The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Gaussian Process Neural Additive Models

Wei Zhang!', Brian Barr?, John Paisley!

Columbia University, New York, NY, USA
2Capital One, New York, NY, USA
{wz2363, jwp2128} @columbia.edu, brian.barr@capitalone.com

Abstract

Deep neural networks have revolutionized many fields, but
their black-box nature also occasionally prevents their wider
adoption in fields such as healthcare and finance, where in-
terpretable and explainable models are required. The recent
development of Neural Additive Models (NAMs) is a signif-
icant step in the direction of interpretable deep learning for
tabular datasets. In this paper, we propose a new subclass of
NAMs that use a single-layer neural network construction of
the Gaussian process via random Fourier features, which we
call Gaussian Process Neural Additive Models (GP-NAM).
GP-NAMs have the advantage of a convex objective func-
tion and number of trainable parameters that grows linearly
with feature dimensionality. It suffers no loss in performance
compared to deeper NAM approaches because GPs are well-
suited for learning complex non-parametric univariate func-
tions. We demonstrate the performance of GP-NAM on sev-
eral tabular datasets, showing that it achieves comparable or
better performance in both classification and regression tasks
with a large reduction in the number of parameters.

Introduction

With the rapid evolution of deep neural networks, one ma-
jor challenge has been interpreting and explaining what
they learn. DNNSs are still generally considered a black-box
model because it is difficult to understand and explain why a
specific decision is made. This hinders their uptake in some
fields such as healthcare and finance, where explainability
is highly desired or even mandated by law. While post-hoc
explanations can be given using feature importance or coun-
terfactual methods, they do not provide the inherent level of
interpretability contained in the weights of a simple linear
model, leading some to call for their total rejection in high-
stakes problems (Rudin 2019).

In this paper, we focus on the family of deep models
called neural additive models (NAMs) that attempt to unite
the flexibility of deep neural networks with the inherent ex-
plainability of linear models. Methodologically, the NAM
approximation is formulated as

d
min Lo(y,g()), g(@) = fo+ Y fo(a:) (1)

=1
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where € R? is an input vector with d features, y is the
target variable and the penalty between g(x) and y can be,
e.g., least squares for regression or the logistic regression
penalty for classification. See Figure 1 for an illustration.

The key innovation of NAM methods is that they learn a
feature-specific NN shape function. Whereas linear models
simply define fy,(x;) = 60;x;, with 0; determining the im-
pact of x; on y, the impact of each feature according to a
nonlinear function fy, (x;) can be easily understood by in-
spection of a one-dimensional plot. Prior to the NAM frame-
work, there have been many candidates for shape functions.
For example, Hastie and Tibshirani (1990) use the spline
function. Lou, Caruana, and Gehrke (2012) use boosted de-
cision trees in a method called explainable boosting ma-
chines (EBMs). An alternative type of tree called Neural
Oblivious Decision Trees (Popov, Morozov, and Babenko
2019) was proposed as shape function in NODE-GAMs
(Chang, Caruana, and Goldenberg 2021). Even polynomial
regression fits into this framework.

Recently, Agarwal et al. (2021) proposed using a neu-
ral network as the shape function in (1), known as a neu-
ral additive model (NAMs). This approach has shown much
promise, but comes at the price of potential computational
issues. While Radenovic, Dubey, and Mahajan (2022) do
reduce computational expense by sharing neural network
layers across features, several practical concerns with neu-
ral network training remain. Meanwhile, over the past sev-
eral decades, researchers have explored the relationship be-
tween kernel methods and neural networks (Neal 2012). Cho
and Saul (2009) introduced a new family of positive-definite
kernel functions called multilayer kernels, while Lee et al.
(2017) studied infinitely wide neural networks and the Gaus-
sian process, showing the exact equivalence between the
two. One of the key findings in Lee et al. (2017) is that Gaus-
sian process predictions typically outperform those of finite-
width neural networks.

In this paper, we use this GP/DNN insight to propose a
novel family of NAMs that leverage the Gaussian process
with RBF kernel as the shape function. To this end, we use
the random Fourier feature approximation of the Gaussian
process (Rahimi and Recht 2008) and call our framework a
Gaussian Process Neural Additive Model (GP-NAM). Un-
like other models, the number of parameters in GP-NAM
only grows linearly as the input dimension increases, which
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Figure 1: A graphical representation of the neural additive
model. z; is ith feature of an input vector having D dimen-
sions. fy is the bias term. y is the response or label. The
function f;(x;) is the shape function for feature ¢. The sum
fo+ >, fi(x;) is used to predict y.

y Loss

allows us to train our model quickly, and has a convex objec-
tive function which removes dependence on initialization.
Furthermore, GP-NAM possesses the same interpretability
of related methods since each feature contributes to the out-
put through its own one-dimensional Gaussian process.

In the next section we review related works. We then re-
view the Gaussian process and random Fourier feature ap-
proximation. We then propose our model based on the Gaus-
sian process neural network framework and present an algo-
rithm for learning its parameters. We experiment with sev-
eral public tabular data sets for regression and classification.

Related Works

Our work is connected to two research directions: feature
importance methods and generalized additive models.

Feature importance. Feature importance methods assess
the contribution made by each input feature to the output.
In linear models this is simply observed by the magnitudes
of each learned feature weight (assuming relevant standard-
ization). However, neural networks do not directly provide
this information, leading to various post-hoc techniques to
analyze the decision boundary. LIME (Ribeiro, Singh, and
Guestrin 2016) uses locally linear model approximations
around data points to do this, which has consistency is-
sues in the explanations given. SHAP (Lundberg and Lee
2017) is another linear surrogate model-based approach. In-
tegrated gradients (IG) (Sundararajan, Taly, and Yan 2017)
and DeepLIFT (Shrikumar, Greenside, and Kundaje 2017)
give their explanations by comparing reference points and
input points. In contrast to local, data point specific expla-
nations, global attribution methods provide global expla-
nations by clustering vectors pointing from the input data
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points to the decision boundary (Ibrahim et al. 2019).

Generalized additive models (GAMs). GAMs learn the
shape function for each individual feature and approximate a
target value through a link function (Wood 2017; Hastie and
Tibshirani 1990). There are many candidate shape functions,
such as splines (Hastie and Tibshirani 1990), random forests
(Lou, Caruana, and Gehrke 2012) and polynomials (Dubey,
Radenovic, and Mahajan 2022). Recently, deep neural net-
works have been employed: Agarwal et al. (2021) construct
a 3-layer NN for each input feature independently and in-
troduce a new activation function called ExU for modeling
jagged functions. Chang, Caruana, and Goldenberg (2021)
use neural oblivious decision trees (Popov, Morozov, and
Babenko 2019) as the shape function. Radenovic, Dubey,
and Mahajan (2022) introduce a shared 3-layer NN as a
basis function that maps each feature onto a vector space.
Bouchiat et al. (2023) utilize Bayesian NNs as the shape
function and the Laplace approximation to learn its poste-
rior. All these methods are inherently explainable while suf-
fering little loss in prediction performance for many popular
tabular data sets. However, they also suffer from scalability
issues and usually require regularization techniques such as
batch normalization (Ioffe and Szegedy 2015) and dropout
(Srivastava et al. 2014) to prevent them from overfitting. A
primary contribution of our proposed GP-NAM framework
is the avoidance of these issues.

Background: GPs and RFF Linearization

Before discussing its extension to the NAM regression
and classification frameworks, we briefly review Gaus-
sian process (GP) regression and the random Fourier fea-
ture (RFF) approximation, highlighting its mathematical
equivalence to a single-layer neural network. Given data
(21,91)s -+, (T, yn), where y € Rand x € R?, a GP mod-
els this as a function y(x) : @ — y as follows:

Definition 1 (Gaussian process). Given a pairwise kernel
function k(x,x') between any two points x and x' in R,
a Gaussian process is defined to be the random function
y(x) ~ GP(0,k(x,z")) such that for any n data points,
(Y1, .- -,Yn) is Gaussian distributed with n x n covariance
matrix K, where K, (i,7) = k(z;, x;).

In this section, z; indicates the ith observation in R and
not the ith feature. We have defined the mean function of the
GP to be 0 and are interested in Gaussian kernels, or radial
basis functions (RBF), of the form

1
k(x,x')Eexp{—ZbQHa:—x’Hz}, )
with parameter b > 0. We observe that this kernel function
models positive correlations based on proximity in the space
of x as defined by the scale parameter b; as two points be-
come farther apart, their correlation reduces to zero. In the
NAM framework of this paper, each dimension of x will be
modeled using a separate GP.

The Gaussian process arises by integrating a linear Gaus-
sian model. That is, let ¢(x) be a mapping of x into another
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space. If we define the linear regression model

yle,w ~ N(g(z) w,0?),

w ~ N(0,I), 3)
then the marginal distribution over n observations is
ylz ~ N(0,0°L, + K,),
where the n x n kernel matrix K, (i,j) = ¢(x;)" ¢(z;).

Here, y is represented as a noise-added process, but setting
02 = 0 generates the underlying noise-free GP.

The power of Gaussian process theory arises when the
space ¢(x) is continuous or unknown. This is particularly
useful for the RBF kernel, since ¢(x) has a Gaussian form
and ¢(z) T ¢(z') becomes an integral over R?, and therefore
w needs to be defined over a continuous space in R%.

The linear representation in Equation (3) is preferable
for scalability to large data sets. For the RBF kernel,
since ¢(z) is continuous working in this linear space is
impossible. However, approximations can be introduced
that seek to construct a finite-dimensional vector ¢(z) such
that ¢(z) T p(a') ~ ¢(x)Tp(2'). In this paper we will use
the random Fourier feature (RFF) approach, which has
the nice property of being mathematically equivalent to
a single layer of a fully connected neural network. (We
will continue to refer to this approximation as ¢.) While
originally presented for all shift-invariant kernels by Rahimi
and Recht (2008), we focus on the RFF approximation to
the RBF kernel. In this case, the RFF method approximates
Equation (2) using a Monte Carlo integral as follows.

Definition 2 (RFF Approximation). Let z € R? and define
a sample size S. Generate vectors zs ~ N(0,1) in R? and
scalars cs ~ Unif(0,27) independently for s = 1,..., 5.
For each x define the vector

o(x) = 2 cos (z] x/b+¢1),...,cos (z42/b+ cs '
S

Then ¢(z) " ¢(a') ~ exp{—5iz ||x — @'||*} with equality as
sample dimensionality S — oc.

Using this representation, we can now return to the under-
lying linear model of the Gaussian process described in Eqgs.
(3) by learning w € RS, which requires that the same sam-
ple set {(zs, ¢s) } be shared by all data. Since the approxima-
tion to the Gaussian kernel holds, the underlying marginal
that this linear model approximates is the desired Gaussian
process. The values of {(zs, cs)} are stored for later predic-
tions. Inspection of Definition 2 shows that the function ¢(x)
is mathematically equivalent to a single-layer of a neural net-
work in which the weights z and bias c are not learnable and
the nonlinearity used is the cosine function.

Gaussian Process Neural Additive Models

We next show how a simple application of the RFF approxi-
mation to the GP results in a Gaussian Process Neural Addi-
tive Model (GP-NAM) for which few parameters need to be
learned. While being mathematically equivalent to a NAM
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approach, GP-NAM results algorithmically in a direct appli-
cation of a simple linear model, such as logistic regression or
least squares linear regression, applied to a pre-determined
feature mapping ¢. We consider this to be a feature of GP-
NAM, since it retains the flexibility and interpretability of
other NAM approaches while being fast to learn and avoid-
ing optimization issues with locally optimal solutions be-
cause of the convexity of its objective function.

Basic Setup

As mentioned in the introduction, a basic neural additive
model is of the form

d
g(x) = fo+ > fo.(x:)

i=1

where z; is the ith dimension of a vector z € R? and fo,
is a neural network that maps z; to its contribution towards
the label/response y using parameters 6;, which are learned
from data. For regression, g typically approximates y using
the least squares penalty, while for binary classification g is
passed through a sigmoid function.

In this paper, we define f to be the random function
fo,(x;) ~ GP(0, k(z;,«})) and use the RFF approximation
to learn it. Thus the GP-NAM generative process becomes

fo(xi) = ¢($i)—rwi,
w; ~ N(0,I), “4)
where ¢(x;) € [—+/2/S,+/2/S]° is the RFF map:
o(x;) = \/2/S[cos(zsxi/bi—l—cs)}f:l,
Zs ~ N(O,l)v (5)
¢s ~ Uniform(0, 27).

We let each dimension of x have its own kernel width b; to
account for different scaling of the features.

We observe that Equation (5) is a single-layer neural net-
work, while Equation (4) performs the linear operation of
a second layer, which is summed over ¢ to either model y
directly for regression, or is passed through a sigmoid to
model the binary label y. (A straightforward extension to
multiclass problems can be made, but isn’t considered in
this paper.) This two-step process is also equivalent to a sum
over d dimension-specific Gaussian processes evaluated at
each dimension’s input. The result is a neural additive model
where the only learnable parameters are wy, ..., wg, with
each w; € R and S chosen to provide a good approxima-
tion to the GP. Since each GP is one dimensional, we empir-
ically found that S = 100 works well.

Discussion

As shown in the previous subsection, a GP additive model
can be formulated as an equivalent single-layer neural ad-
ditive model. We provide an illustration of this GP-NAM
framework in Figure 2. In our GP-NAM formulation, only
the linear weights of the last layer need to be learned,
whereas in the vanilla NAM framework a potentially mul-
tilayer neural network is learned for each feature x; prior
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Figure 2: The architecture of GP-NAM. Each x; represents one feature of a single input vector x € R%. Each (zs, c;) is shared
across shape functions. The GP fy, (;) is the shape function for the ith feature. The only trainable parameters are the feature-

specific S-dimensional weight vectors w1, . .

., wp that connect the output from the cosine functions to their corresponding GP

shape function. The prediction is made by using the sum of the outputs from all the shape functions with the bias term fj. This
is mathematically equivalent to an additive Gaussian process.

to this last linear layer. NBM improves on this by allowing
neural network parameters to be shared for each dimension.
This leads to some immediate observations.

First, we do not anticipate that GP-NAM will clearly out-
perform NAM or NBM. This is because, while GP-NAM
predefines one layer of parameters z and c, other NAM ap-
proaches allow these to be learned along with deeper lay-
ers, thereby potentially improving the fit. Therefore, since
we share z and c across dimensions of z, GP-NAM can be
considered a special case of NBM that is single layer with
unlearnable weights and cosine nonlinearity.

However, in the specific case of additive modeling this is
not necessarily a downside, and may be an advantage. While
deep neural networks can be expected to outperform Gaus-
sian processes on complex, high-dimensional problems, in
the one-dimensional setting of additive modeling it is not
clear that a neural network on R is preferable to a Gaus-
sian process. For one-dimensional function approximation
problems a GP with RBF kernel is remarkably flexible in
the functions it can learn. Though NBM models can be said
to contain GP-NAM as a special case — just as both can be
said to contain the solution set of the classical linear model
2w as a special case — restricting the NBM structure to
the GP framework drastically reduces the number of learn-
able parameters and is convex when y is modeled using least
squares or logistic regression. Therefore, learning GP-NAM
should be significantly faster and will not suffer from poten-
tial local optimal issues arising from the non-convexity of
other NAM models.

Finally, we note that extensions to incorporate cross-terms
have led to NA2M and NB?M extensions of the form

g(@) = fo+ 0, fo,(xi) + Xuss fo,, (@i zir).

By letting ¢(z;, ;) be a two dimensional GP with 2 € R?
as described in the background section, we can extend GP-
NAM to GP-NA2M in a similar way.

16868

Algorithm Details

Since GP-NAM is a linear model applied to a pre-
determined feature mapping ¢, standard least squares and
logistic regression algorithms can be used. We can see the
linearity of GP-NAM explicitly by rewriting g as

d
g(x) = wo + Z o) "w; (6)
=1

where wy € R and the remaining w € R* are the only learn-
able parameters. In this section, we provide some additional
practical details.

First, we note that the Monte Carlo integral of Definition
2 from which we construct ¢ arises from the equality

1
exp {~ 5 lle—a'|} =

1 /2”/ 2Tz
— CcOos (— + c) cos (
T 0 R4 b

as derived by Rahimi and Recht (2008). For multidimen-
sional problems, being able to sample (zs, ¢5) from a joint
Gaussian-uniform distribution greatly simplifies the prob-
lem. However, since the NAM framework considers each di-
mension separately, selecting z1, ..., zg can be done using
deterministic grid points calculated from the inverse CDF
of the standard univariate normal distribution, providing a
slightly improved approximation to the integral. For each
dimension, we construct {(zs,cs)} by pairing a randomly
permuted uniform grid of ¢ € [0,27] with a grid of z € R
using the inverse CDF of A/(0, 1).

For binary classification, the model in (6) can be quickly
optimized over w using standard stochastic algorithms for
logistic regression. For regularized least squares regres-
sion (recalling the Gaussian prior on w) the solution to

@)
+ C)N(Z|O, Idzde

2T
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Algorithm 1: GP-NAM for regression and classficiation
Require: Data {(z,y)}, GP width S, kernel widths b;.4.

1: Sample z; ~ N(0,1), ¢s ~ Unif(0,27), s =1:S.

2: Alternatively, grid using inverse CDF.

3: Define ¢(x;) = \/2/S [ cos(zgwi /b; + ¢5)]>_,

4 and ¢, = stack(1, ¢(x1,n)a ceey ¢(xd,n))

5: Regression: Define A =" ¢,¢, andv =3, Y dn.
6: Solve (I + A)w = v using conjugate gradients

7: Classification: Solve linear classifier w on {(¢n, yn)}
8: Return w

w is closed form, but the dimensionality of the matrix in-
verse will likely present computational or numerical is-
sues. By stacking ¢ = [1,¢(x1),...,¢(xq)] and w =
[wo, w1, ..., wy], the classic conjugate gradients algorithm
(Nocedal and Wright 2006) is a fast and stable means for
solving

N N

n=1 n=1
‘We therefore do not need to invert the left matrix to solve for
w. We summarize these algorithms in Algorithm 1.

Experiments

We experiment using several tabular data sets. A key fea-
ture of our model is its reduction in parameters and convex
optimization, while still providing competitive performance
as a neural additive model. Table 1 and Figure 3 illustrate
the magnitude of this reduction for multiple data scenarios.
Here, the parameter size of NAM, NBM and GP-NAM are
calculated as INAM| = (|NN|+.5)D, INBM| = |NN|+SD
and |GP-NAM| = SD, where S is the basis size, D is the
data dimensionality, and |[NN] is the number of parameters in
the neural network. For example, Agarwal et al. (2021) and
Radenovic, Dubey, and Mahajan (2022) proposed a network
of size [NN| = 6401 and |[NN| = 62, 820, respectively. The
reduction in parameters can lead to a significant improve-
ment in training time. For example, for the LCD data set
this translates to 5.5 and 3.5 sec/epoch for NAM and NBM
on GPU, respectively, and 50 ms/epoch for GP-NAM on our
CPU. For reference, NODE-GAM required 250 ms/epoch
and EBM required 50 ms/epoch.

Datasets

We perform experiments on several tabular data sets fre-
quently used for additive regression and classification mod-
els. This includes CA Housingl, FICO?, for which we
follow the processing of Radenovic, Dubey, and Maha-
jan (2022). We also report performance on MIMIC-II?,

"https://www.dcc.fe.up.pt/~ltorgo/Regression/cal _housing

*https://community.fico.com/s/explainable-machine-learning-
challenge

3https://archive.physionet.org/mimic2
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Model Bike CA House FICO LCD

NAM 54K 83K 262K 32K

NBM 65K 64K 68K 63K
GP-NAM | 801 1201 3901 501

Table 1: Examples of the number of parameters. GP-NAM
is a fast, parameter-lite NAM approach with equivalent per-
formance as shown in the quantitative evaluation.

70
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Figure 3: Parameter number ratios [NAM|/|NBM| (orange)
and [NAM|/|GP-NAM]| (blue) as a function of data dimen-
sionality. We set S = 100 basis functions for all models to
give a fair comparison. GP-NAM uses ~60x fewer param-
eters than NAM regardless of the dimensionality of x, and
e.g. ~15x fewer than NBM at 2 € R*°, We are interested in
the tabular data regime where e.g. D < 500.

MIMIC-II*, Credit’, Click®, Microsoft’, Year® and Ya-
hoo’, Churn'’, Adult'!, Bikeshare'? tabular data sets. For
these, we follow the processing in Chang, Caruana, and
Goldenberg (2021); Popov, Morozov, and Babenko (2019).
We also consider our own processing of credit lending data
sets LCD!? and GMSC!? More information about these data
sets is shown in Table 2.

Baselines

We compare with several state-of-the-art additive models,
as well as two black-box methods for reference. All models
are implemented with PyTorch and trained using stochastic
gradient descent.

Linear. Logistic and linear regression for classification
and regression are the most fundamental and interpretable

“https://physionet.org/content/mimiciii/
Shttps://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
®https://www.kaggle.com/c/kddcup2012-track2
"https://www.microsoft.com/en-us/research/project/mslr
8https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
*https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
https://www.kaggle.com/blastchar/telco-customer-churn
https://archive.ics.uci.edu/dataset/2/adult
Phttps://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

13 https://github.com/Wei2624/GPNAM
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Dataset #Train #Val #Test  #Feat
Churn 4,507 1,127 1,09 20
FICO 7,321 1,046 2,092 39
LCD 10,000 1,000 1,000 5
GMSC 15,000 1,000 1,000 9

MIMIC-IT 17,155 2,451 4,902 17
MIMIC-III 17,502 4,376 5,470 57
Adult 20,838 5,210 6,513 14
Credit 199,364 28,481 56,962 30
Click 800,000 100,000 100,000 11
Bikeshare 11,122 2,781 3,476 12
CA Housing 14,447 2,065 4,128 8
Year 370,972 92,743 51,630 90
Yahoo 473,134 71,083 165,660 699
Microsoft 580,539 142,873 241,521 136

Table 2: Statistics from the tabular data sets used in binary
classification (top) and regression (bottom) experiments.

models. They provide individual weights for each feature.

NAM (Agarwal et al. 2021). NAM is the first model to
use neural networks for generalized additive modeling. We
use the authors’ implementation.

NODE-GAM (Chang, Caruana, and Goldenberg
2021). NODE-GAM is based on Neural Oblivious Decision
Trees (NODE) (Popov, Morozov, and Babenko 2019) where
a full decision tree is learned for each feature.

NBM (Radenovic, Dubey, and Mahajan 2022). The
Neural Basis Model (NBM) reduces the number of trainable
parameters with a shared basis neural network that maps
each feature to a predefined number of basis features. These
are mapped to shape functions by linear projections.

EBM (Lou et al. 2013). Explainable Boosting Machines
gradient boost thousands of shallow tress for each feature
and are considered another type of GAM. We use the inter-
pretML library (Nori et al. 2019).

MLP. Multi-layer perceptrons are a black-box model
when interpretability is not needed. We use the architecture
reported in Radenovic, Dubey, and Mahajan (2022).

XGBoost (Chen and Guestrin 2016). This is another
black box baseline. We use the XGBoost library.

Implementation Details

In addition to learning shape functions equivalent to a
single-layer neural network, the predetermined hidden layer
weights and offset means that back-propagation algorithms
are unnecessary. Instead, as outlined in Algorithm 1, we
implement a stochastic optimization algorithm for logistic
regression to learn a classifier, or solve the classic conju-
gate gradients problem for regression, both using the stacked
feature mappings ¢. Therefore, the algorithm is faster than
those available for deeper NAM models.'*

For NAM, NODE-GAM and NBM, we use the best
parameters provided in Radenovic, Dubey, and Mahajan

“The GP-NAM code for regression and classification can be
found at https://github.com/Wei2624/GPNAM
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(2022) or perform a similar hyper-parameter search other-
wise. We run Linear, EBMs and XGBoost on CPUs and use
the default parameters provided in the libraries.

We follow other recent papers in calculating AUC or Er-
ror Rate to evaluate classification performance, and MSE or
RMSE to evaluate regression performance on the same train-
ing/validation/testing split for each algorithm. We also pro-
vide some qualitative evaluation.

Experimental Results and Discussion

Quantitative comparisons. We show our main quantita-
tive results in Table 4. The top half shows results for which
higher values are better, and in the bottom half lower val-
ues are better. One takeaway from this table is that no NAM
approach is clearly best for all problems. GP-NAM occa-
sionally performs best (MIMIC-II, GMSC, Click), or effec-
tively tied for best (Year, CA Housing, Bikeshare, Yahoo,
Microsoft). For nearly all of the remaining 6 problems GP-
NAM is close to the best along with several other algorithms.
Furthermore, for several problems (Credit, Adult, Churn,
FICO, LCD, Microsoft) a basic linear model in the features
space performs very competitively, indicating a highly lin-
ear problem there. For the data sets with obvious improve-
ment (Bikeshare, CA Housing) or moderate improvement
(MIMIC-II, MIMIC-III, GMSC, Yahoo), GP-NAM captures
the nonlinearity of the problem as well as other NAM ap-
proaches. However, as previously highlighted in Table 1,
GP-NAM is a parameter-light model with a fast convex opti-
mization algorithm. In Table 3 we also show how GP-NAM
can perform well on tabular data in comparison with non-
additive models that capture greater complexity in the data,
but are harder to interpret.

Interpretability and stability. The inherent interpretabil-
ity of a GAM model can be obtained by visualizing the shape
function for each feature. In Figure 4 we show the shape
functions learned by GP-NAM on the LCD data along with
NAM and NODE-GAM, where NAM represents a neural
additive model and NODE-GAM a tree-based GAM model.

As is evident, the neural network of NAM does not learn
functions with the same smoothness as the GP — indeed,
it is not clear how interpretable NAM actually is in this
case. NODE-GAM is smoother and analysis can determine
which, if either, is more meaningful between it and GP-
NAM. We note that for GP-NAM, DTI (debt-to-income) fol-
lows a meaningful nonlinear pattern, where defaults are con-

Model | CAHouse Bike FICO LCD
RMSE| RMSE| AUCt AUCt

Linear 0.7354 1459 0.7909 0.9459
GP-NAM | 0.5586 99.6  0.8043 0.9524
XGBoost | 0.4428 500  0.7925 0.9567
MLP 0.5041 442 0.7936 0.9589

Table 3: Performance comparison on a subset of data sets
using complex and non-interpretable XGBoost and MLP.
Gives an indication of GP-NAM performance in relation to
“upper” and “lower” bounds.
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Model MIMIC-II MIMIC-III Credit GMSC Adult Churn FICO LCD
AUCYT AUCYT AUCYT AUCT AUCYT AUCT AUCT AUCYT
Linear 0.8147 0.7753 0.9770 0.8063 0.9013 0.8345 0.7909 0.9459
EBM 0.8514 0.8090 0.9760 0.8655 0.9277 0.8490 0.7985 0.9519
NAM 0.8539 0.8015 0.9766 0.8548 0.9152 0.8356 0.7993 0.9494
NODE-GAM 0.8320 0.8140 0.9810 0.8215 0.9166 0.8339 0.8063 0.9558
NBM 0.8549 0.8120 0.9829 0.8328 0.9176 0.8389 0.8048 0.9506
GP-NAM 0.8508 0.8159 0.9794 0.8674 0.9167 0.8360 0.8043 0.9524
Model Bikeshare Click Microsoft Yahoo  Year CA Housing Model Size
RMSE| ERR| MSE| MSE] MSE| RMSE| Params/feature
Linear 145.9 0.3443 0.8693 0.6765  88.51 0.7354 1
EBM 100.0 0.3338 0.8654 0.6312 85.15 0.5586 10K Stumps
NAM 99.6 0.3317 0.8588 0.6458  85.25 0.5721 S+|NN|
NODE-GAM 100.7 0.3342 0.8533 0.6305  85.09 0.5658 X NODE Tree
NBM 99.4 0.3312 0.8602 0.6384  85.10 0.5638 S+|NN|/D
GP-NAM 99.6 0.3030 0.8588 0.6302  85.10 0.5586 S

Table 4: Quantitative results for several regression and classification tasks. The top half of the plot indicate problems where 1
is better, and the bottom half where | is better. For several data sets, complex additive models improve significantly over the
baseline linear model. Among those, GP-NAM performs at the level of more complex alternatives, and occasionally better.
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Figure 4: Shape functions of NAM, NODE-GAM and GP-NAM on the LCD data set in the original scales. The density of each
feature in the training data is plotted in pink. For reference, logistic regression learned weights indicated by the slope of the
light dashed line on each plot. Inspection shows that GP-NAM is in fairly close agreement with linear classification, while still
allowing for meaningful nonlinearities to be learned from the data (DTI in particular).

sistently lower probability until a 20% threshold is reached,
at which point defaults increase in probability with increas-
ing prior debt. In terms of stability under multiple reruns,
since GP-NAM is a convex optimization problem there is no
randomness on the learned shape functions. The other algo-
rithms required a run to be chosen.

Conclusion
We have presented a Gaussian Process Neural Additive
Model (GP-NAM) for interpretable nonlinear modeling of
tabular data. We are motivated by the fact that Gaussian pro-
cesses are a robust and flexible nonparametric method for
univariate function approximation, and thus are as suitable
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for the generalized additive modeling problem as deeper
neural networks. Using the RFF approximation, we demon-
strated how GP-NAM is a neural additive model with a sin-
gle, pre-determined hidden layer and few learnable param-
eters. The result is an efficient convex optimization prob-
lem for regression or classification that performs as well
as more complicated, non-convex deep approaches to the
problem. Indeed, for low dimensional function approxima-
tions, the equivalence of a GP using RFFs with a single
layer NN may support a preference for this simpler model
over deeper models for certain applications, such as spatio-
temporal model averaging (Paisley et al. 2022).
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