The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Generalising Planning Environment Redesign

Alberto Pozanco'*, Ramon Fraga Pereira®*, and Daniel Borrajo'"

1J.P. Morgan Al Research
2University of Manchester, UK
{alberto.pozancolancho,daniel.borrajo } @jpmorgan.com
ramon.fragapereira@manchester.ac.uk

Abstract

In Environment Design, one interested party seeks to affect
another agent’s decisions by applying changes to the envi-
ronment. Most research on planning environment (re)design
assumes the interested party’s objective is to facilitate the
recognition of goals and plans, and search over the space
of environment modifications to find the minimal set of
changes that simplify those tasks and optimise a particu-
lar metric. This search space is usually intractable, so exist-
ing approaches devise metric-dependent pruning techniques
for performing search more efficiently. This results in ap-
proaches that are not able to generalise across different objec-
tives and/or metrics. In this paper, we argue that the interested
party could have objectives and metrics that are not neces-
sarily related to recognising agents’ goals or plans. Thus, to
generalise the task of Planning Environment Redesign, we de-
velop a general environment redesign approach that is metric-
agnostic and leverages recent research on top-quality plan-
ning to efficiently redesign planning environments according
to any interested party’s objective and metric. Experiments
over a set of environment redesign benchmarks show that our
general approach outperforms existing approaches when us-
ing well-known metrics, such as facilitating the recognition of
goals, as well as its effectiveness when solving environment
redesign tasks that optimise a novel set of different metrics.

Introduction

In Environment Design (Zhang, Chen, and Parkes 2009), one
interested party (usually referred to as observer) seeks to
affect another agent’s decisions by applying a minimal set
of changes to the environment. Most research on planning
environment (re)design has focused on cooperative and ad-
versarial settings where the observer aims to facilitate Goal
or Plan Recognition (Ramirez and Geffner 2009), i.e., infer
the agent’s goal or plan as soon as possible. These tasks are
known as Goal Recognition Design (GRD) (Keren, Gal, and
Karpas 2014) and Plan Recognition Design (PRD) (Mirsky
et al. 2019), respectively, and they have been studied un-
der different interested party objectives, metrics, and ob-
server’s capabilities (Keren, Gal, and Karpas 2016b; Kulka-
rni, Srivastava, and Kambhampati 2019; Shvo and Mcllraith

“These authors contributed equally.

On leave from Universidad Carlos III de Madrid.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

20230

2020), as well as agents’ intentions and environment as-
sumptions (Keren, Gal, and Karpas 2021).

Existing research on planning environment design defines
a metric that is able to assess how long (in terms of ac-
tion progress, i.e., number of observations) an agent can
act in an environment without revealing its intended goal
or plan to the observer (Keren, Gal, and Karpas 2021).
Optimising these metrics can force the agent’s behaviour
to be more transparent, ambiguous, or endow predictabil-
ity (Chakraborti et al. 2019). Most approaches assume that
the environment can only be modified by removing actions.
So, they search over the space of actions’ removal to com-
pute the best set of environment changes for a given met-
ric (Keren, Gal, and Karpas 2021). Since this space is usu-
ally intractable, existing approaches devise different heuris-
tics and pruning techniques to perform search efficiently de-
pending on the specific metric to be optimised. This results
in metric-dependent approaches that are not robust enough
to generalise across different environment redesign metrics.

In this paper, we propose a metric-agnostic approach to
redesign fully observable and deterministic planning envi-
ronments. Our main contributions are twofold, as follows:

* Environment Redesign has mainly focused on promot-
ing or impeding the recognition of goals/plans. We ar-
gue that the interested party could have other objec-
tives that are not necessarily related to identifying the
agent’s goal/plan. For example, the interested party might
want to redesign the environment such that the agent is
constrained to follow plans that keep certain relation-
ships with some states. This can be beneficial in many
planning settings, such as Anticipatory Planning (Burns
et al. 2012), Counterplanning (Pozanco et al. 2018), Risk
Avoidance and Management (Sohrabi et al. 2018), or
Planning for Opportunities (Borrajo and Veloso 2021).
Thus, we propose novel metrics that can be used to re-
design environments for these other settings.

To generate new environments that optimize our novel
metrics, as well as existing metrics in the literature, we
propose GER, a General Environment Redesign approach
that employs an anytime Breadth-First Search (BFS) al-
gorithm. It exploits recent research on fop-quality plan-
ning (Katz, Sohrabi, and Udrea 2020) to improve effi-
ciency. While previous approaches have also used BFS
to explore the space of environment modifications, they

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

assume the extremes of the spectrum. Keren, Gal, and
Karpas (2014) do not assume a plan-library, so they
have to explore the state space and reason over the qual-
ity of the plans and the metric value in the environment
induced by the current modifications. This yields very
costly approaches that are not able to scale to complex
environments with many goals. In contrast, Mirsky et al.
(2019)’s approach assumes a hand-crafted plan-library is
provided as input, which allows the algorithm to reduce
the action’s removal space by just considering the ac-
tions appearing in the plan-library. We propose a middle-
ground approach, in which the action space is pruned by
a plan-library that is not explicitly given as input, but
computed using fop-quality planning (Katz, Sohrabi, and
Udrea 2020).

We evaluate GER in a set of benchmarks for environ-
ment redesign, and show that it outperforms existing ap-
proaches (Keren, Gal, and Karpas 2014) (being orders of
magnitude faster) in known redesigning tasks such as GRD.
We also show its effectiveness when solving environment
redesign tasks that optimise a novel set of different metrics.

Background

Planning is the task of devising a sequence of actions (i.e.,
a plan) to achieve a goal state from an initial state (Geffner
and Bonet 2013). We follow the formalism and assumptions
of the Classical Planning setting, and assume that an envi-
ronment is discrete, fully observable, and deterministic.

A planning domain D is defined as (F,.A), where: F
is a set of facts; A is a set of actions, where every ac-
tion a € A has a set of preconditions, add and delete ef-
fects, pre(a), add(a), del(a), and a positive cost, denoted as
cost(a). We define a state S as a finite set of positive facts
f € F by following the closed world assumption, so that
if f € S, then f is true in S. We also assume a simple in-
ference relation |= such that S = fiff f € S, S [~ fiff
féS,andS E fo Ao Afriff {fo,...,fn} CS. An ac-
tion a € A is applicable to a state S iff S |= pre(a), and it
generates a new successor state S’ by applying a in S, such
that S’ = (S \ del(a)) U add(a).

A planning problem P is defined as (D, Sz, G), where:
D is a planning domain as we described above; Sz C F is
the initial state; and G C F is the goal state. A solution to
P is aplan m = [ag, a1, ..., a,| that maps Sz into a state S
that holds G, i.e., S = G. The cost of a plan 7 is cost(m) =
Y cost(a;), and a plan 7* is optimal (with minimal cost) if
there exists no other solution 7 for P such that cost(w) <
cost(m*). We use h*(s, G) to refer to the cost of an optimal
plan of achieving G from s.

We refer to II(P,b) as the set of all plans that solve a
planning problem P within a sub-optimality bound b (Katz,
Sohrabi, and Udrea 2020). This bound is defined as the cost
of a plan 7 with respect to the cost of an optimal plan 77, i.e.,
b = . Therefore, TI(PP, 1.0) will give us all the optimal
plans that solve P, and II(P,1.5) will give us all the plans
that solve P within a sub-optimality bound of 1.5. When
b > 1, plans in ITI(P, b) might contain loops, i.e., they visit
at least one state more than once. In the rest of the paper,

20231

we assume that II(P, b) only contains loop-less plans (von
Tschammer, Mattmiiller, and Speck 2022).

Planning Environment Redesign

Planning Environment Redesign is the task in which an in-
terested party (observer) aims to perform off-line modifica-
tions to a planning environment (or just environment) where
another agent will be acting, in order to constraint its po-
tential behaviour. Following the formalism of (Keren, Gal,
and Karpas 2014), we define a planning environment with
deterministic actions under fully observability, as follows:

Definition 1. A planning environment is a tuple £
(Pe = (F, A,81),G) where F, A and St are the same as
in a planning problem, and G is a set of possible reachable
goals {Gy, Gy, ...,Gy,} that are of interest to either the ob-
server or the agent.

We define the planning environment redesign problem in
Definition 2, and its solutions in Definitions 3 and 4.

Definition 2. A planning environment redesign problem
is a tuple R = (&, M) where £ is the current planning
environment, and My, is a metric to be optimised in order to
get the new redesigned environment, assuming the agent’s
behaviour sub-optimality is bounded by a constant b.

This definition is more general than the one in (Keren,
Gal, and Karpas 2019; Mirsky et al. 2019), as we include
the metric M, in the definition, making the problem defini-
tion metric-agnostic. We do not make any assumption on the
relation between the observer and the agent, i.e., they could
be competing, cooperating, or indifferent.

Definition 3. A solution to an environment redesign prob-
lem R = (£, My) is a new redesigned environment &’
(P: = (F,A',81),G) where £ contains a new set of ac-
tions, A’, and all goals in G are still reachable using Pg.

Although environments could be redesigned by adding
or removing any element in £, we follow (Keren, Gal, and
Karpas 2019) and (Mirsky et al. 2019), and assume that en-
vironments are redesigned through action removal. Thus,
A" = A\ A, where A_ is the removed actions from A.

Definition 4. An optimal solution to a planning environ-
ment redesign problem R = (£, My) is a redesigned plan-
ning environment £* = (P; = (F, A, S1),G) that opti-
mises the given redesign metric My, while minimising | A-|.

An optimal solution to an environment redesign problem
‘R optimises the given metric Mj, breaking ties in favour of
solutions requiring fewer changes to the environment.

Environment Redesign Metrics

Before proceeding to define the redesign metrics, we first
provide some common notation and introduce the running
example we use throughout the paper.

The metrics we use for environment redesign rely on rea-
soning about sets of plans for the possible goals G in R, and
we refer to these sets of plans as a plan-library P (follow-
ing the terminology of set of plans defined in Section). We
formally define a plan-library P in Definition 5.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

T
1
1

([T

e]

Figure 1: GRID environment where the agent located at cell
(2,0) and has two possible goals: G = (0,4); G2 = (4,4).

Definition 5. Given an environment £ and a sub-optimality
bound b, a plan-library of a planning environment with a
bound b is defined as P(£,b) = g, cg L((Pe, {Gi}), b).

Redesign metrics often relate to plan prefixes of a given
size n, i.e., the first n actions of a plan 7. We use 7, to refer
to the first n actions of a plan «. Similarly, we use II,, to
denote all the plan prefixes of size n of a given set of plans
II. We abuse the notation and say that a plan prefix is inside
a set of plans (7,, € II) iff there exists a plan = € II for
which 7, is a plan prefix. We assume the actions .4 have a
uniform cost equal to 1, but the metrics we define here are
not limited to uniform cost. In order to simplify notation,
we use z’, " when referring to two different elements in a
set, i.e., 2’ # x”. We also use x € (X', X"') to denote that
zeX' NxeX

As a running example, we use the GRID environment
shown in Figure 1, where a robot can move in the four
cardinal directions, and its possible goals consist of reach-
ing the cells depicted by G and G2. We use (z,y) coordi-
nates when referring to cells in the grid. When formalising
the redesign metrics, we assume optimal agents’ behaviour,
so agents only follow optimal plans to achieve their goals
(b = 1.0 when computing sets of plans).

Redesign Metrics

We now formally define a set of environment redesign met-
rics, in which two of them are well-known in the litera-
ture (Keren, Gal, and Karpas 2014; Mirsky et al. 2019), and
the other ones are our novel redesign metrics.

Goal Transparency (GT). Goal Transparency (equiva-
lent to GRD) aims at redesigning an environment such that
an observer can infer agents’ (or humans’) true intended
goal as soon as possible. This is useful in many applica-
tions such as transparent planning (MacNally et al. 2018),
human-robot collaboration (Kulkarni et al. 2020), or coun-
terplanning (Pozanco et al. 2018). Goal Transparency can
be achieved by minimising the worst case distinctiveness
(wed) of an environment £ (Keren, Gal, and Karpas 2014,
2019). We adapt the notation of Keren, Gal, and Karpas
(2014, 2019) and formally define wcd as follows:

Definition 6. Given a planning environment £ in R
(€ = (Pg,G), My), let IT' = TI({Pe,G"),b), and 11"
II((Ps, G"),b) for G',G" € G. The worst case distinctive-
ness (wed) of a pair of goals G',G" is the length of the
longest plan prefix T that is present in II' and 11" :

wed(G',G") = max{n | 7, € (I' N1T")}

20232

Thus, the worst case distinctiveness of a planning environ-
ment is denoted as wed(E), and defined as:

wed(E) oHuax wed(G', G")
I) Ile

The wed of the original environment shown in Figure 1 is
4, and the agent can execute 4 different actions (moving up
4 times) without revealing its actual goal. Figure 2a shows
an optimal solution of the environment redesign problem
where Goal Transparency is optimised (M o), wed = 0,
and |A~| = 1. In this new environment, an observer will be
able to recognise the agent’s goal as soon as it executes the
first action because the removal of the action to move from
(2,0) to (2,1) forces the agent to move left or right, thus
revealing its goal. Goal Transparency can also accommo-
date sub-optimal agents by adjusting the bound b, thus be-
ing useful for related tasks such as avoiding/preventing goal
obfuscation (Bernardini, Fagnani, and Franco 2020) and de-
ception (Masters and Sardifia 2017; Price et al. 2023).

Plan Transparency (PT). One could aim to redesign an
environment such that an observer can infer the agents’ (or
humans’) intended plans as soon as possible. We define such
a task as Plan Transparency (equivalent to PRD). This is
a stricter variant of Goal Transparency, so its applications
are the same, and it can be achieved by minimising the
worst case plan distinctiveness (wepd) of an environment
E (Mirsky et al. 2019). We adapt the notation in (Mirsky
et al. 2019) and formally define wcpd as follows:

Definition 7. Given R = (£ = (Pg,G), My), let o', 7" €
P(E,b). The worst case plan distinctiveness (wepd) of ', '’
is the length of the longest plan prefix @ in 7' and 7" :

wepd(n',7"") = max{n | 7, € ({7'},{7"})}

Thus, the worst case plan distinctiveness of a planning en-
vironment, denoted as wepd(E), is defined as:

wepd(E) =

max

/ 1
wepd(m',
7w €P(E,b) (', %)

The wcpd of the original environment shown in Figure 1
is 4: the agent can execute 4 actions (moving up 4 times)
without revealing its plan. Figure 2b shows an optimal solu-
tion for this problem, where Plan Transparency is optimised
(M9 = PT), wepd = 0, and |A-| = 3. In this new en-
vironment, an observer will be able to recognise the agent’s
plan as soon as it executes the first action, as now the agent
has only one optimal plan available to achieve the goals.

Goal Privacy (GP). Sometimes, autonomous agents or
humans plan and act in an environment in order to keep
their goals private. To endow Goal Privacy, one could re-
design an environment to allow agents (or humans) to keep
their goals as private as possible during the execution of their
plans. Goal Privacy can prevent goal recognition and be use-
ful in adversarial settings (Kulkarni, Srivastava, and Kamb-
hampati 2019) such as goal obfuscation (Bernardini, Fag-
nani, and Franco 2020). We introduce a novel metric called
worst case non-distinctiveness (wend). Then, Goal Privacy
optimization will be equivalent to maximising wend. We de-
fine wend as follows:

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

ﬁvﬁﬂﬁﬁﬁﬁ@ﬁfﬁvﬁﬂﬁﬁﬁﬁﬁ
‘ * *

|

B

2]
]
}
J

B
]

Gy

B
o
|

—Y

2 5 .
i i i
el U el UL el L)L [T]8]]

REERS
J
]

HEEE
]

88
J
]

(L1119

HEEE

T

T

}
|
&l |

_ gl | gl | [&l 1]
(a) Goal (b) Plan (¢) Goal (d) Plan () Min. Avg. (f) Max. Avg (g) Min. Max. (h) Max. Min.
Transparency. Transparency. Privacy. Privacy. Distance. Distance. Distance. Distance.

Figure 2: Redesigned environments for different metrics by using our approach with a time limit of 15 minutes and a maximum
number of removed actions |.A-| = 4. Red arrows and lines indicate removed actions .A_. Intended goals are depicted in grey.

Definition 8. Given R = (£ = (Pg,G), My), let II' = Thus, the worst case plan non-distinctiveness of a planning
II((Pe, G'),b), and 1" = TI({Pe, G"),b) for G',G" € G. environment model, denoted as wepnd(€), is defined as:
The worst case non-distinctiveness (wend) of a pair of goals
G',G" is the length of the shortest plan prefix 7 for which wepnd(€) = I ﬂgle%l(g) wepnd(n', ")
the symmetric difference of the plans sets 1), and 1! of size ’ '
n is empty: The wepnd of the original environment shown in Fig-
wend(G',G") = min{n | (I, A TI") # 0} ure 1 is 0, in which the agent can act freely without being
’ " " private about its executed plans. Figure 2d shows an op-
Thus, the worst case non-distinctiveness of a planning en- timal solution of the environment redesign problem where
vironment is denoted as wend(E), and defined as: Plan Privacy is optimised (M; o = PP), wepnd = 4, and
) , |A-| = 4. In this resulting environment, the agent can act
wend(E) = G,Hélpe g wend(G', G”) by executing at least four actions in an optimal plan without
’ revealing its intended plan. Plan Privacy can also accommo-
The wend of the environment shown in Figure 1 is 0, date sub-optimal agents’ behaviour by adjusting the bound
and the agent can execute actions that might reveal its in- b, thus being useful for related planning applications where
tended goal (moving left or right). Figure 2¢ shows an op- sub-optimal plans play an important role, such as deceptive
timal solution of the environment redesign problem, where planning (Masters and Sardifia 2017; Price et al. 2023).
Goal Privacy is optimised (M7 o = GP), wend = 4, and
|A-| = 4. As a result, the agent is forced to execute four Minimise Average Distance (MINAVGD). Certain situa-
actions without revealing its true intended goal. This met- tions require that agents (or humans) act in an environment
ric and the resulting redesigned environment, are different to stay as close as possible to certain states. To accomplish
(and more strict) than just maximising wed. The original en- this, one could redesign an environment such that an agent
vironment already has a maximum wecd of 4, so an optimal would be forced to “stay” as close as possible to a set of
solution to maximise wecd would be an empty solution; i.e., partial states whilst acting for achieving its true goal. We de-
do not apply any modification to the environment. However, fine this task as Minimise Average Distance, and its applica-
this solution would allow the agent to execute actions that tions may include anticipatory planning (Burns et al. 2012)
could reveal its intended goal earlier, so it would not be a or planning for opportunities (Borrajo and Veloso 2021).
solution to Goal Privacy. More concretely, following the example in (Keren, Gal, and

Karpas 2014), the airport operator might be interested in
forcing passengers to pass through some shops on the way
to their gates. It can also be useful in surveillance tasks,
where one might want to constrain the surveillance agent’s
behaviour to pass through places where potential monitoring
tasks might dynamically arrive. To practically endow this,
we adapt the definition of planning centroids (Pozanco et al.
2019; Karpas 2022) to work over plans, rather than just sin-
gle states. We define the average distance of an environment
for a set of partial states and a goal state as avgD, as follows:

Plan Privacy (PP). When facing specific situations that
entail continuous monitoring, we may want to preserve our
privacy by concealing what we are doing or aim to do. To
do so, one could redesign an environment such that agents
can keep their executed plans as private as possible. We de-
fine this task as Plan Privacy. This is a variant of Goal Pri-
vacy, so its applications are essentially the same, and the
redesign metrics for Goal and Plan Privacy may have sim-
ilar values depending on the problem. To achieve Plan Pri-
vacy, we define a novel metric called worst case plan non-
distinctiveness, denoted as wepnd, and it can be optimised by Definition 10. Given R = (£ = (P¢,G), My), where G €
maximising wepnd. We formally define wepnd as follows: G isatrue goal, and Gs = G\ {G¢} is a set of partial states
Definition 9. Given R — (€ = (P, G), M), let 7/, 7" € of interest to reason about. Let Sty be all the states traversed

P(E,b). The worst case plan non-distinctiveness (wcpnd) z;a;}ifif ;a::v;fogmjn ;Zi}gze;x Z:;rDagjnZthgjg’fee di{f
of ™', n"" is the length of the shortest plan prefix T for which ’ ’

' £ 7l
’ > siesn,ciegs N (86, Gi)
|Str| % |Gs|

wepnd(n', 7") = min{n | 7, # 7} avgD(&) =

20233

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

The avgD of the original environment shown in Figure 1
is 5. Figure 2e shows a solution of the original environment
redesign problem where the average distance is minimised
(Mj.0 = minAvgD). In the resulting environment, two ac-
tions are removed (|.A-| = 2), and the agent is forced to
“stay” as close as possible to G whilst following an opti-
mal plan to achieve its intended goal GG;. This optimal plan
involves moving north four steps, followed by 2 east steps,
and traverses 7 states, yielding avgD = w =
3.86. Even if the example only shows one special goal to
reason about, G2, the metric works for any set of goals.

Maximise Average Distance (MAXAVGD). One could
aim to redesign an environment such that agents would be
forced to “stay” as far as possible from a set of poten-
tial risks whilst achieving their goals (Perny, Spanjaard, and
Storme 2007). This can be useful in evacuation domains,
such as in the event of a volcano eruption, where the goal
is to move people to a safe place while staying as far as pos-
sible from a set of dangerous areas; or in financial planning,
where the aim is to achieve the user’s financial goal while
staying far from financial risks such as high debt. In these
cases, it is usually impossible to completely eliminate the
risk (block the goal), so our assumption about all the goals
being reachable (Def. 3) still holds in practice. To do so, we
can Maximise Average Distance (maxAvgD) using Def. 10.

Figure 2f shows a solution for the environment redesign
problem in Figure 1 when using maxAvgD, where average
distance is maximised M; o = MaxAvgD, maxAvgD
w = 6.15, and |A-| = 2. In this case, the
agent is forced to stay as far as possible from G5 while fol-
lowing an optimal plan to achieve G.

Minimise Maximum Distance (MINMAXD). Minimise
Maximum Distance aims at redesigning an environment
such that agents are “forced” to never stay too far from a set
of partial states whilst achieving its true intended goal. It can
be used in the same previous examples. We adapt the defi-
nition of planning minimum covering states (Pozanco et al.
2019) over plans, and define the maximum distance of an
environment maxD as:

Definition 11. Given R = (£ = (Pg,G), My), where Gy €
G is a true goal, and Gs = G \ {G.} is the set of partial
states to reason about. Let Sty be all the states traversed by
the plans in I = (Pg,Gy). The maximum distance of a
planning environment is denoted as maxD, and defined as:

maxD(E) = max h*(s;, Gy))

5;{€S1,Gi€Gs

The maxD of the environment shown in Figure 1 is 8§,
which is achieved when the agent visits the cell (0, 0). Fig-
ure 2g shows a solution for this environment redesign prob-
lem where the maximum distance is minimised (M; o =
MinMaxD), then we have maxD = 6 and |A-| = 2. This
metric is different from minimising average distance. While
the solution in Figure 2e also has a maxD of 6, the solution
in Figure 2g does not minimise avgD.

Maximise Minimum Distance (MAXMIND). One could
redesign an environment such that agents are compelled to

20234

avoid getting too close to a set of partial states whilst achiev-
ing their true goal. Redesigning environments to optimise
this metric can be useful in the same risk avoidance and
evacuation domains we already mentioned. We define this
task as Maximise Minimum Distance (maxMinD). We define
the minimum distance of £ as minD, as follows:

Definition 12. Given R = (£ = (Pg,G), My), where Gy €
G is a true goal, and Gs = G \ {G.} is the set of partial
states to reason about. Let St1 be all the states traversed by
the plans in 11 = (Pg,Gy). The minimum distance of a
planning environment is denoted as minD, and defined as:
. . X
minD(€)= _xin . h (s, Gi) 2)
The minD of the environment shown in Figure 1 is 2,
which is achieved when the agent visits the cell (2,4). Fig-
ure 2h shows a solution to the environment redesign prob-
lem, where the minimum distance is maximised M7 g
MaxMinD, minD = 6, and | A-| = 2.

Environment Redesign via Search

We now present GER, a general environment redesign ap-
proach that is metric-agnostic and employs an anytime
Breadth-First Search (BFS) (Russell and Norvig 2005, Sec-
tion 3.3.1) algorithm that exploits recent research on top-
quality planning to improve the search efficiency.

GER is described in Algorithm 1, and takes as input an
environment redesign problem R = (£, M,,) and a stopping
condition C. GER searches the space of environment mod-
ifications by iteratively generating and evaluating environ-
ments where an increasing number of actions is removed.
GER returns the set of best solutions found M until C' is
triggered, i.e., the set of different environment modifications
that optimises a redesign metric Mp, yielding a redesigned
environment with metric value m™.

Compute Plan-Library P (Line 1). GER first computes
a plan-library P(€,b) for the given environment redesign
problem R = (€, M;) by calling a TOPQUALITYPLANNER.

Compute Allowed Modifications (Line 2). After com-
puting P(£,b), GER then computes the set of allowed
modifications for the given environment by using the
GETALLOWEDMODIFICATIONS function, taking as input a
plan-library P, a set of actions A, and a metric M, to be opti-
mised. Depending on the metric, this function can either re-
turn all the actions in .4, or only the subset of actions that ap-
pear in the plan-library P, thus pruning the space of modifi-
cations. GER only reasons over the actions in the plan-library
P for optimising GT, GP, PT or PP, as removing actions that
do not appear in the plan-library does not affect these met-
rics. In addition, GER reasons over all the possible actions in
A when optimising the distance-related metrics (minAvgD,
maxAvgD, minMaxD, maxMinD), as removing actions that
do not appear in the agent’s optimal plans that achieve the
true intended goal might affect and influence directly these
metrics (see Figure 2h, where A, includes actions that are
not part of any optimal plan that achieves G1).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Algorithm 1: GER: A General Environment Redesign Approach

Input: Redesign problem R = (£, M), C stopping condmon.
Output: Set of solutions found M, metric value found m™*

1: P(€,b) <~ TOPQUALITYPLANNER(E, b)

2: amod < GETALLOWEDMODIFICATIONS(P(E,b), A, M;)
3: sp + 0, OPEN <« sg, M « {so}

4: mo, m" < EVALUATE(s, M, £,b)

5: while =C do

6: s+ OPEN.DEQUEUE() {/* State s with lowest | A~| */}
7: for a in amod do

8: s« sUa

9: if ISVALID(s") then

10: OPEN.QUEUE(s")

11: m’ < EVALUATE(s', M, £, b)
12: if ISBETTER(m’, m™) then

13: mt +—m', M« {5}
14: elseif m' = m™ and |s'| = |s”|, st. s € M then
15: M~ MuU{s'}
16: return M, m™

Searching Process (Lines 3-16). With the computation
of the plan-library P(£,b) and the allowed modifications
properly in place, GER initialises the search structures, and
then conducts a BFS search until the stopping condition C'
is met (Line 5). Most existing algorithms only stop when
the best possible value for a metric is achieved (Keren, Gal,
and Karpas 2019; Mirsky et al. 2019). While defining this
best possible value is easy for some metrics, i.e., wed = 0
when optimising GT, this value is not easy to be properly
defined for all metrics. Hence, we generalise the stopping
conditions in the literature and assume C' can represent any
formula, such as a time limit or memory limit, a bound on
the number of removed actions, or an improvement ratio of
the metric with respect to its original value.

In each iteration, GER gets the best node from the open
list OPEN according to its g-value, defined as the size of the
removed actions set |.4-|. Then, GER generates the succes-
sors of the current node s by adding removable actions in
amod to the current node’s removed actions’ set (Line 8).
Before appending the new node s’ to OPEN, GER checks if
it is valid, verifying that all the goals in G are still achiev-
able in the resulting environment after removing the actions
in s’. If s’ is a valid node, GER computes the value of the
metric M, for that node, m’, using the EVALUATE function.
This function assesses the quality of the environment ob-
tained after removing the actions in s’, using for example
any of the metrics proposed in Definitions 6-12. If m’ 1s-
BETTER than the best metric value m* found so far (lower
when minimising, higher when maximising), then this value
is replaced, and the set of environment modifications M is
updated (Lines 12-15). If m/ is equal to m™ and node s’ has
the same number of modifications (same g-value) as those
nodes in M, then node s’ is included in the set of environ-
ment modifications M (Line 15). Finally, GER terminates
when the condition C' is met (Line 5), returning the best so-
lutions found (environment modifications M), and the best
value m™ for the redesign metric M in these solutions. The-
oretical properties of GER can be found in the extended ver-
sion of this paper (Pozanco, Pereira, and Borrajo 2024).

20235

Experiments and Evaluation

We now present the experiments carried out to evaluate
GER. The aim of the evaluation is twofold: (1) compare GER
against state-of-the-art approaches for GRD (Keren, Gal, and
Karpas 2014) when optimising wed; and (2) show GER’’s per-
formance when optimising the new redesign metrics.

Benchmarks and Setup. We have created a bench-
mark set that contains 300 planning environment prob-
lems equally split across the five well-known domains:
BLOCKS words, DEPOTS, GRID, IPC-GRID, and LOGISTICS.
The number of possible goals varies in size, having on aver-
age 4 possible goals over the different benchmarks. For the
metrics where this is relevant, the true goal G is selected as
the first goal in G. The environments are encoded in PDDL
(Planning Domain Definition Language) (McDermott et al.
1998). We generate 8 redesign problems for each environ-
ment by varying the metric M, that should be optimised,
using the metrics defined in Definitions 6 to 12. This gives
us 300 x 8 = 2400 planning environment redesign problems.

GER uses SYM-K (von Tschammer, Mattmiiller, and
Speck 2022) to compute the plan-library. We run SYM-K
with a bound of 1.0, i.e., aiming for optimal plans, although
all our metrics support arbitrary sub-optimality bounds. We
also set a limit of 1, 000 plans to prevent disk overflows and
avoid GER spending all the time computing the plan-library
in redesign problems with a large number of optimal plans.
For the subset of 300 environment redesign problems, where
the aim is minimising wcd, we compare GER against the
most efficient GRD approach (latest-split) of Keren, Gal, and
Karpas (2014), denoted as GRD-LS. We have run all experi-
ments using 4vCPU AMD EPYC 7R13 Processor 2.95GHz
with 32GB of RAM, and run GER with C' = {time limit
= 900s or memory limit =4GB}. We used the same stop-
ping condition C' for both GER and GRD-LS. Benchmarks
and GER’s code are available on GitHub'. Further results
and analysis can be found in the extended version of this
paper (Pozanco, Pereira, and Borrajo 2024).

Results. Table 1 shows our results, using the following
metrics: 7', the time (seconds) to find the best solution; my,
the metric value of the original environment; and m™, the
metric value of the environment returned as a solution. We
only report results for the subset of problems for which the
given metric could be improved within the time and mem-
ory limits. As for GT, we only report results for problems in
which both GER and GRD-LS can improve the given metric.

As we can see in the GT columns (first inner table), GER
yields the same results (same redesigned environments) as
GRD-LS (Keren, Gal, and Karpas 2014) but two orders of
magnitude faster. GRD-LS needs 119.9 seconds on average
to find the best solution in 8 out of 60 IPC-GRID problems,
whereas GER only needs 1.1 seconds on average. This per-
formance gap can be explained by two factors. First, GER
uses SYM-K to compute a plan-library before searching in
the space of the environment’s modifications. By only re-
moving the actions appearing in this library, GER needs to
explore much fewer nodes than GRD-LS. Second, GRD-LS

1
https://github.com/ramonpereira/general-environment-redesign

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

GT | PT| GP) PP\
GER GRD-LS GER GER GER
domain T mo m" T mo m" T mo m” T mo m" T mo m"
BLOCKS 1.0 52 3.7 63.7 52 3.7 1.0 5.3 3.8 1.0 24 44 1.0 24 44
DEPOTS 1.0 5.0 4.0 69.0 5.0 4.0 1.2 6.5 52 1.1 00 40 - - -
GRID 8.1 42 1.8 345.0 4.2 2.2 60.1 4.0 1.8 19.1 00 14 1.4 00 14
IPC-GRID 1.1 11.1 85 1199 11.1 8.5 1.1 1.1 7.7 0.9 20 3.0 09 20 40
LOGISTICS - - - - - - - - - 1502 0.0 10.0 - - -
MINAVGDJ MAXAVGD1{} MINMAXD{} MAXMIND{}
GER GER GER GER
domain T mo m* T mo m* T mo m* T mog m"
BLOCKS 1147 8.2 7.9 84.7 8.4 8.9 91.2 127 112 70.1 32 48
DEPOTS 52.8 7.0 6.6 1043 7.1 7.5 48.3 121 9.8 54.0 26 4.0
GRID 266.0 4.3 4.0 383.8 4.3 4.9 1520 7.9 6.7 2323 0.7 20
IPC-GRID 1674 135 132 173.8 11.1 11.6 29.8 193 17.7 167.7 3.1 42
LOGISTICS 409.8 10.1 9.6 4106 9.9 10.5 - - - 3140 33 50

Table 1: Each cell represents avg values for the redesign metrics. Cells with “-” mean that the metric could not be improved for
the problems in the domain for the time limit of 900 seconds. |} represents reducing mg, whereas 1} represents increasing my.

needs to generate and solve new planning problems for each
node in order to compute the wcd of the new environment,
resulting in a huge computational overhead. On the contrary,
GER can compute the wcd very efficiently by just analysing
the common prefixes of the plans in the plan-library.

GER’s execution time increases when redesigning envi-
ronments to optimise the distance-based metrics. Two fac-
tors influence this: (1) the space of action’s removal is larger,
as GER is not constrained to only remove actions in the plan-
library; and (2) evaluating the metric of each search state is
more costly than for the other metrics. For GT, PT, GP, and
PP, GER only reasons over plans and their common prefixes,
while for the distance-based metrics GER computes the op-
timal costs from each state traversed by optimal plans that
achieve G; and the other states in Gs = G \ {G:}.

Related Work

Most approaches to environment redesign assume the ob-
server’s objective is to modify the environment to facilitate
recognizing goals and plans (Keren, Gal, and Karpas 2014;
Son et al. 2016; Mirsky et al. 2019). Later works in GRD
frame and solve this task under different observability set-
tings (Keren, Gal, and Karpas 2015, 2016a,b), environment
assumptions (Wayllace et al. 2016, 2020; Wayllace and Yeoh
2022), or observer’s capabilities (Shvo and Mcllraith 2020;
Gall, Ruml, and Keren 2021). Unlike these works, we as-
sume the interested party might want to modify the environ-
ment for tasks different than recognising goals and plans.
On the algorithmic side, most works use search algo-
rithms to explore the space of actions’ removal (Keren, Gal,
and Karpas 2021). While GER searches in the same space us-
ing similar algorithms, it differs from these works as follows.
First, GER presents a good compromise between approaches
that do not use plan-libraries (Keren, Gal, and Karpas 2019)
and those that need pre-defined plan-libraries (Mirsky et al.
2019). GER exploits recent advances in top-quality planning

20236

to efficiently compute plan-libraries for pruning the space of
modifications. Second, GER is metric-agnostic. Previous ap-
proaches are metric-dependent, devising pruning techniques
and stopping conditions tailored to specific metrics, whereas
GER is more general and can accommodate a wide variety
of metrics. Third, GER is able to return all the best solu-
tions found until a stopping condition is met. This is usu-
ally a desirable feature in applications with humans-in-the-
loop (Boddy et al. 2005; Sohrabi et al. 2018), as humans
prefer to have diverse solutions to choose from.

Conclusions

In this paper, we extended the definition of environment de-
sign from previous work, and we introduced a more general
task for Planning Environment Redesign. We defined a new
set of environment redesign metrics that endows and facil-
itates not only the recognition of goals and plans, but also
other tasks, such as deception, risk avoidance, or planning
for opportunities. We showed that our general environment
redesign approach GER is metric-agnostic, and can optimise
a wide variety of redesign metrics. Our experiments show
that GER is efficient to optimise different metrics, and it out-
performs (being orders of magnitude faster) the most effi-
cient GRD approach of Keren, Gal, and Karpas (2014).

We intend to expand this work in two directions: improv-
ing GER’s performance and making the problem definition
even more general. Regarding performance, we aim to de-
velop heuristics to improve the search process. Namely, one
could prioritise removing actions belonging to a higher num-
ber of plans in the plan-library when optimising GT. We also
aim to study how to balance the time allocated to compute
the plan-library and the time to search in the space of modifi-
cations. As for the problem formulation, we envisage allow-
ing other modifications such as removing or adding objects
or predicates from the initial state. Finally, we aim to inves-
tigate how to jointly optimize sets of these metrics.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Acknowledgements

This paper was prepared for informational purposes in part
by the Artificial Intelligence Research group of J.P. Morgan
Chase & Co and its affiliates (J.P. Morgan) and is not a prod-
uct of the Research Department of J.P. Morgan. J.P. Morgan
makes no representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy, or relia-
bility of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer, or solicitation for the purchase or
sale of any security, financial instrument, financial product,
or service, or to be used in any way for evaluating the merits
of participating in any transaction. It shall not constitute a
solicitation under any jurisdiction or to any person if such
solicitation under such jurisdiction or to such person would
be unlawful.

References

Bernardini, S.; Fagnani, F.; and Franco, S. 2020. An Opti-
mization Approach to Robust Goal Obfuscation. In KR.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of Action Generation for Cyber Security Using Clas-
sical Planning. In ICAPS.

Borrajo, D.; and Veloso, M. 2021. Computing Opportunities
to Augment Plans for Novel Replanning during Execution.
In ICAPS.

Burns, E.; Benton, J.; Ruml, W.; Yoon, S. W.; and Do, M. B.
2012. Anticipatory On-Line Planning. In ICAPS.
Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? Legibility? Pre-
dictability? Transparency? Privacy? Security? The Emerg-
ing Landscape of Interpretable agent Behavior. In /CAPS.
Gall, K. C.; Ruml, W.; and Keren, S. 2021. Active Goal
Recognition Design. In IJCAIL

Geftner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.

Karpas, E. 2022. A Compilation Based Approach to Finding
Centroids and Minimum Covering States in Planning. In
ICAPS.

Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-quality plan-
ning: Finding practically useful sets of best plans. In ICAPS.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal Recognition
Design. In ICAPS.

Keren, S.; Gal, A.; and Karpas, E. 2015. Goal recognition
design for non-optimal agents. In AAAL

Keren, S.; Gal, A.; and Karpas, E. 2016a. Goal Recognition
Design with Non-Observable Actions. In AAAIL

Keren, S.; Gal, A.; and Karpas, E. 2016b. Privacy Preserving
Plans in Partially Observable Environments. In IJCAL
Keren, S.; Gal, A.; and Karpas, E. 2019. Goal Recognition
Design in Deterministic Environments. Journal of Artificial
Intelligence Research, 65: 209-269.

Keren, S.; Gal, A.; and Karpas, E. 2021. Goal Recognition
Design - Survey. In IJCAL

20237

Kulkarni, A.; Sreedharan, S.; Keren, S.; Chakraborti, T.;
Smith, D. E.; and Kambhampati, S. 2020. Designing en-
vironments conducive to interpretable robot behavior. In
IROS.

Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2019. A
unified framework for planning in adversarial and coopera-
tive environments. In AAAIL

MacNally, A. M.; Lipovetzky, N.; Ramirez, M.; and Pearce,
A. R. 2018. Action Selection for Transparent Planning. In
AAMAS.

Masters, P.; and Sardifia, S. 2017. Deceptive Path-Planning.
In IJCAL

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL —
The Planning Domain Definition Language. In AIPS.
Mirsky, R.; Gal, K.; Stern, R.; and Kalech, M. 2019. Goal
and Plan Recognition Design for Plan Libraries. ACM
Transactions on Intelligent Systems and Technology, 10(2):
14:1-14:23.

Perny, P.; Spanjaard, O.; and Storme, L. S. 2007. State space
search for risk-averse agents. In IJCAI.

Pozanco, A.; E-Martin, Y.; Fernandez, S.; and Borrajo, D.
2018. Counterplanning using Goal Recognition and Land-
marks. In IJCAL

Pozanco, A.; E-Martin, Y.; Fernandez, S.; and Borrajo, D.
2019. Finding Centroids and Minimum Covering States in
Planning. In ICAPS.

Pozanco, A.; Pereira, R. F.; and Borrajo, D. 2024. General-
ising Planning Environment Redesign. arXiv:2402.07799.
Price, A.; Pereira, R. F.; Masters, P.; and Vered, M. 2023.
Domain-Independent Deceptive Planning. In AAMAS.
Ramirez, M.; and Geffner, H. 2009. Plan Recognition as
Planning. In IJCAL

Russell, S.; and Norvig, P. 2005. AI a Modern Approach.
Learning, 2(3): 4.

Shvo, M.; and Mcllraith, S. A. 2020. Active Goal Recogni-
tion. In AAAL

Sohrabi, S.; Riabov, A.; Katz, M.; and Udrea, O. 2018. An
Al planning solution to scenario generation for enterprise
risk management. In AAAIL

Son, T. C.; Sabuncu, O.; Schulz-Hanke, C.; Schaub, T.; and
Yeoh, W. 2016. Solving Goal Recognition Design Using
ASP. In AAAL

von Tschammer, J.; Mattmiiller, R.; and Speck, D. 2022.
Loopless top-k planning. In ICAPS.

Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016.
Goal Recognition Design with Stochastic Agent Action Out-
comes. In IJCAI

Wayllace, C.; Keren, S.; Gal, A.; Karpas, E.; Yeoh, W.; and
Zilberstein, S. 2020. Accounting for Observer’s Partial Ob-
servability in Stochastic Goal Recognition Design. In ECAI.
Wayllace, C.; and Yeoh, W. 2022. Stochastic Goal Recogni-
tion Design Problems with Suboptimal Agents. In AAAL
Zhang, H.; Chen, Y.; and Parkes, D. C. 2009. A General
Approach to Environment Design with One Agent. In [JCAL

