN channel.

F = {0, 1}. The sender has a k-bit message m ∈ {0, 1}k,
which is encoded into a codeword Xn from the code space
C. The modulator then maps the sequence of codeword bits
into a sequence of symbols sN from a chosen discrete con-
stellation, and the modulated codeword is transmitted over
the physical channel. For instance, BPSK modulation has the
constellation {1,−1}, and the modulation can be written as:

S = 1− 2X .

We will also consider modulations with a higher constellation
order such as 4-QAM. Here we suppose that the communi-
cation scheme must follow the average power constraint for
the codeword. Every modulated codeword sN must satisfy
average power constraint P : ||sN ||22 ≤ NP .

We consider an additive white Gaussian noise (AWGN)
channel given as follows:

Y N = SN + ZN ,

where ZN is a sequence of independent and identically dis-
tributed (i.i.d.) Gaussian random variables Zi ∼ N (0, σ2).
We will also consider a Rayleigh fading channel (Hou, Siegel,
and Milstein 2001), where

Y N = GNSN + ZN ,

where channel gains GN are i.i.d. random variables from
Rayleigh distribution, and ZN are defined in the same way as
in AWGN channel. If the receiver knows channel gains GN ,
then it is the case of the ideal side information (SI), otherwise
there is no side information.

We also consider an AWGN channel with bursty noise,
which approximates interference in wireless channels:

Y N = SN + ZN +WN ,

where Zi ∼ N (0, σ2), and a component of bursty noise
Wi ∼ N (0, σ2

b ) with probability ρ and Wi = 0 with proba-
bility 1− ρ. The bursty noise parameter σ2

b is usually taken
quite large to have noticeable influence on the performance.

The decoder receives Y N and computes the log likelihood
ratios (LLRs) Ln during demodulation. For each bit in a
codeword L is computed as:

L = log
Pr(X = 0|Y N )

Pr(X = 1|Y N )
.

Then the LLRs vector Ln is passed to the decoder which
recovers a message m̂ ∈ {0, 1}k.

Channel Coding
We limit our consideration of the hand-crafted codes to binary
linear codes. The encoding process for a binary linear block

code C can be given by multiplication over the binary field F
by the binary generator matrix G of size k × n: Xn = mG,
m ∈ {0, 1}k. The code rate is defined as R = k

n .
The aim of the decoding process is to recover the trans-

mitted message m by exploiting the code structure. The
hard-output decoders return a hard decision m̂ that is an
estimate of transmitted message m. Successive cancellation
(SC) (Arikan 2008) and successive cancellation list (SCL)
(Tal and Vardy 2011) for polar codes are hard-output de-
coders which show near optimal performance though have
a low decoding throughput because of sequential decoding.
Soft-output decoders return a soft estimate X̂n ∈ Rn instead
of a hard decision m̂. The sign of each position in the soft
output X̂n is an estimate of the codeword bit, and the hard de-
cision m̂ can be then obtained from the recovered codeword.
The absolute values of X̂n can be interpreted as a decoder’s
confidence for each bit. This is especially useful for decoding
the concatenation of codes. One of the common examples of
the soft-output decoder is an iterative BP algorithm which
we describe further.

Commonly used metrics that measure decoding perfor-
mance are the BLER (block error rate) defined as:

BLER = Pr (m̂ ̸= m) , (1)

and the BER (bit error rate) defined as:

BER =
1

k

k∑
i=1

Pr (m̂i ̸= mi) . (2)

BP Decoding
For decoding a binary linear block code C let the parity check
matrix H of size (n − k) × n be such that GHT = 0 over
the binary field F . Thus, each codeword Xn ∈ C satisfies
HXn = 0. BP is a message passing algorithm commonly
used for decoding of linear block codes. BP decoding is
performed over the Tanner graph that is a bipartite graphical
representation of the parity check matrix H . BP iteratively
exchanges messages between variable nodes (representing
codeword symbols) and check nodes (representing parity
constraints). As BP decoding performance for polar codes
suffers from short cycles in the factor graph, recent research
has improved BP decoding through factor graph permutations
(Doan et al. 2018b; Elkelesh et al. 2018), and early stop aided
by additional CRC (Ren et al. 2015).

Neural Decoding
Both model-free and model-based neural approaches for
channel decoding are topics of active research. Adding train-
able weights to node updates in BP decoding resulted in

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13294



Encoder

aN z ∼ N (0, σ)

m Modulator + &
norm

+ Demodulator Decoder
Xn

SN Y N Ln m̂

f

Figure 2: The communication scheme with a friendly attack aN .

a popular model-based neural decoding called NBP decod-
ing (Nachmani, Be’ery, and Burshtein 2016; Nachmani et al.
2018; Lugosch and Gross 2017). One of the main challenges
in neural decoding remains the choice of the loss function.
Binary cross-entropy (BCE) loss is often used between the
codeword and its estimate:

L(xn, x̂n) = −
n∑

i=1

xi log x̂i + (1− xi) log(1− x̂i) . (3)

Better results were obtained by averaging the BCE loss af-
ter each message passing iteration (Nachmani, Be’ery, and
Burshtein 2016; Nachmani et al. 2018). However, reduction
in the BCE loss does not necessarily result in BLER and
BER, yet training the model directly using these metrics is
not possible as they are not differentiable over the whole
vector space Rn. In the error correcting code transformer
(Choukroun and Wolf 2022), which exhibited promising re-
sults for a wide range of linear block codes, authors compute
a loss between binary multiplicative noise and model output
aiming at good noise prediction for a given code structure.
In (Kim et al. 2018), the authors aim at obtaining a perfor-
mance similar to the BCJR algorithm known to be optimal
for convolutional codes. Thus, they use a mean squared error
(MSE) loss between the model output and the result of the
conventional BCJR decoder for training.

Adversarial Attacks
Adversarial attacks aim at decreasing the neural network per-
formance by introducing minor perturbations into its input.
Channel decoding can be considered as a classification task
with 2k classes, where the decoder estimates the class of
the transmitted message m ∈ {0, 1}k. Let us denote here
a neural network input as S, the corresponding true label
as m and the loss function as J(f(S),m), for example, the
cross-entropy loss. A non-targeted adversarial attack is con-
sidered successful if the classifier misclassifies the adversarial
sample: f(Sadv) ̸= m, while the p-norm distance between
the adversarial and original samples satisfies the constraint
||Sadv − S||p < ϵ, as the goal is to make the attack as in-
visible to humans as possible. The optimization problem for
generating an adversarial example is:

Sadv = argmax
||Sadv−S||p<ϵ

J(f(Sadv),m) . (4)

There are different attack methods which solve this optimiza-
tion problem. The fast gradient sign method (FGSM) (Good-
fellow, Shlens, and Szegedy 2015) solves (4) for p = ∞:

Sadv = S + ϵ · sign(∇SJ(f(S),m)) . (5)

Algorithm 1: Search for Friendly Attack
Input: modulated codeword SN , codeword or message m
Parameters: batch size B, number of iterations I , noise std
σ, gradient scheduler
Output: m̂

1: Let i = 0, s0 = SN repeated B times, ytrue = m
repeated B times, a = 0.

2: while i < I do
3: ϵ = gradient scheduler(i)
4: (zi)jk ∼ N (0, σ), 1 ≤ j ≤ B, 1 ≤ k ≤ N
5: yi = si + zi,
6: li = demodulator(yi) is a B × n matrix
7: calculate BER, BLER for decoder(li), ytrue
8: ai = −ϵ∇siJ(decoder(li), ytrue)

9: ai =
1
B

∑B
j=1 aij average over batch

10: ai = ai repeated B times
11: l̂i = demodulator(si + ai + zi)

12: calculate ˆBER, ˆBLER for decoder(l̂i), ytrue
13: if ˆBER < BER and/or ˆBLER < BLER then
14: i = i+ 1, si = si + ai, a = a+ ai
15: end if
16: end while
17: return a

The iterative version of FGSM (I-FGSM) (Kurakin, Good-
fellow, and Bengio 2016) applies the gradient update in (5)
multiple times with some rate α:

Sadv
0 = S, Sadv

t = Sadv
t−1+α sign(∇SJ(f(S

adv
t−1),m)). (6)

Here, we can set α = ϵ
T , where T is the number of iterations,

for consistency with (4). It has been shown that iterative
methods achieve better results in terms of successful attacks
(Kurakin, Goodfellow, and Bengio 2017). The attack in (5),
(6) can also be generalised to other p-norms.

Friendly Attack Against a Channel Decoder
In this work, we suggest a new concept called a ‘friendly
attack’ on channel decoders to improve their reliability.

Modified Scheme
As previously mentioned, the decoder can be considered as
a classifier with 2k classes as it recovers a message m̂ ∈
{0, 1}k. The idea is to use the gradient method to find a
perturbation vector for each codeword that will improve the
decoding performance, rather than attacking it. In our scheme,
we suggest to add the perturbation vector aN to the modulated
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codeword SN before transmission over the channel as shown
in Fig. 2. The aim is to find such a vector aN that without
violation of the average power constraint the decoding error
(BLER or BER) on average over the channel distribution
will be smaller. So the model f under attack is not only
decoder itself but also the noisy channel and demodulator as
illustrated with a blue box in Fig. 2.

The differences between a conventional adversarial setting
and our formulation are as follows:
• As we want to increase the performance of the decoder,

the optimization problem should be modified to:
Sfrnd = argmin

Sfrnd

J(f(Sfrnd),m) . (7)

It can be considered as a similar formulation to the tar-
geted attack (Kurakin, Goodfellow, and Bengio 2016), but
here the target class is the true one.

• In the optimisation problem in (7) there is no constraint on
a p-norm distance between the codeword and the attacked
version Sfrnd = SN + aN , i.e., there is no constraint on
the p-norm of vector aN . Nevertheless, the average power
constraint has to be preserved for an attacked codeword
SN +aN . This can be achieved by applying an additional
normalisation before transmitting the codeword:

||C(SN + aN )||22 ≤ NP ,

where C =
√
NP

||SN+aN ||2 is the normalisation constant.
Thus, we can rewrite (6) into an iterative gradient attack:
Sfrnd
0 = S, Sfrnd

t = Sfrnd
t−1 − ϵ∇SJ(f(S

frnd
t−1 ),m) ,

(8)
or in terms of the attack vector:
aN0 = 0, aNt = aNt−1 − ϵ · ∇SJ(f(S + aNt−1),m) . (9)

• The model we intend to attack is stochastic due to the
presence of channel noise, which constitutes the primary
challenge in our task. We want the attack vector aN for
the modulated codeword SN to be good on average for
noisy transmission in terms of BLER and BER.

In general, any given decoder splits the channel output
space into 2k decision regions and the input of the decoder
is a vector of LLRs Ln from one of these regions. The mod-
ulated codewords then might be not optimal for the fixed
decoder as they may not correspond to the center of the deci-
sion regions. Thus, a small shift of the modulated codeword
in the direction of the decision region’s center should increase
the decoding performance. We will say that our friendly at-
tack is successful if it improves the decoding performance
on average for a given codeword. As we consider linear
codes here, the successful attack vector for one codeword
can be easily applied to all codewords (with appropriate sign
adaptation) due to the code linearity and must show similar
improvements. Let us suppose that we have found an attack
aN for an all-zero codeword for some modulation with a
constellation point corresponding to all zero bits c0 (c0 ∈ R
for real constellations, c0 ∈ C for complex constellations),
then the attacked codeword will be:

Sfrnd = SN +
SNaN

S0
, (10)

where normalised attack vector SNaN

S0
= 1

S0
{Siai}Ni=1.

Figure 3: BER for LDPC code (64, 32) with and without
attack using BPSK (top) and 4-QAM (bottom) modulations.
‘BP-n’ refers to BP decoder with n iterations.

Attack
To design an attack vector aN we need to be able to compute
∇SJ(f(S),m). The model f consists of the noisy channel,
the demodulator and the channel decoder as in Fig. 2. AWGN
channel and the demodulator are differentiable. We consider
BP decoder as it is differentiable, as well as NBP and other
neural decoders such as ECCT (Choukroun and Wolf 2022)
for linear codes.

To overcome the problem with stochasticity of the trans-
mission we apply a gradient update (9) over a batch of size
B as in Alg. 1. That means we send the same codeword SN

over the channel B times for every iteration (line 3 in Alg.
1). In this section and in Alg. 1, we use ∇SJ(f(S),m) as
a gradient from the decoder for the batch of codewords SN .
All B attack vectors are then averaged over the batch and
added to the modulated codeword to check (line 11) if they
indeed improve the decoding performance. This is not neces-
sary for all architectures we tried, but crucial for architectures
like ECCT as it aims at noise prediction, and the gradient
direction obtained for this decoder might be bad on average
over the batch.

The choice of parameters I,B, and a scheduler for ϵ de-
fines an attack. We can highlight four different approaches:
1. In the first approach, we employ a rather large batch size

B ∼ 1000− 10000 and relatively small number of itera-
tions I ∼ 1− 100.

2. The second approach needs an average batch size B ∼
100 − 500 and relatively high number of iterations I ∼
500 − 5000. For this setting a scheduler for ϵ should be
chosen carefully. If this approach is applicable, it gives the
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Figure 4: BLER (top) and BER (bottom) for (64, 32) and (512, 256) polar codes with BPSK and 4-QAM modulations.

best overall results. However, it does not perform well for
some decoders and modulations due to a big bias towards
the noise in a batch.

3. The third and fourth approaches are more robust as they
need multiple runs of Alg. 1 and saving output attack
vectors after each run. The final attack vector is found by
running a clustering algorithm on the set of attack vectors
from multiple runs and then choosing the best one. The
best results were obtained with Agglomerative Cluster-
ing (with linkage criterion ”ward” and ”complete”) and
K-means (with number of neighbours 3 − 4). For both
approaches, the scikit-learn library implementation (Pe-
dregosa et al. 2011) was used. Finally, the third approach
includes a relatively small batch size B ∼ 5−50, number
of iterations I ∼ 15− 40 and many runs of algorithm 1:
1000− 5000.

4. The fourth approach is similar to the first one but is run
multiple times with a small number of iterations I ∼ 1−5.
This method is time consuming and works for neural
models which were trained on the input ±1 with little
noise introduced as they are vulnerable to any perturbation
of the input.

Such a variety of approaches in attacks and their different
results in different settings (code, decoder type, modulation)
can be explained by the different splits of the codeword space.
If there is more than one direction for the gradient descent the
algorithm may struggle, and the third and fourth approaches
work the best because final clustering allows to have more

than one optimal perturbation vector.
Taking the gradient ∇SJ(f(S),m) during decoding and

adding it to a codeword can be interpreted as greater power al-
location for symbol positions in SN which have more impact
on the error correction. The decoder corrects errors only if
there is some noise introduced during transmission otherwise
there is no error to correct. It means that it is possible to find a
successful attack vector only during noisy transmission. If an
attack vector is obtained in a high signal-to-noise ratio (SNR)
regime (almost no noise), the decoder has almost no errors
to correct, and it is difficult to identify an effective attack
vector. If an attack vector is obtained at a low SNR (SNRs for
which BLER ≥ 0.7), there is also almost no error correction
because the decoder is not able to extract any information
from the noisy channel output. We saw in our experiments
that the best attack vectors are found in SNR regimes where
BLER ∼ 0.1− 0.5.

Simulation Results
In this work, we do not aim at proposing a new efficient
decoding approach, but to show that our friendly attack can
improve the performance of the variety of existing codes
and decoding algorithms in different scenarios. To compare
our results with the state-of-the-art approaches we used the
sionna library (Hoydis et al. 2022), which follows the 5G
standard (3GPP 2018). We consider both polar and LDPC
codes with different decoding approaches and modulations.
LDPC code design in our experiments is the same as in
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Figure 5: BLER (top) and BER (bottom) for (64, 32) polar
code over a fading channel with BPSK.

the sionna library. We are particularly interested in short
block lengths as near capacity performance can be achieved
by LDPC codes in large block lengths. All attacks were
obtained using the all-zero codeword, and then tested on
random codewords. All the simulations were run on Nvidia
RTX A6000 GPUs with 48GB of memory.

We first consider the (64, 32) LDPC code with BP de-
coding (MacKay and Neal 1997) for different number of
iterations and different modulations. BER of BP decoding
with 3 and 5 iterations and their best attacks are presented in
Fig. 3 for BPSK and 4-QAM modulations. Improvement for
BLER performance for these decoders via friendly attacks
has similar behaviour and is omitted here. We consider here
relatively small number of iterations, since with the increas-
ing number of iterations, the BP decoder gets closer to the
optimal decoding, and is harder to improve.

For comparison we considered also polar codes: (64, 32)
for a short block length and (512, 256) for a long block length.
We consider both BP and NBP decoding for polar codes.
The results are presented in Fig. 4. For long block length,
k = 256, there is no improvement in BLER for NBP while
BER performance was noticeably enhanced via the friendly
attack for both BP and NBP decoders. It can be noticed that
improvement in BER for BP decoding is greater than that
for NBP. We also include the ECCT (Choukroun and Wolf
2022) decoding results with Ndec = 6 for code (64, 32) and
its attacks for both modulations. Although the improvement
via attack for ECCT is barely visible, it shows around %10
reduction in BER and BLER for > 4 dB even for this complex
and deep model.

In Fig. 5, we present BLER and BER results for polar code
(64, 32) over a Rayleigh fading channel with BPSK modu-

Figure 6: BLER and BER for the (200, 100) convolutional
code with BPSK modulation and NBCJR decoding.

lation. For this scenario, we considered BP decoding with
3 and 5 iterations both with and without side information
(SI). Similarly to previous results, more significant improve-
ment can be achieved for the suboptimal BP decoder with 3
iterations.

As an additional evidence of the adaptability of the friendly
attack method we also provide the results for NBCJR (Kim
et al. 2018) for convolutional code of rate R = 1

2 and block
length k = 100 in Fig. 6 for both AWGN and bursty AWGN
channels.

Conclusion
In this work, we proposed a new concept of a ’friendly attack’
for channel coding that employs the adversarial attack ap-
proach to enhance the channel decoding. The friendly attack
is a vector found by a proposed here iterative algorithm based
on a gradient descent during transmission and decoding. We
showed that the addition of the attack vector to a modu-
lated codeword before transmission significantly improves
the error correction performance of the decoder without any
changes on the decoder’s side. The proposed approach was
tested for a range of codes and decoders, and also for differ-
ent modulations and for different channels. Proposed friendly
attack showed promising results in terms of BER for differ-
ent decoders and it appeared to be more efficient in BER
improvement for BP decoding compared to NBP for a small
number of decoding iterations.
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