
HyperFast: Instant Classification for Tabular Data

David Bonet1,2, Daniel Mas Montserrat1, Xavier Giró-i-Nieto3*, Alexander G. Ioannidis1

1Stanford University, Stanford, CA, USA
2Universitat Politècnica de Catalunya, Barcelona, Spain

3Amazon, Barcelona, Spain
ioannidis@stanford.edu

Abstract

Training deep learning models and performing hyperparam-
eter tuning can be computationally demanding and time-
consuming. Meanwhile, traditional machine learning meth-
ods like gradient-boosting algorithms remain the preferred
choice for most tabular data applications, while neural net-
work alternatives require extensive hyperparameter tuning or
work only in toy datasets under limited settings. In this pa-
per, we introduce HyperFast, a meta-trained hypernetwork
designed for instant classification of tabular data in a sin-
gle forward pass. HyperFast generates a task-specific neu-
ral network tailored to an unseen dataset that can be directly
used for classification inference, removing the need for train-
ing a model. We report extensive experiments with OpenML
and genomic data, comparing HyperFast to competing tabular
data neural networks, traditional ML methods, AutoML sys-
tems, and boosting machines. HyperFast shows highly com-
petitive results, while being significantly faster. Additionally,
our approach demonstrates robust adaptability across a vari-
ety of classification tasks with little to no fine-tuning, posi-
tioning HyperFast as a strong solution for numerous appli-
cations and rapid model deployment. HyperFast introduces a
promising paradigm for fast classification, with the potential
to substantially decrease the computational burden of deep
learning. Our code, which offers a scikit-learn-like interface,
along with the trained HyperFast model, can be found at
https://github.com/AI-sandbox/HyperFast.

Introduction
Many different machine learning (ML) methods have been
proposed for the task of supervised classification (Duda,
Hart, and Stork 2000), following a traditional two-stage
methodology. The initial stage involves the optimization of a
model using the training portion of a dataset. Several tuning
iterations are performed with the aim of finding the hyperpa-
rameter configuration of the model that yields the best per-
formance on the specific task. In the second stage, the model
with the chosen hyperparameter setup is used for evaluation
and inference on the test set. Training and tuning models for
classification tasks is time-consuming, and it often requires
extensive data pre-processing, expertise in selecting hyper-
parameters that could fit the task at hand, and a validation

*Work done prior to joining Amazon.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

process. Further, the computational and temporal costs of the
traditional process can be prohibitive, particularly in real-
time and large-scale applications, such as healthcare (Esteva
et al. 2019), or applications where rapid model deployment
is necessary (Deiana et al. 2022), including data streaming,
where models need to be updated or re-trained frequently. In
this work, we propose HyperFast, a novel method to solve
classification tasks from multiple domains with a single for-
ward pass of a hypernetwork. We substitute the slow train-
ing stage of a classification network with a fixed hypernet-
work that has been pre-trained (meta-trained) to predict the
weights of a smaller neural network (i.e. main network) that
can instantly solve the classification task with state-of-the-
art performance. Recently, TabPFN (Hollmann et al. 2023)
has been proposed, introducing a pre-trained Transformer
that is able to perform classification without training. How-
ever, it is constrained to ≤ 1000 training examples, 100 fea-
tures and 10 classes, which limits its application to most
real-world scenarios. In this study, we are particularly in-
terested in ensuring adaptability to large dataset sizes, fill-
ing the gap present in the current landscape of pre-trained
models for instant tabular data classification. Our model is
designed to work with both large and small datasets, while
also providing adaptability to different numbers of samples,
features, and categories.

During the meta-training stage, the hypernetwork param-
eters are learnt and the parameters of a main model are in-
ferred, that is, we are “learning to learn” from a wide variety
of datasets (meta-training datasets) from different modalities
for which HyperFast generates a smaller neural model that
performs the actual classification. During the meta-testing or
inference stage, HyperFast receives a “support set” of an un-
seen dataset (both features and labels), and predicts a set of
weights for the main model, which classifies the test samples
of the dataset. In this way, the process of adapting the model
to a new dataset is accelerated, and the model that does the
meta-learning is decoupled from the model that does the ac-
tual inference on the data. In other words, we train a high-
capacity meta-model to encode task-specific characteristics
in the weights of a smaller model. Model size is also decou-
pled, which means that a large meta-learner can be trained
just once, while many lightweight models generated by the
meta-learner can be used for deployment in different ap-
plications such as edge computing, IoT devices, and mo-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11114



bile devices, where computational resources are constrained,
and fast inference is indispensable. These properties are also
helpful to accelerate production, improve privacy aspects, or
for federated learning (Yang et al. 2019). The meta-learner
can instantly generate a model that is ready for deployment,
but the generated weights might not be optimal. Thus, we
also explore further improvements to quickly boost the per-
formance before deployment and leverage all the power of
the framework. For example, ensembles of multiple gener-
ated models can be used, or the generated weights can be
used as an initial point for fine-tuning. More detail on many
of the possibilities to improve model performance and ob-
tain a stronger predictor can be found in the Appendix.

The hypernetwork is trained on a wide range of datasets
with different data distributions, allowing it to learn relevant
and general meta-features, such that during testing the hy-
pernetwork can adapt and predict an accurate set of weights
for new unseen datasets. We evaluate the performance of
HyperFast across a set of 15 tabular datasets, including ge-
nomics datasets and a standardized suite of datasets from
OpenML (Bischl et al. 2021). We also analyze the perfor-
mance of HyperFast on larger time budgets by ensembling
main networks generated with multiple forward passes and
fine-tuning on inference. We compare our model to similar
approaches and classical methods, both in terms of perfor-
mance and time. Our method achieves competitive results
compared to standard ML and AutoML algorithms tuned for
up to one hour for each test dataset.

Related Work
Hypernetworks. Building from evolutionary algo-
rithms, HyperNEAT (Stanley, D’Ambrosio, and Gauci
2009) evolves Compositional Pattern-Producing Networks
(CPPNs) to augment the weight structure for a larger
main network. Based on this idea, (Ha, Dai, and Le 2017)
propose hypernetworks, where one neural network is used
to generate weights for another neural network. The hyper-
network is trained end-to-end jointly with the main network
to solve the task, producing weights in a deterministic
way. (Krueger et al. 2018) and (Louizos and Welling 2017)
propose variational approximations for weight generation
using normalizing flows, (Deutsch 2018) use multilayer
perceptrons (MLPs) and convolutions, and (Ratzlaff and
Fuxin 2019) use generative adversarial networks (GANs).
(Schürholt et al. 2022) explores unsupervised weight
generation through model datasets. (Ashkenazi et al. 2022)
use neural representations similar to NeRF (Mildenhall
et al. 2020) to reconstruct weights of a pre-trained network
leveraging knowledge distillation. The HyperTransformer
(Zhmoginov, Sandler, and Vladymyrov 2022) is a few-shot
learning hypernetwork based on the Transformer archi-
tecture that generates weights of a convolutional neural
network (CNN). Unlike our method, the HyperTransformer
is only designed for image classification and also requires
training image and activation feature extractors. HyperFast
presents a novel approach by introducing hypernetworks for
instant tabular classification. HyperFast solves the classi-
fication task by taking a set of labeled datapoints (support
set) and generating the weights of a neural model that can

be directly used to classify new unseen datapoints. Previous
work (Gidaris and Komodakis 2018; Qiao et al. 2018)
considered generating weights for specific layers (e.g.,
the last classification layer), while training the rest of the
feature extractor. Here, we go one step further and consider
generating all the weights of the model that performs the
classification in a single forward pass. Our hypernetwork
design includes initial transformation modules, retrieval-
based components, and different pooling operations in a
unique architecture, offering feature permutation invariance
and providing scalability and adaptability to new datasets
while ensuring efficiency and speed.

Meta-learning. In the context of rapidly adapting to
new tasks using limited data, meta-learning methods have
emerged as powerful techniques. These approaches “learn
to learn” by quickly integrating information at test time to
make predictions for new, unseen tasks. A model Pθ(y|x,S)
is learned for every new task, where y is the target, x
is the test input, and S = {X,Y }, is the support set.
Metric-based learning methods such as Matching Networks
(Vinyals et al. 2016) and Prototypical Networks (Snell,
Swersky, and Zemel 2017) map a labelled support set S
into an embedding space, where a distance is computed with
the embedding of an unlabelled query sample to map it to
its label. As in kernel-based methods, the model Pθ can
be obtained through Pθ(y|x,S) =

∑
xi,yi∈S Kθ(x, xi)yi.

Optimization-based methods such as Model-agnostic meta-
learning (MAML) (Finn, Abbeel, and Levine 2017) learn an
initial set of model parameters and perform an additional
optimization through a function fθ(S), where model weights
θ are adjusted with one or more gradient updates given the
support set of the task S , i.e., Pθ(y|x,S) = fθ(S)(x,S).
Finally, model-based approaches such as Neural Processes
(NPs) (Garnelo et al. 2018b,a) first process both support
samples and query samples independently as in Deep Sets
(Zaheer et al. 2017), and the predicted embeddings are ag-
gregated with a permutation-invariant pooling operation, re-
sulting in a dataset-level summary that is fed to a second
stage network that predicts the output for the query sample.
The overall model is defined by a function f and the process
can be mathematically described as Pθ(y|x,S) = fθ(x,S).
Similarly, TabPFN (Hollmann et al. 2023) learns to learn
Bayesian inference by using a Transformer network. In con-
trast, our method directly obtains the model weights θ in a
single forward step through an independent network, i.e., the
hypernetwork h, such that Pθ(y|x,S) = fh(S)(x).

Deep Learning for Tabular Data. Although deep learn-
ing (DL) models achieve state-of-the-art results in many do-
mains (e.g., language, computer vision, audio), this is not the
case for tabular data. Tree-based models such as XGBoost
(Chen and Guestrin 2016), LightGBM (Ke et al. 2017) or
CatBoost (Prokhorenkova et al. 2018) are still the preferred
choice in some tabular data applications (Grinsztajn, Oyal-
lon, and Varoquaux 2022; Shwartz-Ziv and Armon 2022).
AutoML methods (He, Zhao, and Chu 2021; Feurer et al.
2020; Erickson et al. 2020) are also a popular alternative,
automatically selecting the most appropriate ML algorithm
and its hyperparameter configuration. However, it has been

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11115



shown that there is not a universal superior solution (Gorish-
niy et al. 2021; McElfresh et al. 2023), and many deep learn-
ing approaches for tabular data have been proposed (Kadra
et al. 2021; Arik and Pfister 2021; Somepalli et al. 2021;
Kossen et al. 2021; Gorishniy et al. 2021; Yan et al. 2023;
Chen et al. 2022a; Katzir, Elidan, and El-Yaniv 2020; Popov,
Morozov, and Babenko 2019; Hollmann et al. 2023; Chen
et al. 2022b, 2023; Zhu et al. 2023; Zhang et al. 2023).
(Kadra et al. 2021) introduced Regularization Cocktails,
where different regularization techniques are applied to sim-
ple MLPs to boost performance. Recent work has explored
using attention mechanisms to improve performance on tab-
ular data. TabNet (Arik and Pfister 2021) adopts sequential
attention on subsets of features, SAINT (Somepalli et al.
2021) applies attention over rows and columns in a BERT-
style fashion and uses contrastive pre-training with data aug-
mentation, NPT (Kossen et al. 2021) introduces attention
between data points, ExcelFormer (Chen et al. 2023) models
feature interaction and feature representation alternately, FT-
Transformer (Gorishniy et al. 2021) adapts a Transformer
with embeddings for categorical and numerical features, and
T2G-Former (Yan et al. 2023) includes a graph estimator to
guide tabular feature interaction. TabCaps explore capsule
networks (Chen et al. 2022a), Net-DNF (Katzir, Elidan, and
El-Yaniv 2020) disjunctive normal formulas, NODE (Popov,
Morozov, and Babenko 2019) combines ensembles of differ-
ential oblivious decision trees with multi-layer hierarchical
representations, DANets (Chen et al. 2022b) learn groups of
correlative input features to generate higher-level features,
and other works explore large language models (LLM) for
tabular data pre-training (Zhu et al. 2023; Zhang et al. 2023).
Nevertheless, most of the proposed DL models for tabular
data require slow training and custom hyperparameter tun-
ing for every new dataset. In contrast, we focus on off-the-
shelf models that do not need extensive tuning for a new
task. In this direction, TabPFN (Hollmann et al. 2023) pre-
trains a Transformer on synthetic data given a prior to per-
form tabular data classification in a single forward pass with
no hyperparameter tuning. However, TabPFN can only be
applied to small tabular datasets, i.e., ≤ 1000 training exam-
ples, 100 features and 10 classes.

Background
Meta-Learning Problem Setting
In our meta-learning experiments, we train a model h (i.e.,
the hypernetwork) that is able to quickly adapt to new tasks
given some observations, and generate the weights of a main
model f that solves the task for unseen datapoints. We con-
sider a set of classification tasks T where each task t ∈ T is
associated with a support set St of examples that are suffi-
cient to find the optimal model f that solves the task, a loss
function Lt, and a query set Qt to define Lt. The first phase
is the meta-training, where in each step a different training
task t ∈ Tmeta-train is selected. We compile a set of meta-
training datasets Dmeta-train, where each dataset d ∈ Dmeta-train
is composed of a training set dtrain and a test set dtest, as in the
common machine learning setup. In each meta-training step,
a task t ∈ Tmeta-train is sampled by first randomly choosing

a meta-training dataset d. Then, St and Qt are generated by
sampling examples from dtrain and dtest, respectively. Meta-
validation is also performed intermittently through meta-
training, where a separate set of meta-validation datasets
Dmeta-val is used to generate validation tasks Tmeta-val to eval-
uate our algorithm and select the best performing model.

Once HyperFast is trained, an independent set of meta-
testing datasets Dmeta-test are used to create the evaluation
tasks Tmeta-test in which the selected model is evaluated. This
approach allows us to extend the classical “n-way-k-shot”
few-shot learning setting to handle multiple datasets with
varying distributions and categories, testing the robustness
and generalization of our model on new data.

As opposed to the training tasks, where each t ∈ Tmeta-train
is randomly generated at every meta-training step, Tmeta-val
and Tmeta-test are sets of partially fixed tasks, as the query set
Qt always covers all dtest samples, in order to evaluate and
compare with other methods equally, which also tests their
performance on the entire test subset dtest of a dataset d.

HyperFast

The traditional training process can be seen as a function
f(X,Y ) = θ, that receives training instances X ∈ RN×D

and corresponding labels Y ∈ RN , and produces a set of
trained weights θ of a model. In this work, we substitute the
training process with HyperFast, a pre-trained meta-model
based on a hypernetwork (Ha, Dai, and Le 2017) h, that
takes as input a subset of the training data (i.e. support set
St) for a task t ∈ Tmeta-train and predicts the weights of a
main neural network fθ for the given task t as θ∗ = h(St).
The target model fh(St) directly uses the predicted weights
and makes predictions for test data points x ∈ Qt in a single
forward pass, such that Pθ(y|x,S) = fh(S)(x).

The meta-model is learnt by observing a set of tasks
t ∈ Tmeta-train and minimizing Lt(fh(S)(x)). In this section,
we detail the design and architecture of h, named Hyper-
Fast in analogy to Hypernetworks (Ha, Dai, and Le 2017),
and the ability to instantly adapt to new datasets in a single
forward pass. Figure 1 illustrates the HyperFast framework
and the main building blocks of the architecture. HyperFast
is a multi-stage model with initial transformation layers that
allows variable input size and permutation invariance, and a
combination of linear layers and pooling operations that take
both support samples and their associated labels to directly
predict the weights θmainl (weight matrix and bias) of linear
layers l ∈ [1, L] of a target neural network. All trainable
modules of HyperFast are learnt end-to-end by optimizing
the classification loss of the main network evaluated on Qt.

The framework and HyperFast architecture proposed in
this paper is a specific instance of a more general framework
that could be easily extended to predict convolutional lay-
ers, batch normalization layers, recurrent layers, or deeper
networks, for example. However, the architecture design de-
picted in Figure 1 selection has been driven by a global and
simple approach to handle a wide range of multi-domain
data, while seeking efficiency and speed.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11116



Figure 1: (left) HyperFast framework. (right) Architecture detail. Each hypernetwork module receives representations of the
support set of batch size (bs) samples. The modules l ∈ [1, L − 1] compress the representations into a single embedding of
hypernetwork hidden size (hhn) to then generate the main network weights θmainl . Module L summarizes the representations per
class with embeddings of main hidden size (hm) + 1, directly obtaining the weights of the last classification layer θmainL .

Initial Transformation Layers

Properly dealing with datasets of differing dimensional-
ity is a challenge, and one common solution is to apply
padding (Hollmann et al. 2023) or to keep a subset of se-
lected features up to a fixed size. We first perform a gen-
eral data standardization stage by one-hot encoding cate-
gorical features, mean imputing missing numerical features,
mode imputing missing categorical features, and feature-
wise transforming to zero mean and unit variance. Then, Hy-
perFast comprises initial layers that project datasets of dif-
ferent dimensionality to fixed-size and feature-permutation
invariant representations. The kernel trick can be used to
project data to a Reproducing Kernel Hilbert Space (RKHS)
(Aronszajn 1950) when the number of dimensions tends to
infinity. However, this would require computing all pair-
wise kernel distance in every step of the training process.
Instead, we use random features (RF) (Rahimi and Recht
2007) to approximate a kernel with a fixed and finite number
of dimensions. Random features are computed as ϕ(x) =
a(Wx), where a(·) is a non-linearity, and W is a ran-
dom projection matrix that follows a pre-defined distribu-
tion. The approximated kernel depends on the distribution
of W and the selected non-linearity. In our case, we sam-
ple W from a Gaussian distribution and use the ReLU acti-

vation as non-linearity, approximating an arc-cosine kernel.
We choose to approximate the arc-cosine kernel because it
captures sparse, neural network-like feature representations
in a non-parametric kernel setting (Cho and Saul 2009). In
contrast, polynomial kernel’s features are neither sparse nor
non-negative, and radial basis function (RBF) kernels cap-
ture localized similarities. In each forward step, the ran-
dom features projection matrix is re-initialized and sampled.
The number of rows is adjusted to match the dimensionality
of the input dataset, while the number of columns remains
fixed, determining the output size.

The combination of random features with Principal Com-
ponent Analysis (PCA) provides an efficient low-rank ran-
domized approximation of Kernel PCA (Sriperumbudur and
Sterge 2017; Lopez-Paz et al. 2014). We estimate the PCA
parameters ψ using the support set and project the data onto
a specified number of components. Subsequently, both ϕ and
ψ are applied to the query samples to transform the data.
This transformed data is then forwarded through the L gen-
erated linear layers of the main network.

Hypernetwork Modules
The process of generating the weights of the main network
is done layer-by-layer, by multiple hypernetwork modules
with both shared and layer-specific parameters, see Figure 1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11117



The hypernetwork module that generates the weights for the
main network layer l receives as input the representations of
the support samples in the previous stage, concatenated with
the one-hot encoded support labels, the global average, and
the class average of the low-rank Kernel PCA projection of
the support set. Note that each sample is concatenated with
the class average corresponding to its associated label.

For predicting θmain1 , the representations are the low-rank
Kernel PCA projection of the support samples. For θmainl ∈
[2, L], the hypernetwork module receives the intermediate
representations of the support set in the main network at the
output of layer l − 1, after non-linearities and residual con-
nections are applied. Figure 1 represents a specific multi-
layer perceptron (MLP) architecture with ReLU activations
and residual connections, which we use for our experiments.
However, the HyperFast framework can be easily extended
to generate weights for other main network architectures.

The hypernetwork modules that predict the layers l ∈
[1, L − 1] are composed of MLPs with shared middle lay-
ers that take the support set representations and labels, and
output embeddings for each sample in the support set. Then,
permutation-invariant weights are obtained averaging all
support embeddings in a similar fashion to Deep Sets (Za-
heer et al. 2017), to obtain a single dataset embedding that is
passed to a final linear layer which outputs the final weights
θmainl of l. θmainl is then reshaped as weight matrix and bias
vector to forward the data through the main network.

Layer L is the classification layer of the main layer that
outputs the logits for the final prediction. In this case, the
intermediate representations after the layer L− 1 and labels
information are encoded through a MLP hypernetwork but
the weights θmainL are not directly predicted from a global
embedding. Instead, we leverage the fact that the rows of the
classification layer weight matrix correspond to the different
categories of the task. We perform an average pooling per
class, and obtain the rows of the classification weight matrix
(and bias) as the average of representations for each cate-
gory. This also allows a much lightweight implementation,
instead of directly predict the weight matrix. Additionally,
we add a residual connection (He et al. 2016) from the pre-
vious layer representations for which we also perform a per
class average, which helps in retaining category information
from the input. Finally, we consider a module based on Near-
est Neighbors to add learnable parameters (NN biases) to the
classification layer bias vector of the main network. The la-
bel of a query sample is predicted with NN using the support
set and the intermediate representations of the data across
the main network, such that Pθ(y|x,S) = fh(S)(x,S). We
consider the representations after the PCA projection, and
after each linear layer. The NN biases are added to the po-
sition of the bias of the last main classification layer corre-
sponding to the predicted label.

Once the main network is fully generated, query samples
can be forwarded to make predictions. During meta-training,
the predictions for the query samples Qt of t ∈ Tmeta-train
are used to compute the cross-entropy loss Lt and learn the
parameters of HyperFast end-to-end. In evaluation, all hy-
pernetwork parameters are frozen and generate weights for
a main network in a single forward pass.

Experiments
In this section, we compare HyperFast to many standard ML
methods, AutoML systems and DL methods for tabular data
on a wide variety of tabular classification tasks, listed in the
Appendix. We do not perform any hyperparameter tuning
to HyperFast, as it can be used as an off-the-shelf hyper-
network ready to generate networks to perform inference on
new datasets. We then compare the performance and runtime
of the generated model in a single forward pass, as well as
the combination of multiple generated networks by increas-
ing the ensemble size and fine-tuning on inference.

Baselines We compare HyperFast to standard ML meth-
ods, AutoML systems and state-of-the-art DL methods for
tabular data. We first consider simple and fast ML meth-
ods as K-Nearest Neighbors (KNN) and Logistic Regres-
sion (Log. Reg.), and a MLP matching the architecture of the
target network. We also evaluate against tree-based boost-
ing methods: XGBoost (Chen and Guestrin 2016), Light-
GBM (Ke et al. 2017), and CatBoost (Prokhorenkova et al.
2018). As AutoML methods we incorporate Auto-Sklearn
2.0 (ASKL 2.0) (Feurer et al. 2020), which uses Bayesian
Optimization to efficiently discover a top-performing ML
model or a combination of models by ensembling, and Au-
toGluon (Erickson et al. 2020), which uses a selection of
models such as neural networks, KNN, and tree-based mod-
els, combining them into a stacked ensemble. Finally, we in-
clude popular tabular DL methods: SAINT (Somepalli et al.
2021), TabPFN (Hollmann et al. 2023), NODE (Popov, Mo-
rozov, and Babenko 2019), FT-Transformer (Gorishniy et al.
2021), and T2G-Former (Yan et al. 2023). All standard ML
models, gradient boosting methods and SAINT are evalu-
ated using 5-fold cross validation for hyperparameter adjust-
ment. Hyperparameter configurations are drawn from search
spaces (detailed in the Appendix) unitl 10 000 configura-
tions are explored, a specified time budget is reached, or
more than 32 GB of memory are required if GPU training
is possible for the model. Then, the model is trained on the
full training set with the best configuration between the hy-
perparameter search result and the default. For the AutoML
methods, the time budget is given. Finally, both TabPFN and
our HyperFast are pre-trained models with no hyperparam-
eter tuning requirements, but with ensembling capabilities.
Thus, we perform ensembling for each method until a given
number of members are used (detailed in the Appendix) or
until 32 GB of GPU memory are overloaded.

Data We collect a wide variety of datasets from differ-
ent modalities. We use the 70 tabular datasets from the
OpenML-CC18 suite (Bischl et al. 2021) which, to the best
of our knowledge, is the largest and most used standard-
ized tabular dataset benchmark, composed of standard clas-
sification datasets (e.g., Breast Cancer, Bank Marketing).
The collection of OpenML datasets is randomly shuffled
and divided into meta-training, meta-validation and meta-
testing sets, with a 75%-10%-15% split, respectively. We
also include tabular genomics datasets sourced from distinct
biobanks. Specifically, we utilize genome sequences of dogs
(Bartusiak et al. 2022) for dog clade (group of breeds) pre-
diction in meta-training, European (British) humans from

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11118



Figure 2: Runtime (fit + predict) vs. performance and average rank for given runtime budgets on the mini-test (small-sized
version of the 15 meta-test datasets with ≤ 1000 training examples, ≤ 100 features and ≤ 10 classes restrictions).

the UK Biobank (UKB) (Sudlow et al. 2015) for phenotype
prediction in meta-validation, and HapMap3 (Consortium
et al. 2010) for subpopulation prediction in the meta-test.
This strict separation ensures we meta-learn and evaluate on
substantially different distributions and tasks. More details
on the processing of these datasets are provided in the Ap-
pendix. The simple ML methods, implemented with scikit-
learn (Pedregosa et al. 2011), and the MLP, receive the nu-
merical features standardized with zero mean and unit vari-
ance, and the categorical features are one-hot encoded. For
the missing values, we perform mean imputation for numeri-
cal features and mode imputation for categorical features, as
it was the configuration that yielded the best performance.
We also perform imputation of missing values for SAINT,
NODE, and FT-Transformer. Boosting methods, AutoML
systems, and TabPFN receive the raw data and the indices
of categorical features when needed, as their documentation
states that they pre-process inputs internally.

Apart from the large-sized original test datasets, we create
a secondary small-sized tabular data version (mini-test) of
the meta-testing datasets to compare to TabPFN, as it is only
able to handle ≤ 1000 training examples, ≤ 100 features
and ≤ 10 classes. We randomly select a subset of ≤ 1000
training samples and ≤ 100 features for each dataset. We do
not perform any downsizing in terms of number of classes as
the highest number of classes appearing in the meta-testing
set is 10. However, HyperFast is pre-trained with datasets
with higher number of classes and can be used in inference
for datasets with >10 classes. Only models that can com-
plete the runs for all 15 datasets in less than 48 hours in their
default configuration are included in our large-scale experi-
ments. The experiments, which are conducted for all models
and both size versions of the 15 meta-testing datasets, con-
sidering all time budgets shown in Figure 2, require a total
of 2 months to complete. Therefore, we show additional re-
sults with 10 repetitions of the experiments for a specific
time budget of 5 minutes for each dataset in the Appendix.

Experimental setup We perform supervised classification
with HyperFast and all other baselines on the mini-test, a

small-sized version of the meta-test datasets Dmeta-test, and
in the original large-scale datasets. To train HyperFast, we
use a different set of meta-training datasets, Dmeta-train, and
select the model with the best average performance on the
meta-validation datasets, Dmeta-val. We report balanced accu-
racy, which is the mean of sensitivity and specificity. Bal-
anced accuracy provides a more objective and robust evalu-
ation across classes, especially in the context of imbalanced
datasets. In contrast, standard accuracy can be misleading,
often masking poor performance in minority classes. We
evaluate the models on a time budget (including tuning,
training, and prediction) to correctly assess computational
complexity and performance. The average rank is also re-
ported.

In order to transform the data to a fixed-size and permu-
tation invariant representation, we apply Random Features
and Principal Component Analysis to both support samples
and query samples. We set a Random Features projection
to 32 768 (215) features, sampled from a normal distribu-
tion following the He initialization (He et al. 2015), fol-
lowed by a ReLU activation. Note that the random linear
layer that computes the random features is not trained, and
re-initialized in each HyperFast forward step. Then, we keep
the principal components (PCs) associated to the 784 largest
eigenvalues, as many of the datasets considered have this
dimensionality, and it is a more than sufficient number of
dimensions to retain the important information of higher
dimensional datasets while preserving efficiency. After the
PCA projection, most genomics datasets resemble a similar
histogram distribution (i.e., zero mean, small deviation and
no outliers). However, it is not the case for some OpenML
datasets, which are also centered around zero but present
many outliers. Thus, we clip the data after PCA at 4σ.

The hypernetwork modules receive a concatenation of in-
termediate representations of the support samples, and the
support labels. Given that each dataset features a different
number of categories and linear layers require a fixed input
size, we one-hot encode the labels and apply zero padding
up to the maximum number of categories considered in the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11119



Figure 3: Runtime (fit + predict) vs. performance and average rank for given runtime budgets on the big test: 15 large/medium-
sized meta-datasets.

experiments. It is important to note that the number of cat-
egories that HyperFast can handle is easily extendable by
expanding the input size of HyperFast and zero padding the
remaining input dimensions. Such modifications have a neg-
ligible impact on efficiency or memory requirements, up
to a reasonable number of categories. As a shared module
we use 2 feed-forward layers with a hidden size of 1024
and ReLU activations. For the main network, we consider
a 3-layer MLP with a residual connection (He et al. 2016),
and a main network hidden size equal to the number of
PCs (784 dimensions). We select this simple architecture to
be able to obtain competitive performance on a wide vari-
ety of datasets with a single trained model while preserv-
ing efficiency. Other alternatives include predicting weights
for CNN layers for only-image datasets, or recurrent layers,
for sequential data. Instead, we create a general and simple
meta-learning framework to perform fast lightweight infer-
ence. In the NN bias module, we randomly select a subset of
a maximum of 2048 support samples, since computing all
pairwise distances for a large number of datapoints causes
high inefficiency and GPU memory overload. A maximum
batch size of 2048 samples is used for training, and we make
sure to have a sufficient number of samples per category in
every case.

In evaluation, we show prediction results with HyperFast
in a single forward pass, as well as predictions by ensem-
bling main networks generated in multiple forward passes.
We also experiment with performing gradient steps with the
training data of the meta-testing datasets on the generated
main networks, including the random features projection
matrix, PCA parameters and linear layers.

Results on small-sized datasets. We first compare Hy-
perFast to the other methods on a small-sized setting with
datasets having ≤ 1000 training samples, ≤ 100 features and
≤ 10 classes, in order to compare to TabPFN. As shown in
Figure 2, HyperFast delivers superior results in both perfor-
mance and runtime, with better prediction capabilities up to
3 orders of magnitude faster than competing methods. Sim-
ple ML methods such as KNN and Log. Reg. also deliver

instant predictions, but do not achieve remarkable perfor-
mance. Interestingly, an MLP (with an architecture identical
to the network generated by HyperFast, including the includ-
ing the initial transformation layers) performs on par with
XGBoost. However, HyperFast surpasses gradient-boosting
techniques in both runtime and performance. LightGBM
stands out as the only boosting machine that achieves a
higher balanced accuracy in a similar runtime to a single
forward pass by HyperFast. Yet, an ensemble of networks
generated by HyperFast outperforms all fine-tuned boost-
ing machines in under 3 seconds. TabPFN is noted for its
rapid predictions and outperforms NODE and SAINT. But
on average, it falls behind gradient boosting machines and
neural models, including HyperFast. FT-Transformer, T2G-
Former, NODE, and SAINT are DL tabular models with
very time-consuming training, and FT-Transformer obtains
the highest performance among them, similar to that of
gradient-boosting machines. AutoML systems are superior
to the other baselines when given higher runtime budgets.
However, HyperFast still outperforms both AutoGluon and
ASKL 2.0 for runtimes up to 1h, obtaining the lowest rank
throughout all the budgets in the mini test.

Results on medium/large-scale datasets. Figure 3
benchmarks the algorithms on large real-world datasets. We
observe that HyperFast is able to obtain predictions in less
than a second, and achieves the overall best performance
in a wide range of runtime budgets, ranging from 1 second
to 5 minutes. For more extended budgets, up to 1h per
dataset, HyperFast’s performance is on par with other
AutoML systems. Specifically, HyperFast, ASKL 2.0, and
AutoGluon all achieve an average rank of approximately
3.0. In comparison, gradient-boosting machines plateau at
a balanced accuracy of 78.4% and rank above 5.9, being
outperformed by the MLP. SAINT obtains the lowest
performance, using the hyperparameter configuration that
the authors implement for the biggest datasets they consider
in their benchmark. No hyperparameter optimization is per-
formed for SAINT in the big test since larger architectures
do not fit in GPU memory for the larger datasets. Additional

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11120



Variation Bal. acc. (%) Bal. acc. diff. Fit time (s) Pred. time (s) HF size Model size

Base model (784 PCs) 81.496 - 0.600 0.125 1.27 B 52.65 M
No RF 75.387 -6.108 0.126 0.114 1.27 B 1.85 M
No RF-PCA 73.704 -7.792 0.029 0.109 1.26 B 1.23 M
First 512 PCs only 81.347 -0.149 0.625 0.125 547 M 43.03 M
First 256 PCs only 81.235 -0.261 0.640 0.042 140 M 34.25 M
dRF=16 384 (214) 81.059 -0.436 0.510 0.116 1.27 B 26.95 M
No concat PCA to hypern. modules 80.727 -0.769 0.583 0.125 1.26 B 52.65 M
1 linear layer in shared module 80.790 -0.706 0.637 0.125 1.27 B 52.65 M
No residual conn. in hypern.L 77.835 -3.660 0.620 0.125 1.27 B 52.65 M
No residual con. in main model 80.318 -1.178 0.633 0.125 1.27 B 52.65 M
No NN bias using PCA features 81.305 -0.191 0.625 0.125 1.27 B 52.65 M
No NN bias using interm. act. 80.703 -0.793 0.628 0.125 1.27 B 52.65 M
No NN biases 79.714 -1.781 0.628 0.125 1.27 B 52.65 M
Random init. linear layers main 72.229 -9.267 0.437 0.125 - 52.65 M

Table 1: Ablation studies on HyperFast performing a single forward pass. Time results are shown for a single GPU. HF size de-
notes the number of trainable parameters of HyperFast, i.e., the meta-model, while Model size denotes the size of the generated
model.

experiments with very high-dimensional genomic datasets
can be found in the appendix.

Ablation Experiments In Table 1, we present ablation
studies for the HyperFast framework, exploring variations
affecting both hypernetwork modules and the generated
model. First, we consider removing the RF and both RF and
PCA modules, obtaining a fixed-sized input by keeping the
first 784 features or applying zero padding. The weight gen-
eration time is reduced from 0.6s to 0.12s and 0.03s, since
the main time bottleneck is the RF matrix multiplication and
SVD to obtain the PCs. Also, the main model size is greatly
reduced as RFs account for most parameters, but the drop
in performance is one of the most significant. This is be-
cause RF and PCA not only allow transforming any dataset
to a fixed number of features, but also homogenize the in-
put data to HyperFast and the generated network across
datasets. For example, the first feature post RF-PCA holds
the most variance, with subsequent features capturing the
maximum variance that is orthogonal to the previous dimen-
sions, with minimal information loss. Also, histogram dis-
tributions are similar across datasets with zero mean. These
properties help in learning important meta-features across
different dataset distributions. If we scale down RF-PCA by
reducing the number of PCs used and the RF dimensionality,
we observe that model size is significantly reduced while the
drop in performance is not critical, which shows that most
dataset relevant information is preserved, even using 512 or
256 PCs. These observations can help create even more effi-
cient HyperFast desings in the future. In addition, PCA rep-
resentations concatenated to hypernetwork inputs retain key
information without a major parameter increase. We also ob-
serve that reducing the shared hypernetwork module from 2
to 1 layer degrades performance, and residual connections
in both the hypernetwork and main model are key to retain
post-PCA and per class information, while not increasing
model size and runtime. We also analyze the retrieval-based

component of HyperFast. We observe that NN biases in the
last classification layer improve predictions while maintain-
ing model size, especially using the intermediate activations
of the main network as features. Finally, if we replace the
weights produced by HyperFast by random weights, and
base the prediction solely on the Nearest Neighbor-based
component, we observe the biggest drop in performance.

Conclusion
We present HyperFast, a meta-trained hypernetwork de-
signed to perform rapid classification of tabular data by en-
coding task information in the prediction of the weights
of a target network in a single forward pass. Our exper-
iments show that HyperFast consistently improves perfor-
mance over traditional ML methods and tabular-specific DL
architectures in a matter of seconds. Remarkably, it is able
to replace the traditional training of a neural network, and
achieves competitive results with state-of-the-art AutoML
frameworks trained for 1h. HyperFast eliminates the neces-
sity for time-consuming hyperparameter tuning, making it a
highly accessible, off-the-shelf model that can be specially
useful for fast classification tasks. We also explore how we
can leverage all training data by creating ensembles of gen-
erated networks and fine-tuning them on inference, signif-
icantly boosting performance at almost no additional com-
putational cost. Future work should consider expanding this
framework to a general architecture or multi-hypernetwork
setting that is able to handle regression tasks, multi-domain
and high-dimensional non-tabular settings such as audio
streams, 3D, and video.

Acknowledgments
This work was partially supported by a grant from the Stan-
ford Institute for Human-Centered Artificial Intelligence
(HAI) and by NIH under award R01HG010140. This re-
search has been conducted using the UK Biobank Resource
under Application Number 24983.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11121



References
Arik, S. O.; and Pfister, T. 2021. TabNet: Attentive Inter-
pretable Tabular Learning. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 35(8): 6679–6687.

Aronszajn, N. 1950. Theory of reproducing kernels. Trans-
actions of the American mathematical society, 68(3): 337–
404.

Ashkenazi, M.; Rimon, Z.; Vainshtein, R.; Levi, S.; Richard-
son, E.; Mintz, P.; and Treister, E. 2022. NeRN – Learning
Neural Representations for Neural Networks.

Bartusiak, E. R.; Barrabés, M.; Rymbekova, A.; Gimbernat-
Mayol, J.; López, C.; Barberis, L.; Montserrat, D. M.; Giró-
I-Nieto, X.; and Ioannidis, A. G. 2022. Predicting Dog Phe-
notypes from Genotypes. In 2022 44th Annual International
Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), 3558–3562.

Bischl, B.; Casalicchio, G.; Feurer, M.; Gijsbers, P.; Hutter,
F.; Lang, M.; Mantovani, R. G.; van Rijn, J. N.; and Van-
schoren, J. 2021. OpenML Benchmarking Suites. In Thirty-
fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Chen, J.; Liao, K.; Fang, Y.; Chen, D.; and Wu, J. 2022a.
TabCaps: A Capsule Neural Network for Tabular Data Clas-
sification with BoW Routing. In International Conference
on Learning Representations.

Chen, J.; Liao, K.; Wan, Y.; Chen, D. Z.; and Wu, J. 2022b.
Danets: Deep abstract networks for tabular data classifica-
tion and regression. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(4): 3930–3938.

Chen, J.; Yan, J.; Chen, D. Z.; and Wu, J. 2023. Ex-
celFormer: A Neural Network Surpassing GBDTs on Tab-
ular Data. arXiv preprint arXiv:2301.02819.

Chen, T.; and Guestrin, C. 2016. XGBoost: A Scalable
Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’16, 785–794. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450342322.

Cho, Y.; and Saul, L. 2009. Kernel Methods for Deep Learn-
ing. In Bengio, Y.; Schuurmans, D.; Lafferty, J.; Williams,
C.; and Culotta, A., eds., Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc.

Consortium, I. H. .; et al. 2010. Integrating common and
rare genetic variation in diverse human populations. Nature,
467(7311): 52.

Deiana, A. M.; Tran, N.; Agar, J.; Blott, M.; Di Guglielmo,
G.; Duarte, J.; Harris, P.; Hauck, S.; Liu, M.; Neubauer,
M. S.; et al. 2022. Applications and techniques for fast ma-
chine learning in science. Frontiers in big Data, 5: 787421.

Deutsch, L. 2018. Generating neural networks with neural
networks. arXiv preprint arXiv:1801.01952.

Duda, R. O.; Hart, P. E.; and Stork, D. G. 2000. Pattern Clas-
sification (2nd Edition). USA: Wiley-Interscience. ISBN
0471056693.

Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy,
P.; Li, M.; and Smola, A. 2020. Autogluon-tabular: Ro-
bust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505.
Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; De-
Pristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; and
Dean, J. 2019. A guide to deep learning in healthcare. Na-
ture medicine, 25(1): 24–29.
Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; and
Hutter, F. 2020. Auto-Sklearn 2.0: Hands-free AutoML via
Meta-Learning. arXiv:2007.04074 [cs.LG].
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In In-
ternational conference on machine learning, 1126–1135.
PMLR.
Garnelo, M.; Rosenbaum, D.; Maddison, C.; Ramalho, T.;
Saxton, D.; Shanahan, M.; Teh, Y. W.; Rezende, D.; and
Eslami, S. A. 2018a. Conditional neural processes. In In-
ternational Conference on Machine Learning, 1704–1713.
PMLR.
Garnelo, M.; Schwarz, J.; Rosenbaum, D.; Viola, F.;
Rezende, D. J.; Eslami, S.; and Teh, Y. W. 2018b. Neural
processes. ICML Workshop on Theoretical Foundations and
Applications of Deep Generative Models.
Gidaris, S.; and Komodakis, N. 2018. Dynamic few-shot
visual learning without forgetting. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 4367–4375.
Gorishniy, Y.; Rubachev, I.; Khrulkov, V.; and Babenko, A.
2021. Revisiting deep learning models for tabular data.
Advances in Neural Information Processing Systems, 34:
18932–18943.
Grinsztajn, L.; Oyallon, E.; and Varoquaux, G. 2022. Why
do tree-based models still outperform deep learning on typi-
cal tabular data? In Thirty-sixth Conference on Neural Infor-
mation Processing Systems Datasets and Benchmarks Track.
Ha, D.; Dai, A. M.; and Le, Q. V. 2017. HyperNetworks. In
ICLR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on im-
agenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, 1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
He, X.; Zhao, K.; and Chu, X. 2021. AutoML: A sur-
vey of the state-of-the-art. Knowledge-Based Systems, 212:
106622.
Hollmann, N.; Müller, S.; Eggensperger, K.; and Hutter, F.
2023. TabPFN: A Transformer That Solves Small Tabular
Classification Problems in a Second. In The Eleventh Inter-
national Conference on Learning Representations.
Kadra, A.; Lindauer, M.; Hutter, F.; and Grabocka, J. 2021.
Well-tuned Simple Nets Excel on Tabular Datasets. In
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11122



Vaughan, J. W., eds., Advances in Neural Information Pro-
cessing Systems, volume 34, 23928–23941. Curran Asso-
ciates, Inc.
Katzir, L.; Elidan, G.; and El-Yaniv, R. 2020. Net-dnf: Ef-
fective deep modeling of tabular data. In International Con-
ference on Learning Representations.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T.-Y. 2017. LightGBM: A Highly Efficient
Gradient Boosting Decision Tree. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.
Kossen, J.; Band, N.; Lyle, C.; Gomez, A. N.; Rainforth,
T.; and Gal, Y. 2021. Self-attention between datapoints:
Going beyond individual input-output pairs in deep learn-
ing. Advances in Neural Information Processing Systems,
34: 28742–28756.
Krueger, D.; Huang, C.-W.; Islam, R.; Turner, R.; Lacoste,
A.; and Courville, A. 2018. Bayesian Hypernetworks.
Lopez-Paz, D.; Sra, S.; Smola, A.; Ghahramani, Z.; and
Schölkopf, B. 2014. Randomized nonlinear component
analysis. In International conference on machine learning,
1359–1367. PMLR.
Louizos, C.; and Welling, M. 2017. Multiplicative Nor-
malizing Flows for Variational Bayesian Neural Networks.
In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, 2218–2227.
JMLR.org.
McElfresh, D.; Khandagale, S.; Valverde, J.; Ramakrishnan,
G.; Goldblum, M.; White, C.; et al. 2023. When Do Neu-
ral Nets Outperform Boosted Trees on Tabular Data? arXiv
preprint arXiv:2305.02997.
Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.;
Ramamoorthi, R.; and Ng, R. 2020. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In
ECCV.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Popov, S.; Morozov, S.; and Babenko, A. 2019. Neural
oblivious decision ensembles for deep learning on tabular
data. arXiv preprint arXiv:1909.06312.
Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush,
A. V.; and Gulin, A. 2018. CatBoost: unbiased boosting with
categorical features. In Bengio, S.; Wallach, H.; Larochelle,
H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc.
Qiao, S.; Liu, C.; Shen, W.; and Yuille, A. L. 2018. Few-
shot image recognition by predicting parameters from acti-
vations. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 7229–7238.

Rahimi, A.; and Recht, B. 2007. Random features for large-
scale kernel machines. Advances in neural information pro-
cessing systems, 20.
Ratzlaff, N.; and Fuxin, L. 2019. HyperGAN: A Genera-
tive Model for Diverse, Performant Neural Networks. In
Chaudhuri, K.; and Salakhutdinov, R., eds., Proceedings of
the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
5361–5369. PMLR.
Schürholt, K.; Knyazev, B.; i Nieto, X. G.; and Borth, D.
2022. Hyper-Representations as Generative Models: Sam-
pling Unseen Neural Network Weights. In Oh, A. H.; Agar-
wal, A.; Belgrave, D.; and Cho, K., eds., Advances in Neural
Information Processing Systems.
Shwartz-Ziv, R.; and Armon, A. 2022. Tabular Data: Deep
Learning is Not All You Need. Inf. Fusion, 81(C): 84–90.
Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical net-
works for few-shot learning. Advances in neural information
processing systems, 30.
Somepalli, G.; Goldblum, M.; Schwarzschild, A.; Bruss,
C. B.; and Goldstein, T. 2021. SAINT: Improved neural
networks for tabular data via row attention and contrastive
pre-training. arXiv preprint arXiv:2106.01342.
Sriperumbudur, B.; and Sterge, N. 2017. Approximate ker-
nel PCA using random features: Computational vs. statisti-
cal trade-off. arXiv preprint arXiv:1706.06296.
Stanley, K. O.; D’Ambrosio, D. B.; and Gauci, J. 2009. A
hypercube-based encoding for evolving large-scale neural
networks. Artificial life, 15(2): 185–212.
Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.;
Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.;
et al. 2015. UK biobank: an open access resource for iden-
tifying the causes of a wide range of complex diseases of
middle and old age. PLoS medicine, 12(3): e1001779.
Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; et al.
2016. Matching networks for one shot learning. Advances
in neural information processing systems, 29.
Yan, J.; Chen, J.; Wu, Y.; Chen, D. Z.; and Wu, J. 2023. T2g-
former: organizing tabular features into relation graphs pro-
motes heterogeneous feature interaction. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(9): 10720–
10728.
Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; and Yu, H.
2019. Federated learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 13(3): 1–207.
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.;
Salakhutdinov, R. R.; and Smola, A. J. 2017. Deep sets.
Advances in neural information processing systems, 30.
Zhang, T.; Wang, S.; Yan, S.; Li, J.; and Liu, Q. 2023. Gener-
ative Table Pre-training Empowers Models for Tabular Pre-
diction. arXiv preprint arXiv:2305.09696.
Zhmoginov, A.; Sandler, M.; and Vladymyrov, M. 2022.
Hypertransformer: Model generation for supervised and
semi-supervised few-shot learning. In ICML, 27075–27098.
Zhu, B.; Shi, X.; Erickson, N.; Li, M.; Karypis, G.; and
Shoaran, M. 2023. XTab: Cross-table Pretraining for Tab-
ular Transformers. arXiv preprint arXiv:2305.06090.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11123


