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Abstract

Understanding generalization in deep neural networks is an
active area of research. A promising avenue of exploration
has been that of margin measurements: the shortest distance
to the decision boundary for a given sample or its representa-
tion internal to the network. While margins have been shown
to be correlated with the generalization ability of a model
when measured at its hidden representations (hidden mar-
gins), no such link between large margins and generalization
has been established for input margins. We show that while
input margins are not generally predictive of generalization,
they can be if the search space is appropriately constrained.
We develop such a measure based on input margins, which we
refer to as ‘constrained margins’. The predictive power of this
new measure is demonstrated on the ‘Predicting Generaliza-
tion in Deep Learning’ (PGDL) dataset and contrasted with
hidden representation margins. We find that constrained mar-
gins achieve highly competitive scores and outperform other
margin measurements in general. This provides a novel in-
sight on the relationship between generalization and classi-
fication margins, and highlights the importance of consider-
ing the data manifold for investigations of generalization in
DNNe .

1 Introduction

Our understanding of the generalization ability of deep neu-
ral networks (DNNs) remains incomplete. Various bounds
on the generalization error for classical machine learning
models have been proposed based on the complexity of the
hypothesis space (Vapnik 1999; Koltchinskii and Panchenko
2002). However, this approach paints an unfinished picture
when considering modern DNNs (Zhang et al. 2021). Gen-
eralization in DNNSs is an active field of study and updated
bounds are proposed on an ongoing basis (Arora et al. 2018;
Kawaguchi, Kaelbling, and Bengio 2022; Chuang et al.
2021; Lotfi et al. 2022).

A complementary approach to developing theoretical
bounds is to develop empirical techniques that are able to
predict the generalization ability of certain families of DNN
models. The ‘Predicting Generalization in Deep Learning’
(PGDL) challenge, exemplifies such an approach. The chal-
lenge was held at NeurIPS 2020 (Jiang et al. 2020) and pro-
vides a useful test bed for evaluating complexity measures,
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where a complexity measure is a scalar-valued function that
relates a model’s training data and parameters to its expected
performance on unseen data. Such a predictive complexity
measure would not only be practically useful but could lead
to new insights into how DNNs generalize.

In this work, we focus on classification margins in deep
neural classifiers. It is important to note that the term ‘mar-
gin’ is, often confusingly, used to refer to 1) output mar-
gins (Bartlett, Foster, and Telgarsky 2017), 2) input mar-
gins (Sokolié et al. 2017), and 3) hidden margins (Jiang et al.
2018), interchangeably. Here (1) is a measure of the differ-
ence in class output values, while (2) or (3) is concerned with
measuring the distance from a sample to its nearest decision
boundary in either input or hidden representation space, re-
spectively. We limit our focus to input and hidden margins.

While margins measured at the hidden representations of
deep neural classifiers have been shown to be predictive of a
model’s generalization, this link has not been established for
input space margins. We show that, in several circumstances,
the classical definition of input margin does not predict gen-
eralization, but a direction-constrained version of this metric
does: a quantity we refer to as constrained margins. By mea-
suring margins in directions of ‘high utility’, that is, direc-
tions that are expected to be more useful to the classification
task, we are able to better capture the generalization ability
of a trained DNN.

We make several contributions:

1. Demonstrate the first link between large input margins
and generalisation performance, by developing a new
input margin-based complexity measure that achieves
highly competitive performance on the PGDL bench-
mark and outperforms several contemporary complexity
measures.

Show that margins do not necessarily need to be mea-
sured at multiple hidden layers to be predictive of gener-
alization, as suggested in (Jiang et al. 2018).

. Provide a new perspective on margin analysis and how
it applies to DNNss, that of finding high utility directions
along which to measure the distance to the boundary in-
stead of focusing on finding the shortest distance.
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2 Background

This section provides an overview of existing work on 1)
measuring classification margins and their relationship to
generalization, and 2) the PGDL challenge and related com-
plexity measures.

2.1 Classification Margins and Generalization

Considerable prior work exists on understanding classifica-
tion margins in machine learning models (Boser, Guyon,
and Vapnik 1992; Weinberger and Saul 2009). The relation
between margin and generalization is well understood for
classifiers such as support vector machines (SVMs) under
statistical learning theory (Vapnik 1999). However, the non-
linearity and high dimensionality of DNN decision bound-
aries complicate such analyses, and precisely measuring
these margins is considered intractable (Yousefzadeh and
O’Leary 2020; Yang et al. 2020).

A popular technique (which we revisit in this work) is
to approximate the classification margin using a first-order
Taylor approximation. Elsayed et al. (2018) use this method
in both the input and hidden space, and then formulate a
loss function that maximizes these margins. However, while
this results in a measurable increase in margin, it does not
result in any significant gains in test accuracy. In a semi-
nal paper, Jiang et al. (2018) utilize the same approxima-
tion in order to predict the generalization gap of a set of
trained networks by training a linear regression model on a
summary of their hidden margin distributions. Natekar and
Sharma (2020) demonstrate that this measure can be further
improved if margins are measured using the representations
of Mixup (Zhang et al. 2018) or augmented training samples.
Similarly, Chuang et al. (2021) introduce novel generaliza-
tion bounds and slightly improve on this metric by propos-
ing an alternative cluster-aware normalization scheme (k-
variance (Solomon, Greenewald, and Nagaraja 2022)).

Input margins are generally considered from the point of
view of adversarial robustness, and many techniques have
been developed to generate adversarial samples on or near
the decision boundary. Examples include: the Carlini and
Wagner Attack (Carlini and Wagner 2017), Projected Gra-
dient Descent (Madry et al. 2018), and DeepFool (Moosavi-
Dezfooli, Fawzi, and Frossard 2016). Some of these stud-
ies have investigated the link between adversarial robustness
and generalization, often concluding that an inherent trade-
off exists (Tsipras et al. 2019; Su et al. 2018; Raghunathan
et al. 2019). However, this conclusion and its intricacies are
still being debated (Stutz, Hein, and Schiele 2019).

Yousefzadeh and O’Leary (2020) formulate finding a
point on the decision boundary as a constrained minimiza-
tion problem, which is solved using an off-the-shelf op-
timization method. While this method is more precise, it
comes at a great computational cost. To alleviate this, di-
mensionality reduction techniques are used in the case of
image data to reduce the number of input features.

In this work we propose a modification to the Taylor ap-
proximation of the input classification margin (and its itera-
tive alternative DeepFool) in order for it to be more predic-
tive of generalization.
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2.2 Predicting Generalization in Deep Learning

The PGDL challenge was a competition hosted at NeurIPS
2020 (Jiang et al. 2020). The objective of this challenge was
to design a complexity measure to rank models according
to their generalization gap. More precisely, participants only
had access to a set of trained models, along with their pa-
rameters and training data, and were tasked with ranking the
models within each set according to their generalization gap.
Each solution was then evaluated on how well its ranking
aligns with the true ranking on a held-out set of tasks, which
was unknown to the competitors.

In total, there are 550 trained models across 8 different
tasks and 6 different image classification datasets, where
each task refers to a set of models trained on the same dataset
with varying hyperparameters and resulting test accuracy.
Tasks 1, 2, 4, and 5 were available for prototyping and tun-
ing complexity measures, while Task 6 to 9 were used as
a held-out set. There is no Task 3. The final average score
on the test set was the only metric used to rank the com-
petitors. Conditional mutual information (CMI) is used as
evaluation metric, which measures the conditional mutual
information between the complexity measure and true gen-
eralization gap, given that a set of hyperparameter types are
observed. This is done in order to prevent spurious correla-
tions resulting from specific hyperparameters, a step towards
establishing whether a causal relationship exists.

All models were trained to approximately the same, near
zero, training loss. Note that this implies that ranking models
according to either their generalization gap or test accuracy
is essentially equivalent.

Several interesting solutions were developed during the
challenge: In addition to the modification of hidden mar-
gins mentioned earlier, the winning team (Natekar and
Sharma 2020) developed several prediction methods based
on the internal representations of each model. Their best-
performing method measures clustering characteristics of
hidden layers (using Davies-Bouldin Index (Davies and
Bouldin 1979)), and combines this with the model’s accu-
racy on Mixup-augmented training samples. In a similar
fashion, the runners-up based their metrics on measuring
the robustness of trained networks to augmentations of their
training data (Kashyap, Subramanyam et al. 2021).

After the competition’s completion, the dataset was made
publicly available, inspiring further research: Schiff et
al. (2021) generated perturbation response curves that ‘cap-
ture the accuracy change of a given network as a function
of varying levels of training sample perturbation’ and de-
velop statistical measures from these curves. They produced
eleven complexity measures with different types of sample
Mixup and statistical metrics.

While several of the methods rely on using synthetic sam-
ples (e.g. Mixup), Zhang et al. (2022) take this to the ex-
treme and generate an artificial test set using pretrained gen-
erative adversarial networks (GANs). They demonstrate that
simply measuring the classification accuracy on this syn-
thetic test set is very predictive of a model’s generalization.
While practically useful, this method does not make a link
between any characteristics of the model and its generaliza-
tion ability.
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3 Theoretical Approach

This section provides a theoretical overview of the proposed
complexity measure. We first explain our intuition surround-
ing classification margins, before mathematically formulat-
ing constrained margins.

3.1 Intuition

A correctly classified training sample with a large margin
can have more varied feature values, potentially due to noise,
and still be correctly classified. However, as we will show,
input margins are not generally predictive of generalization.
This observation is supported by literature regarding adver-
sarial robustness, where it has been shown that adversarial
retraining (which increases input margins) can negatively af-
fect generalization (Tsipras et al. 2019; Raghunathan et al.
2019).

Stutz et al. (2019) provide a plausible reason for this
counter-intuitive observation: Through the use of Variational
Autoencoder GANSs they show that the majority of adversar-
ial samples leave the class-specific data manifold of the sam-
ples’ class. They offer the intuitive example of black border
pixels in the case of MNIST images, which are zero for all
training samples. Samples found on the decision boundary
which manipulate these border pixels have a zero probabil-
ity under the data distribution, and they do not lie on the
underlying manifold.

We leverage this intuition and argue that any input margin
measure that relates to generalization should measure dis-
tances along directions that do not rely on spurious features
in the input space. The intuition is that, while nearby deci-
sion boundaries exist for virtually any given training sam-
ple, these nearby decision boundaries are likely in directions
which are not inherently useful for test set classification, i.e.
they diverge from the underlying data manifold.

More specifically, we argue that margins should be mea-
sured in directions of ‘high utility’, that is, directions that
are expected to be useful for characterising a given dataset,
while ignoring those of lower utility. In our case, we approx-
imate these directions by defining high utility directions as
directions which explain a large amount of variance in the
data. We extract these using Principal Component Analy-
sis (PCA). While typically used as a dimensionality reduc-
tion technique, PCA can be interpreted as learning a low-
dimensional manifold (Hinton, Dayan, and Revow 1997), al-
beit a locally linear one. In this way, the PCA manifold iden-
tifies subspaces that are thought to contain the variables that
are truly relevant to the underlying data distribution, which
the out-of-sample data is assumed to also be generated from.
In the following section, we formalize such a measure.

3.2 Constrained Margins

We first formulate the classical definition of an input mar-
gin (Yousefzadeh and O’Leary 2020), before adapting it for
our purpose.

Let f : X — RV denote a classification model with
a set of output classes N = {1...n}, and fj(x) the output
value of the model for input sample x and output class k.
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For a correctly classified input sample x, the goal is to
find the closest point X on the decision boundary between
the true class ¢ (where i = arg max,(fx(x))) and another
class j # i. Formally, X is found by solving the constrained
minimization problem:

argmin ||x — X||2
%€([L,U]

(D

with L and U the lower and upper bounds of the search
space, respectively, such that

fi®) = f;(%) 2
for ¢ and j as above.

The margin is then given by the Euclidean distance be-
tween the input sample, x, and its corresponding sample
on the decision boundary, X. We now adapt this defini-
tion in order to define a ‘constrained margin’. Let the set
P = {p1,p2,...,Pm} denote the first m principal compo-
nent vectors of the training dataset, that is, the m orthogonal
principal components which explain the most variance. Such
principal components are straightforward to extract by cal-
culating the eigenvectors of the empirical covariance matrix
of the normalized training data, where the data is normalized
the same as prior to model training.

We now restrict X to any point consisting of the original
sample x plus a linear combination of these (unit length)
principal component vectors, that is, for some coefficient
vector B = [Bla B2, - Bm}

m
iéXJrZﬂipi

i=1

3)

Substituting X into the original objective function of Equa-
tion (1), the new objective becomes

m
min || > Bipill2
i=1

such that Equation (2) is approximated within a certain tol-
erance and X € [L,U]. For this definition of margin, the
search space is constrained to a lower-dimensional subspace
spanned by the principal components with point x as ori-
gin, and the optimization problem then simplifies to finding
a point on the decision boundary within this subspace. By
doing so, we ensure that boundary samples that rely on spu-
rious features (that is, in directions of low utility) are not
considered viable solutions to Equation (1). Note that this
formulation does not take any class labels into account for
identifying high utility directions.

While it is possible to solve the constrained minimization
problem using a constrained optimizer (Yousefzadeh and
O’Leary 2020), we approximate the solution by adapting the
previously mentioned first-order Taylor approximation (El-
sayed et al. 2018; Huang et al. 2015), which greatly reduces
the computational cost. The Taylor approximation of the
constrained margin d(x) for a sample x between classes ¢
and j when using an L2 norm is given by

_ fi(x) — f;(x)
| [ Vi fi(x) = Vi f5(x) | P72

4)

d(x)

&)
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where P is the m x n matrix formed by the top m principal
components with n input features.

The derivation of Equation (5) is included in the supple-
mentary material. |

The value d(x) only approximates the margin and the as-
sociated discrepancy in Equation (2) can be large. In order to
reduce this to within a reasonable tolerance, we apply Equa-
tion (5) in an iterative manner, using a modification of the
well-known DeepFool algorithm (Moosavi-Dezfooli, Fawzi,
and Frossard 2016). DeepFool was defined in the context
of generating adversarial samples with the smallest possi-
ble perturbation, which is in effect very similar to finding
the nearest point on the decision boundary with the smallest
violation of Equation (2).

To extract the DeepFool constrained margin for some
sample x, the Taylor approximation of the margin in the
lower-dimensional principal component subspace is calcu-
lated between the true class ¢ (assuming that the sample is
correctly classified) and all other classes 7, individually. The
smallest lower-dimensional subspace perturbation is then
transformed back to the original feature space. This pertur-
bation is then scaled by a set learning rate and added to the
original sample. This process is repeated until the distance
changes less than a given tolerance compared to the previ-
ous iteration. Note that the dimensionality of the sample X
is never reduced — only the search for a perturbation is re-
stricted to the lower-dimensional principal component sub-
space. The exact process is described in Algorithm 1.

Note that we also clip X according to the minimum and
maximum feature values of the dataset after each step (line x
in Algorithm 1), which ensures that the point stays within the
bound constraints expressed in Equation (1). While this is
likely superfluous when generating normal adversarial sam-
ples — they are generally very close to the original x — it is
a consideration when the search space is constrained, with
clipped margins performing better. (See the supplementary
material for an ablation analysis of clipping.)

4 Results

We investigate the extent to which constrained margins are
predictive of generalization by comparing the new method
with current alternatives. In Section 4.1 we describe our ex-
perimental setup. Following this, we do a careful compar-
ison between our metric and existing techniques based on
standard input and hidden margins (Section 4.2) and, finally,
we compare with other complexity measures (Section 4.3).

4.1 Experimental Setup

For all margin-based measures our indicator of generaliza-
tion (complexity measure) is the mean margin over 5 000
randomly selected training samples, or alternatively the
maximum number available for tasks with less than 5 000
training samples. Only correctly classified samples are con-
sidered, and the same training samples are used for all mod-
els of the same task. To compare constrained margins to
be at

'The  supplementary  material found

https://arxiv.org/abs/2308.15466

can
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Algorithm 1: DeepFool constrained margin calculation

Input: Sample x, classifier f, principal components P
Parameter: Stopping tolerance , Learning rate -y, Maxi-
mum iterations max
Output: Distance dp.s¢, Equality violation vp,¢
l: X < x,i < argmax fi(x),d < 0, Upest  00,¢+ 0
2: while ¢ < max do

3: forj #ido
4. 0; < f}(f() — fj ()A()
5 w; « [Vfi(%) — Vf;®)PT
6. end for
70l < argmin;, %
8 r+ ZLswP
R w3
90 X< X+r
10: X% < clip (%)
11: j « argmax,; fr(X)
12 v (%) - (%))
13: d+ ||x—%||2
14:  if v > vpest OF |d — dpest| < 6 then
15: return dpeg;, Upest
16:  else
17: Vpest < U
18: dbest «—d
19: c+—c+1
20:  end if

21: end while
22: return dpess, Upest

input and hidden margins we rank the model test accura-
cies according to the resulting indicator and calculate the
Kendall’s rank correlation (Kendall 1938), as used in (Jiang
etal. 2019). This allows for a more interpretable comparison
than CMI. (As CMI is used throughout the PGDL challenge,
we also include the resulting CMI scores in the supplemen-
tary material.) To compare constrained margins to published
results of other complexity measures, we measure CMI be-
tween the complexity measure and generalization gap and
contrast this with the reported scores of other methods.

As a baseline we calculate the standard input margins
(‘Input’) using the first order Taylor approximation (Equa-
tion 5 without the subspace transformation), as we find that
it achieves better results than the iterative DeepFool variant
and is therefore the stronger baseline; see the supplementary
material for a full comparison.

Hidden margins (‘Hidden’) are measured by considering
the output (post activation function) of some hidden layer,
and then calculating the margin at this representation. This
raises the question of which hidden layers to consider for the
final complexity measure. Jiang et al. (2018) consider three
equally spaced layers, Natekar and Sharma (2020) consider
all layers, and Chuang et al. (2021) consider either the first or
last layer only. We calculate the mean hidden margin (using
the Taylor approximation) for all these variations and find
that for the tasks studied here, using the first layer performs
best, while the mean over all layers comes in second. We
include both results here (a full analysis is included in the



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Task Architecture  Dataset Constrained  Input  Hidden (Ist) Hidden (all)
1 VGG CIFARI10 0.8049 0.0265 0.5794 0.7825
2 NiN SVHN 0.8686 0.6841 0.7037 0.8281
4 FCN CINIC10 0.6633 0.6251 0.7958 0.2707
5 FCN CINIC10 0.2282 0.3571 0.5427 0.1329
6 NiN OxFlowers 0.8017 -0.1351 0.4427 0.2839
7 NiN OxPets 0.5133 0.3215 0.3623 0.3925
8 VGG FMNIST 0.6004 -0.1233 -0.0656 0.1859
9 NiN CIFARIO 08145  0.573 07097 0.4556
(augmented)
Average 0.6617 0.2392 0.5088 0.4165

Table 1: Kendall’s rank correlation between mean margin and test accuracy for constrained, standard input, and hidden margins
using the first or all layer(s). Models in Task 4 are trained with batch normalization while models in Task 5 are trained without.

There is no Task 3.
Task Natekar and Sharma Chuang et al. Schiff et al. Ours
kV- kV-GN- PCA Constrained
DBIFLWM MMt AMf Margin 1stf  Margin Istf Gi&Mi Marginf
1 00.00 01.11 05.73 05.34 17.95 00.04 39.49
2 32.05 4733  44.60 26.78 44.57 38.08 51.98
4 31.79 4322 47.22 37.00 30.61 33.76 21.44
5 15.92 34.57 22.82 16.93 16.02 20.33 04.93
6 43.99 11.46 08.67 06.26 04.48 40.06 30.83
7 12.59 2198 1197 02.07 03.92 13.19 13.26
8 09.24 01.48 01.28 01.82 00.61 10.30 13.48
9 25.86 20.78 15.25 15.75 21.20 33.16 51.46
Testset 590 1393 09.29 06.48 07.55 24.18 27.26
average

Table 2: Conditional Mutual Information (CMI) scores for several complexity measures on the PGDL dataset. Acronyms:
D BI=Davies Bouldin Index, LW M=Label-wise Mixup, M M=Mixup Margins, AM=Augmented Margins, kV =k-Variance,
G N=Gradient Normalized, Gi=Gini coefficient, Mi=Mixup. Test set average is the average over Tasks 6 to 9. There is no Task

3. tIndicates a margin-based measure.

supplementary material, including results using DeepFool).
We normalize each layer’s margin distribution by following
(Jiang et al. 2018), and divide each margin by the total fea-
ture variance at that layer.

Our constrained margin complexity measure (‘Con-
strained’) is obtained using Algorithm 1, although in prac-
tice we implement this in a batched manner. Empirically, we
find that the technique is not very sensitive with regard to
the selection of hyperparameters and a single learning rate
(v = 0.25) and max iterations (max = 100) is used across
all experiments. Furthermore, we use the same distance tol-
erance (6 = 0.01) for all tasks, except for Tasks 4 and 5,
which require a smaller tolerance (6 = 0.001). This is be-
cause the features for this dataset (CINIC10 for both Tasks
4 and 5) are normalized to be in the range [0, 1], while the
features are z-normalized for the datasets of the other tasks.
We find that Algorithm 1 generally terminates very quickly
after only 2 to 10 steps, depending on the size of the margin.
The number of principal components for each dataset is se-
lected by plotting the explained variance (of the train data)
per principal component in decreasing order on a logarith-
mic scale and applying the elbow method using the Kneedle
algorithm from Satopaa et al. (2011). This results in a very
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low-dimensional search space, ranging from 3 to 8 principal
components for the seven unique datasets considered.

In order to prevent biasing our metric to the PGDL test
set (Tasks 6 to 9) we did not perform any tuning or devel-
opment of the complexity measure using these tasks, nor do
we tune any hyperparameters per task. The choice of princi-
pal component selection algorithm was done after a careful
analysis of Tasks 1 to 5 only, see additional details in sup-
plementary material. In terms of computational expense, we
find that calculating the entire constrained margin distribu-
tion only takes 1 to 2 minutes per model on a single Nvidia
A30.

4.2 Margin Complexity Measures

In Table 1 we show the Kendall’s rank correlation obtained
when ranking models according to constrained margin, stan-
dard input margins, and hidden margins.

It can be observed that standard input margins are not pre-
dictive of generalization for most tasks and, in fact, show
a negative correlation for some. This unstable behaviour is
supported by ongoing work surrounding adversarial robust-
ness and generalization (Tsipras et al. 2019; Su et al. 2018;
Raghunathan et al. 2019). Furthermore, we observe a very



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

large performance gap between constrained and standard in-
put margins, and an increase from 0.24 to 0.66 average rank
correlation is observed by constraining the margin search.
This strongly supports our initial intuitions.

In the case of hidden margins, performance is more com-
petitive, however, constrained margins still outperform hid-
den margins on 6 out of 8 tasks. One also observes that the
selection of hidden layers can have a very large effect, and
the discrepancy between the two hidden-layer selections is
significant. Given that our constrained margin measurement
is limited to the input space, there are several advantages: 1)
no normalization is required, as all models share the same
input space, and 2) the method is more robust when compar-
ing models with varying topology, as no specific layers need
to be selected.

4.3 Other Complexity Measures

To further assess the predictive power of constrained mar-
gins, we compare our method to the reported CMI scores
of several other complexity measures. We compare against
three solutions from the winning team (Natekar and Sharma
2020), as well as the best solutions from two more recent
works (Chuang et al. 2021; Schiff et al. 2021), where that
of Schiff et al. (2021) has the highest average test set per-
formance we are aware of. We do not compare against pre-
trained GANs (Zhang et al. 2022). The original naming of
each method is kept. Of particular relevance are the M M
and AM columns, which are hidden margins applied to
Mixup and Augmented samples, as well as kV-Margin and
kV-GN-Margin which are output and hidden margins with
k-Variance normalization, respectively. The results of this
comparison are shown in Table 2.

One observes that constrained margins achieve highly
competitive scores, and in fact, outperform all other mea-
sures on 4 out of 8 tasks. It is also important to note that
the MM and AM columns show that hidden margins can be
improved in some cases if they are measured using the rep-
resentations of Mixup or augmented training samples. That
said, these methods still underperform on average in com-
parison to constrained input margins, which do not rely on
any form of data augmentation.

5 A Closer Look

In this section we do a further analysis of constrained mar-
gins. In Section 5.1 we investigate how the performance of
constrained margins changes when lower utility subspaces
are considered, whereafter we discuss limitations of the
method in Section 5.2.

5.1 High to Low Utility

We examine how high utility directions compare to those of
lower utility when calculating constrained margins. This al-
lows us to further test our approach, as one would expect that
margins measured using the lower-ranked principal compo-
nents should be less predictive of a model’s performance.
We calculate the mean constrained margin using select sub-
sets of 10 contiguous principal components in descending
order of explained variance. For example, we calculate the
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Figure 1: Comparison of predictive performance (Kendall’s
rank correlation) of high to low utility directions using sub-
spaces spanned by 10 principal components for Task 1 (blue)
and 6 (red). The x-axis indicates the first component in each
set of principal components.

constrained margins using components 1 to 10, then 100 to
109, etc. This allows us to calculate the distance to the deci-
sion boundary using 10 dimensional subspaces of decreasing
utility. We, once again, make use of 5 000 training samples.
For this analysis, we select two tasks where there is a large
difference between the performance of constrained margins
and standard input margins: Tasks 1 and 6. Figure 1 shows
the resulting Kendall’s rank correlation for each subset of
principal components indexed by the first component in each
set (principal component index).

As expected, the first principal components lead to mar-
gins that are more predictive of generalization. We see a
gradual decrease in predictive power when considering later
principal components. For both tasks, we observe that they
reach negative correlations when considering the later prin-
cipal component subspaces. This supports the idea that uti-
lizing the directions of highest utility is a necessary aspect
of input margin measurements. After the point shown here
(index 1 000), we find that the mean margin increases as
DeepFool struggles to find samples on the decision bound-
ary within the bound constraints. Due to this, it is difficult
to draw any conclusions from an investigation of the lower-
ranked principal components.

5.2 Limitations

It has been demonstrated that our proposed metric performs
well and aligns with our initial intuition. However, there are
also certain limitations that require explanation. Empirically
we observe that, for tasks where constrained margins per-
form well, they do so across most hyperparameter variations,
with the exception of depth. This is illustrated in Figure 2
(left), which shows the mean constrained margin versus test
accuracy for Task 1. We observe that sets of networks with
two and six convolutional layers, respectively, each exhibit
a separate relationship between margin and test accuracy.
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Figure 2: Mean constrained margin versus test accuracy for PGDL Task 1 (left) and 6 (right). Left: Models with 2 (green circle)
and 6 (blue star) convolutional layers. Right: Models with 6 (blue star), 9 (red square), and 12 (black diamond) convolutional

layers.

This discrepancy is not always as strongly present: for Task
6 all three depth configurations show a more similar rela-
tionship, as observed on the right of Figure 2, although the
discrepancy is still present. The same trend holds several
tasks (Tasks 1, 2, 4, 6, 9). It appears that shallower networks
model the input space in a distinctly different fashion than
their deeper counterparts.

For tasks such as 5 and 7, where constrained margins per-
form more poorly, there is no single hyperparameter that ap-
pears to be the culprit. We do note that the resulting scatter
plots of margin versus test accuracy never show points in
the lower right (large margin but low generalization) or up-
per left (small margin but high generalization) quadrants. It
is therefore possible that a larger constrained margin is al-
ways beneficial to a model’s generalization, even though it
is not always fully descriptive of its performance. Finally,
it also possible to construct a hypothetical dataset such that
the ideal decision boundary is not in the input space direc-
tions of highest variance, i.e. where high variance does not
correspond to high utility. However, as evidenced by our re-
sults, this scenario does not present itself in natural image
datasets. See the supplementary material for a fuller descrip-
tion of such a scenario.

6 Conclusion

We have shown that constraining input margins to high
utility subspaces can significantly improve their predictive
power i.t.o generalization. Specifically, we have used the
principal components of the data as a proxy for identifying
these subspaces, which can be considered a rough approxi-
mation of the underlying data manifold.

There are several implications to this work. First, we have
shown that it is essential that the data manifold be taken
into account to relate input margins to generalization. This is
an important consideration for probing generalization from
the decision boundary perspective. Secondly, several au-
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thors have developed techniques to maximize margins dur-
ing training (Elsayed et al. 2018; Xu et al. 2023); however,
these have not resulted in improved generalization. We be-
lieve that constrained margin has the potential of being a
powerful regularizer, in line with how other complexity mea-
sures have been used in the past.

In terms of future work, we know that constraining the
search to a warped subspace and using Euclidean distance
to measure closeness is equivalent to defining a new dis-
tance metric on the original space. We are therefore, in ef-
fect, seeking a relevant distance metric to measure the close-
ness of the decision boundary. Understanding the require-
ments for such a metric remains an open question. Un-
fortunately, current approximations and methods for find-
ing points on the decision boundary are largely confined to
L, metrics. The positive results achieved with the current
PCA-and-Euclidean-based approach provide strong motiva-
tion that this is a useful avenue to pursue.

In conclusion, we propose constraining input margins to
make them more predictive of generalization in DNNss. It has
been demonstrated that this greatly increases the predictive
power of input margins, and also outperforms hidden mar-
gins and several other contemporary methods on the PGDL
tasks. This method has the benefits of requiring no per-layer
normalization, no arbitrary selection of hidden layers, and
does not rely on any form of surrogate test set (e.g. data aug-
mentation or synthetic samples).
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