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Abstract

Distributed learning frameworks aim to train global mod-
els by sharing gradients among clients while preserving the
data privacy of each individual client. However, extensive re-
search has demonstrated that these learning frameworks do
not absolutely ensure the privacy, as training data can be re-
constructed from shared gradients. Nevertheless, the exist-
ing privacy-breaking attack methods have certain limitations.
Some are applicable only to small models, while others can
only recover images in small batch size and low resolutions,
or with low fidelity. Furthermore, when there are some data
with the same label in a training batch, existing attack meth-
ods usually perform poorly. In this work, we successfully ad-
dress the limitations of existing attacks by two steps. Firstly,
we model the coefficient of variation (CV) of features and
design an evolutionary algorithm based on the minimum CV
to accurately reconstruct the labels of all training data. After
that, we propose a stepwise gradient inversion attack, which
dynamically adapts the objective function, thereby effectively
and rationally promoting the convergence of attack results to-
wards an optimal solution. With these two steps, our method
is able to recover high resolution images (224 ⇥ 224 pixel,
from ImageNet and Web) with high fidelity in distributed
learning scenarios involving complex models and larger batch
size. Experiments demonstrate the superiority of our ap-
proach, reveal the potential vulnerabilities of the distributed
learning paradigm, and emphasize the necessity of develop-
ing more secure mechanisms. Source code is available at

https://github.com/MiLab-HITSZ/2023YeHFGradInv.

Introduction

It is a consensus view that using more training data can help
improve the performance of AI models (Pati et al. 2022).
However, data is usually distributed among different users,
organizations and institutions, and the behaviors of sharing
data for training model collaboratively will obviously result
in privacy leakage (Zhang et al. 2022b). Distributed learn-
ing is an emerging paradigm for training AI models col-
laboratively without the explicit sharing of data (Li et al.
2020; Banabilah et al. 2022; Abreha, Hayajneh, and Serhani
2022). One basic setting of distributed learning is the “client-
server” architecture, in which each client trains locally using
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Figure 1: Privacy leakage in distributed learning. Client
sends the gradients rW averaged from the batch training
images to the server. The honest-but-curious server recovers
images from rW via gradient inversion.

its own data and uploads the gradients to the server (McMa-
han et al. 2017; Karimireddy et al. 2020; Long et al. 2020).
The server aggregates these uploaded gradients from partic-
ipants and distributes the updated model back to them.
Although such an architecture has no need to share train-

ing data across clients and server, Zhu et al. (Zhu, Liu, and
Han 2019) have demonstrated that it is still possible for
honest-but-curious server to reconstruct client-side training
data from shared gradients. Specifically, they have recovered
training data from randomly initialized noise by gradient
matching, which aims to minimize the Euclidean distance
between ground-truth gradients and generative gradients of
the recovered data. The feasibility of their method (a.k.a.,
DLG) is verified in a distributed learning scenario, where
pixel-level image reconstruction is achieved.
However, there are still some limitations of DLG. First,

DLG only works well on reconstructing low-resolution
training data in shallow models. Moreover, in practical dis-
tributed learning scenario, clients usually input a whole
batch of data at one iteration for training, then upload the
batch-averaged gradients, rather than the gradients of single
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image. Such an averaging significantly increases the diffi-
culty of gradient inversion attacks (GIAs), and even leads
to the failure of the convergence of the optimization pro-
cess. Recent work has shown that recovering the training
data from gradients with high fidelity and high quality is
still a challenging problem (Geiping et al. 2020). Inspired
by DeepInversion (Yin et al. 2020), Yin et al. (Yin et al.
2021) have proposed a novel gradient inversion method,
which utilizes the information stored in the batch normal-
ization layers to help synthesize realistic images. However,
their method suffers from a significant drawback, i.e., when
there are identically labeled data in the batch, their method
fails to accurately reconstruct the labels of these data, result-
ing in a significant decrease in attack performance.
To address the limitations of existing methods, this paper

presents a novel approach. Firstly, we model the coefficient
of variation of data features and propose an evolutionary al-
gorithm based on the minimum coefficient of variation. This
algorithm enables rapid and precise label reconstruction of
the training data. Additionally, leveraging the characteristics
of gradient backpropagation, we progressively introduce the
gradients that require matching, transforming the optimiza-
tion problem into a step-by-step process from simplicity to
complexity. Moreover, we devise a loss scheduling strat-
egy that partitions the gradient inversion into two distinct
stages: content recovery and quality improvement. We also
elegantly solve the problem of content offset among the re-
covered images by gradient dropout, without the multi-seed
computation like (Yin et al. 2021). The advantageousness of
these designs are demonstrated in our experiments.
Our main contributions are summarized as follows.

• We design an evolutionary strategy based on the CV of
the features, which enables rapid and accurate recovery
of data labels, thus significantly improving the perfor-
mance of gradient inversion attack.

• We propose a stepwise gradient inversion attack that,
combined with our loss scheduling strategy, achieves
higher fidelity recovery of private training data at large
batch size compared to prior arts. And we elegantly solve
the spacial offset problem of the recovered images by
gradient dropout, which can be easily implemented.

• We also visually show that gradients from different layers
will lead to different degrees of privacy leakage, which
may inspire the communication mechanism design for
future distributed learning.

Related Works

Privacy leakage in distributed learning. Zhu et al. (Zhu,
Liu, and Han 2019) have firstly proposed to reconstruct
clients’ data and labels simultaneously using only gradi-
ents in distributed learning. However, their approach is only
feasible when the model, batch size and the resolution
are small. (Zhao, Mopuri, and Bilen 2020) found that the
ground-truth labels can be directly recovered by the sharing
gradients, without any optimization operation. So they di-
vided the process of gradient inversion into two steps: label
restoration and data recovery, which facilitated the conver-
gence of the optimization process. But the limitation is that

their method can only infer the label of a single training sam-
ple and is not applicable to the batch training data.
After that, (Geiping et al. 2020) introduced image prior

regularization to reconstruct images with high resolution.
But their method only works well at a small batch size. (Yin
et al. 2020) have firstly proposed to recover high fidelity
images with the information stored in the batch normal-
ization layers. This method was transplanted by (Yin et al.
2021) to the gradient inversion domain and achieved high
quality images recovery. And for solving the spacial offset
problem, (Yin et al. 2021) have utilized multi-seeds opti-
mization and RANSAC-flow image alignment (Shen et al.
2020), which requires more computing resources. Further-
more, their method can only accurately recover the labels
when all the training data within the batch possess different
labels. Otherwise, the effectiveness of their approaches will
be compromised.
There are also some linear equation solving-based GIAs

(Trieu et al. 2017; Zhu and Blaschko 2021; Chen and
Campbell 2021), where the adversaries aim to establish
linear equations that capture the relationship between the
input and gradients, then leveraging linear equation solver
to determine the input. However, these methods usually
assume that the target model is linear and they are limited
on reconstructing data from batch averaged gradients.

Potential countermeasures. An intuitive defense approach
is to degrade the shared gradients, which is commonly
achieved through two methods: gradient sparsification (Zhu,
Liu, and Han 2019; Li et al. 2022) and gradient perturba-
tion (Abadi et al. 2016; Wei and Liu 2021). However, em-
pirical results demonstrate that gradient sparsification fails
to provide effective privacy protection, even when the prun-
ing ratio is set as high as 90% (Huang et al. 2021, 2020).
Regarding gradient perturbation, differential privacy tech-
niques (Dwork 2006) are commonly employed to provide
privacy guarantees. However, achieving strict privacy guar-
antees necessitates the addition of excessively large noise to
the gradients, thereby significantly impacting model utility.
In terms of cryptography-based defense methods, secure

multi-party computation (SMPC) (Zhang et al. 2022a; Mu-
gunthan et al. 2019) and homomorphic encryption (Zhang
et al. 2020; Jia et al. 2021) are two frequently utilized ap-
proaches. SMPC (Yao 1982) ensures that individual clients
receive accurate computation results while preventing them
from acquiring any additional information beyond the re-
sults. And homomorphic encryption (Rivest et al. 1978) ag-
gregates the gradients uploaded by clients in the form of ci-
phertexts, guaranteeing that an attacker cannot derive any
private information from the encrypted shared gradients.
Although cryptography-based techniques do not compro-
mise the model utility, they considerably increase compu-
tation time and necessitate more communication bandwidth,
thereby posing significant implementation challenges.

Methodology

In this section, we will first introduce the threat model. After
that, we formulate the problem mathematically. Finally, we
give the implementation details of our approach.
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Figure 2: Pipeline of the proposed attack method. At the initial of Stage I, we coarsely infer the labels through shared gradients.
Subsequently, leveraging the sorted feature of auxiliary data, the averaged sorted feature as well as the index associated with
the minimum CV are calculated. These results are then utilized together to accurately infer the ground-truth labels of training
data using an evolutionary algorithm. After that, in Stage II, we reconstruct the privacy data in a stepwise manner by gradually
introducing the gradients that need to be matched.

Threat Model

In gradient inversion attack, the adversary is considered to
be an honest-but-curious server. In fact, the scenario under
this assumption is a centralized distributed learning frame-
work, which has a central parameter server. Another more
general scenario is that in a decentralized distributed learn-
ing framework, the adversary can be any individual involved
in the training of the global model. In either case, the gradi-
ent inversion attack can be successfully implemented since
adversaries are both able to obtain the gradients from other
clients. The overview of threat model is shown in Fig. 1,
where the curious server receives the gradients from an hon-
est client and maliciously, leverages an elaborate inversion
algorithm to recover the privacy data.

Problem Formulation

Given a model fW , and a batch of training data pairsSN
i {(xi, yi)} with image xi and label yi, the batch-

averaged ground-truth gradients rW can be calculated
as rW = 1

N

PN
i=1 rW`(fW (xi), yi), where ` is the

loss function. And assuming (x0,y0) =
SN

i {(x0
i, y

0
i)}

as the recovered data batch, similarly, we feed them into
the model fW and get generative gradients rW0 =
1
N

PN
i=1 rW`(fW (x0

i), y
0
i). The purpose of the curious

server is to find the optimal minibatch (x⇤,y⇤) =SN
i {(x⇤

i , y
⇤
i )}, which satisfies:

(x⇤,y⇤) = argmin
(x0,y0)

`grad(rW0,rW)+Rimage(x
0), (1)

where `grad measures the distance from rW0 to rW, and
Rimage promotes the recovered images to be realistic.

Stage I. Label Inference

Simultaneously optimizing the images x0 as well as the la-
bels y0, the result usually does not converge to the reason-

able solution (obtained images are often close to noise).
Zhao et al. (Zhao, Mopuri, and Bilen 2020) found that sin-
gle label can be directly recovered from the gradients of the
final fully connected layer WFC 2 Rn⇥m (where n is the
total number of categories and m is the input dimension of
the last fully connected layer), thus significantly improving
the performance of GIAs. However, existing methods cannot
accurately reconstruct the labels of all data in a batch when
these labels are not unique (i.e., there are different data in
the batch with the same label). Therefore, in the first stage
of our method, we aim to design an evolutionary-based at-
tack for accurately reconstructing the labels, and the pipeline
is shown in Fig. 2. Note that we assume that the number of
training data N utilized by the victim is known. This as-
sumption is used in all related studies, as it is argued to be
reasonable due to the requirement of data amount sharing in
benchmark aggregation algorithms. Moreover, from a pri-
vacy standpoint, we consider this assumption to be reason-
able as it can be potentially breached by an attacker through
exhaustive search or brute-force methods.

Label Initializing Considering a single training data with
label k, the gradient of the cross-entropy loss on the logits at
index i (the input of SoftMax layer) can be mathematically
represented as (Zhao, Mopuri, and Bilen 2020):

gi =

⇢
pi � 1, if i = k

pi, if i 2 {1, 2, · · · , n}\{k} (2)

where pi > 0 is the i-th output of SoftMax layer.
In general, logits is outputted by a fully connected layer

WFC , and the input h 2 Rm of this fully connected layer
is usually activated by a non-negative function, such as
ReLU or Sigmoid (i.e., the entries of h are all non-negative).
Since the i-th row gradients of WFC can be calculated as
rWFC

i,: = gih|. So we can get for 8j, it satisfies:
(
rWFC

ij 6 0, if i = k

rWFC
ij > 0, if i 2 {1, 2, · · · , n}\{k}

(3)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19985



Therefore, the ground-truth label k can be directly in-
ferred from the row index where the signs of gradients are all
non-postive. For neural networks, in the early stage of train-
ing, it is easy to derive that pi in (2) is close to 0, which
indicates that |pi � 1| � pi. So with the batch training
data, where rWFC

i,: is averaged from the whole batch, the
coarse inference of labels in the batch can be expressed as
ŷ =

S
i{yi | Mean(rWFC

yi,: ) < 0}. However, it is obvious
that the number of training data in the batch belonging to
each label is still unknown.

Feature approximating Denoting k as the indexes which
are obtained from the coarse labels in ŷ (i.e., k consists of
the labels in ŷ), then by the significant magnitude difference
between pi�1 and pi, we can set the gradient with large val-
ues in rWFC as rWFC

k,: . Our method is motivated by the
assumption that there is a mean feature h̄, which is similar
to all data’s features (actually it is impossible). Then based
on the mean feature h̄, we can optimize the target vector
v 2 R|ŷ| (where each dimension of v represents the number
of data belong to each label in ŷ) with the objective function:

argmin
v

J (v) = 1�

D
�1 · vh̄|,rWFC

k,:

E

��vh̄|��
���rWFC

k,:

���
, (4)

note that we set p � 1 as �1 directly in (4), since they are
approximately equal at the beginning of training. After op-
timizing for (4), combined with the total amount of training
data N (note that v in (4) is scale-independent, so we need
to normalize v using N ), we are able to infer all the labels.

However, different training data exhibit different feature
activations, and there is no single mean feature h̄ that can
effectively represent the feature activations of all the data.
To address this challenge, we propose an approximating
method based on the coefficient of variation of features.
Firstly, we input publicly available auxiliary data xi 2 D to
get the feature hi = �(xi) (where � is the part of the model
used to extract feature), then we sort hi into hS

i = sort(hi).
Subsequently, we define the notation t as the indexes of top-
M (in our experiment M = 20) smallest CV of hS

i :

t = arg sort

8
<

:Stdxi(h
S
i ) · Exi(h

S
i )

�1

| {z }
CV

9
=

; [0 : M] , (5)

which indicates that the entries of various data’s hS
i exhibit

minimal differences at indexes t, and the CV calculated by
the features of auxiliary data are shown in Fig. 3. Now, our
final optimization objective can be expressed as:

argmin
v

J (v) = 1�

D
�vh̄|

t , sort(rWFC
k,: )[:, t]

E

��vh̄|
t

��
���sort(rWFC

k,: )[:, t]
���
, (6)

where h̄ = Exi(h
S
i ),rWFC is the shared gradients, k rep-

resents the coarse labels, t and h̄ are obtained by auxiliary
data, thus the only unknown term is the vector vwhich needs
to be optimized.

Index

Co
effi
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n!

 o
f V
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iat
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n

Figure 3: The coefficient of variation for the sorted features
exhibits a distinct trend. As the feature index increases, the
CV initially decreases and subsequently increases.

Evolutionary matching For optimizing v, we customize
the evolutionary algorithm as follows.
(1) Initializing Population: At first we define a rescaling

function as Rs(·) = �3��2��1(·), where�1 normalizes the
input vector to a magnitude ofN ,�2 modifies the each entry
vi to max {Floor(vi), 1}, and �3 adjusts the last entry of v
to achieve kvk1 = N . For the population P , we randomly
initialize m (m = 20 in our experiment) group of vectors
and map them by rescaling function Rs to v(i). Then we
have the initial population P = {v(i)}mi=1.

(2) Crossover: For each parent individual v(i), we ran-
domly select another parent v(j) from P , then the childw(i)

can be expressed as:

w(i)
k =

(
v(i)
k , if �k < pr

v(j)
k , if �k � pr

(7)

where (·)k represents the kth entry of vector (·), �k is sam-
pled from the uniform distribution U(0, 1), and pr is the pre-
set crossover threshold (0.5 in this paper). And the final child
can be calculated by w(i) = Rs(w(i)).

(3) Mutation: For each child w(i), we randomly choose
one entry greater than 1 to subtract 1 from it, and randomly
choose another entry to plus 1.
(4) Selection: For each pair of parent v(i) and childw(i),

we construct new population P+ with objective (4):

P+ =
[

i

(
v⇤(i)|v⇤(i) = argmin

v2{v(i),w(i)}
J (v)

)
. (8)

By repeating crossover, mutation and selection, labels of
all training data can be rapidly (requires fewer than 200 iter-
ations and takes less than 1 second) and accurately inferred.
Pseudocode of this part is provided in Appendix A.

Stage II. Stepwise GIA

Stepwise optimization objective In Stage II, we aim to
reconstruct the training data using the labels already inferred
in Stage I. Nevertheless, achieving high-fidelity reconstruc-
tion of batch images in larger models is typically challenging
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due to the inherent difficulty of finding the optimal solution,
which locates in natural image manifold while its gradients
simultaneously matching the large number of ground-truth
gradients. Actually, the result of such a gradient matching
optimization problem tends to fall into a local optimum (see
the result of Deep Gradient Leakage in Fig. 5). Therefore,
we propose an effective method, which gradually introduces
the ground-truth gradients that need to be matched, thus pro-
gressively guiding the generative gradients of the recovered
images to approximate the ground-truth. Our idea further re-
laxes the constraint on the optimization and enables the re-
covery of private data in deeper networks. Without loss of
generality, we re-express the logits of network as follows:

⇠ = Wl

hl�1z }| {

�l�1

0

B@Wl�1 �l�2( (x))| {z }
hl�2

+bl�1

1

CA+bl, (9)

where l denotes the l-th layer, W denotes the weights, �
denotes the activation function, b denotes the bias and  is
the mapping function for the first l� 2 layers. By observing
(9), we can infer that the gradient of Wl is only related to
the middle output hl�1 and not to the output of the layer be-
fore it. And so is the relation between the gradient of Wl�1

and the middle output hl�2. Therefore, middle output can
be estimated from corresponding gradients without the need
of considering earlier gradients and earlier middle outputs.
Subsequently, by incrementally introducing the gradients to
be matched one by one, we can drive the output of middle
layers from deep to shallow, up to the input data, to converge
to the optimum in a stepwise manner (see Fig. 2).
Further, as mentioned in (Yin et al. 2021), gradient inver-

sion is prone to causing a content spacial offset of the re-
covered image. To solve this problem, they have proposed
group consistency regularization, which enhances the re-
covery quality by multi-seed optimization and image reg-
istration, which consumes large amounts of computing re-
sources. We solve this problem smoothly by only perform-
ing a random dropout to the gradients that need to be
matched. Our experiment results demonstrate the superior-
ity of such an operation. Since labels are already inferred in
the first stage, our stepwise optimization objective function
can be re-written from (1) to:

x⇤
t = argmin

x0

0

@1�

D
rgW0

t,rgWt

E

���rgW0
t

���
���rgWt

���

1

A

| {z }
˜̀
grad

+Rimage(x
0),

(10)
where t represents different stage,rgW0

t andrgWt are gen-
erative gradients and ground-truth gradients respectively,
which are both selected at t with dropout.

Image Prior Regularization Total Variation (TV) Rtv is
a common used image prior regularizer, which encourages
the recovered images to be more constant and coherent. In
addition, (Yin et al. 2020) proposes feature distribution reg-
ularization RBN , which uses the statistical information of

the real image data stored in the batch normalization layers,
to promote the realism of the recovered image. These two
regularizers can be expressed as:
8
>>><

>>>:

Rtv(x
0) =

X

i,j

�
(xi,j+1 � xi,j)

2 + (xi+1,j � xi,j)
2
� �

2 ,

RBN (x0) =
X

l

kµl(x
0)� µ̄lk2 +

X

l

���2
l (x

0)� �̄2
l

��
2
,

(11)
where � is preset hyperparameter, µ̄l and �̄2

l are batch-
wise mean and variance of the natural images in the lth

layer of a pre-trained model. And µl(x0) and �2
l (x

0) are
batch-wise mean and variance of x0 in the lth layer. The
regularizer Rimage in (10) is composed by Rimage(x0) =
�tv(t)Rtv(x0) + �BN (t)RBN (x0).

A reasonable reconstruction sequence should be to first
recover the content of the image, and then improve the qual-
ity of the image. Focusing too much on image quality in
the early stages will make the optimization more difficult.
So in the early stages of our method, we aim to recover
the rich-content but low-quality images only by ˜̀

grad term
of (10) without Rimage. In the middle and late stages, the
low-quality images are then optimized on the visual level
by introducing Rimage. In this paper, we first employ Rtv

to enhance the image quality, and then RBN to enhance
the image realism. This strategy of introducing image pri-
ors sequentially is proven to be effective in our experi-
ments. The scheduling strategy for different image priors is
as �tv(t) = It>T1 �̂tv and �BN (t) = It>T2 �̂BN , where I
is the indicator function, T1, T2 are the steps for introduc-
ing corresponding regularizers (assume that the total itera-
tion steps is T ), and �̂tv, �̂BN are hyperparameters.

The Complete Iteration In summary, the iterations of the
images recovery in distributed learning can be expressed as:

gt  rx0
t�1

⇣
˜̀
grad +Rimage(x

0
t�1)

⌘

x0
t  Truncate(x0

t�1 � ⌘(t) · Sign(gt)),
(12)

where we use the step learning rate ⌘(t) to recover the im-
ages in our experiments, Sign(·) is the sign function, and
Truncate(·) is used to limit the pixels in a natural range (i.e.,
limit the bound of pixel values).

Experiments

We conduct experiments for large-scale image classifica-
tion task using ImageNet ILSVRC 2012 dataset (Deng et al.
2009), as well as randomly collected images fromWeb. Due
to page constraints, we put additional results in Appendix B.

Setup and Evaluation Metrics To ensure that the auxil-
iary data used in Stage I are publicly available, we randomly
collected them from Web, which contains 40 images with
224⇥224 px (we will share them after accepted). Our exper-
iments are implemented on pre-trained ResNet34 (He et al.
2016), which is provided by PyTorch library. And more at-
tack results for models with different structures are given in
Appendix B. We use Adam (Kingma and Ba 2014) for op-
timization with a step learning rate decay, and each batch
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Figure 4: Results of label inference and its impact on training data reconstruction. In (a), our method can reconstruct the labels
of all training data accurately. And (b) qualitatively shows the attack results in scenarios with different label inference accuracy.

is optimized with 15K iterations on NVIDIA TITAN RTX
GPUs. The dropout rate we used in (10) is set as 0.3. We set
� = 2 in (11), �̂tv = 0.01, �̂BN = 10�4, T1 = 3, 000, T2 =
5, 000 in scheduling strategy. Note that we have tuned all
hyperparameters, including those for the comparative exper-
iments, to the optimum. For the evaluation, we use both the
qualititative and quantitative metrics to evaluate the perfor-
mance of our method, including: (i) Visual Comparison, (ii)
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al. 2018), (iii) Peak Signal-to-Noise Ratio (PSNR) and
(iv) Structural Similarity (SSIM) (Wang et al. 2004).

Label Inference We randomly select 64 images from the
validation set of ImageNet, and their label distributions are
shown in Fig. 4 (a). From Fig. 4 (a), existing method per-
forms poorly on label reconstruction, while our method is
able to accurately recover labels. And in the left of Fig. 4
(b), since Yin et al. method cannot accurately recover the la-
bels, the attack performance is poor. From the right of Fig.
4 (b), even if all labels are correctly inferred, our stepwise
attack method still shows results with higher quality and fi-
delity. More results can be found in Appendix B.

Method
Evaluation Metrics

LPIPS # PSNR " SSIM "
Noise N (0, I) 1.39 9.82 0.21

Deep Leakage 1.01 9.31 0.25
Inverting Gradients 0.58 11.99 0.31

GradInversion 0.39 13.22 0.44

Ours 0.33 15.12 0.49

Table 1: Quantitative comparison with SOTA GIAs and the
results are averaged over 100 reconstructed images.

Batch Recovery We conduct experiments on images
(224 ⇥ 224 px) with batch size 8 and compare our method
with prior SOTA both qualitatively and quantitatively. For
the sake of comparability, we choose the data with different
labels from ImageNet as a batch (same as (Yin et al. 2021)),

thus ensuring that all the other methods can also accurately
reconstruct the labels. And as shown in Table 1 and Fig. 5,
it is hard to recover images with high fidelity only by gradi-
ent matching (last row in Fig. 5). And the image prior Total
Variation (4th row in Fig. 5) can significantly improve the
quality, but the results are still unsatisfactory. As for (Yin
et al. 2021), it does outperform the other two methods in
terms of the image realism. And our stepwise attack method
shows the best performance, both qualitatively and quantita-
tively. As for the scenario where the batch has training data
with the same labels, we can refer to the results in Fig. 4 (b).
More experimental results, including attacking on different
models, can be found in the Appendix B.

Original Batch - ground truth (from ImageNet) 

GradInversion (Yin et al. CVPR’21) - LPIPS   : 0.39 

Inverting Gradients (Geiping et al. NeurIPS’20) - LPIPS   : 0.58 

Deep Gradient Leakage (Zhu et al. NeurIPS’19) - LPIPS   : 1.01 

Step-Wise GradInv (Ours) - LPIPS   : 0.33 

Figure 5: Batch ImageNet images recovery on ResNet34.

Ablation Study In this part, we demonstrate the indis-
pensability of each component used in this paper. The re-
sults is shown in Table 2, where `grad means that only cosine
similarity is used as gradient matching loss. It can be seen
that Rimage priors can improve the quality of reconstructed
images compared to using `grad only, and when using our
stepwise objective ˜̀

grad, attack performance can be signifi-
cantly improved. Loss scheduling strategy can further polish
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the recovered images by tuning the recovery process slightly.
Further, in Fig. 6, we have shown the roles of dropout

and image priors played in our stepwise GIA. Fig. 6 (a)
shows that gradient dropout can effectively mitigate the is-
sue of content offset appearing in reconstructed images. In
addition, we give the visual comparison at different iteration
stages (i.e., T1, T2 and T , see Fig. 6 (b)), so that help read-
ers have a better understanding on each regularization term
as well as our loss scheduling strategy.

Original w/o dropout w/ dropout

Original Recovered

T1 T2 T

(a)

(b)

Figure 6: Effect of gradient dropout and image priors: (a)
shows the effect of dropout in mitigating content offset,
where the images in first row are from ImageNet and the sec-
ond row are from Web; (b) shows that Rtv can improve the
continuity of image pixels (compare T2 with T1) and RBN

can further enhance the image realism (compare T with T2).

Effect of Batch Size Fig. 7 shows the performance of pri-
vate images recovery on different batch size. We observe
that the LPIPS value of the recovered images rises gradu-
ally as batch size grows, which indicates that batch size in-
deed affects the quality of the recovery. However, Fig. 7 also
shows that our stepwise gradient inversion, with the setting
of batch size 32, is still able to realize a high fidelity recon-
struction. More attack results can be found in Appendix B.

Batch Size

L
PI

PS

Figure 7: The impact of different batch size on LPIPS value.

Optimization Objective
Evaluation Metrics

LPIPS # PSNR " SSIM "
Noise N (0, I) 1.39 9.82 0.21

`grad 0.80 8.34 0.27
+Rimage 0.57 10.79 0.34
+˜̀

grad 0.27 14.71 0.50
+ Schedule 0.23 15.99 0.55

Original `grad +Rimage +˜̀
grad +Schedule

Table 2: The effect of each component on the image recov-
ery, and experiments are implemented with batch size 8.

Using Different Layers Since our method gradually adds
gradients from deep to shallow, we aim to further explore the
effect of gradients from different layers on the final results.
Generally, ResNet consists of 4 blocks and we choose to use
different blocks’ gradients for image recovery, and the re-
sults are shown in Fig. 8. We observe that the deepest block
(block 4) owns the richest image feature information, and
the training data can be recovered with higher quality using
block 4 only. The block 3 and block 2 can supply a small
amount of information about the details. However, when the
gradients of block 1 is added, the quality of the recovery
decreases (so we do not use block 1 in all previous experi-
ments). This is because block 1 is too shallow and the gra-
dients of shallow layers are directly influenced by specific
pixel values. However, our method does not care too much
about the small color difference between the recovery and
the original images (cosine similarity focuses more on direc-
tion but not magnitude (Geiping et al. 2020)), which results
in the optimization algorithm forcibly patching the recovery
to match the gradients of the shallow layers when block 1
is introduced suddenly (thus unnatural regions arise). Also,
we find that the quality of the recovery is very poor using
only block 2 and 3 without block 4. It means that in dis-
tributed learning framework, a large amount of useful infor-
mation is stored in deeper gradients. Therefore, for alleviat-
ing the communication pressure in distributed learning, we
can focus more on transferring deeper gradients with some
privacy-preserving measures (Shokri and Shmatikov 2015;
Bonawitz et al. 2017; Aono et al. 2017).

More Scenarios In addition, we examine the proposed at-
tack in more different scenarios including: employing larger
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Original

Recovered

w/ block 2
LPIPS: 0.80

w/ block 3
LPIPS: 0.75

w/ block 4
LPIPS: 0.36

w/ block 4,3
LPIPS: 0.31

w/ block 4,3,2
LPIPS: 0.27

w/ full grad
LPIPS: 0.42

Figure 8: We recover images using gradients from different
blocks (4 blocks in total, corresponding to 64, 128, 256, 512
channels) of ResNet. We use block 1 to denote the block
with 64 channels, and block 2 for 128 channels, and so on.

batch sizes, omitting the regularization term RBN , utilizing
smaller models, and evaluating the attack’s performance un-
der the implementation of defensive strategies. Results are
shown in Fig. 9.

with
RBN

0.1 Max Lap Noise

90% Prune Rate

(a) (b)

(d)(c)

ResNet-18

w/o
RBN

Figure 9: Attack results in more scenarios, where (a) the
batch size is 64; (b) different results with and withoutRBN ;
(c) with target model ResNet-18; (d) with additive noise and
gradient pruning defense, and the noise scale is set as 0.1
times the maximum gradient of each layer.

From Fig. 9, we can see that: (1) obviously, 32 is not the
upper limit of our method’s capabilities (batch size 64 in
Fig. 9(a)); (2) RBN prior can enhance the reality of recon-
structed images, but without RBN , our attack is still suffi-
cient to leak a significant amount of privacy; (3) proposed at-
tack can also achieve satisfactory results with smaller model
(ResNet-18 in Fig. 9(c)); (4) simple additive noise and gra-
dient pruning can not effectively resist our attack.

Conclusion

We propose a novel two-stage gradient inversion attack ap-
proach, which can realize high fidelity batch images recov-
ery in distributed learning by evolutionary label inference
and stepwise gradient inversion. Experiment results show
the superiority of our approach and shed light on the po-
tential vulnerability of the distributed learning paradigm.
And at the final of this paper, we visually show that gra-
dients from different layers usually own different amounts
of data information, which may inspire effective communi-
cation mechanism design for future distributed learning.
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