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Abstract

The performance of deep learning models often degrades
rapidly when faced with imbalanced data characterized by
a long-tailed distribution. Researchers have found that the
fully connected layer trained by cross-entropy loss has large
weight-norms for classes with many samples, but not for
classes with few samples. How to address the data imbalance
problem with both the encoder and the classifier seems an
under-researched problem. In this paper, we propose an in-
verse weight-balancing (IWB) approach to guide model train-
ing and alleviate the data imbalance problem in two stages. In
the first stage, an encoder and classifier (the fully connected
layer) are trained using conventional cross-entropy loss. In
the second stage, with a fixed encoder, the classifier is fine-
tuned through an adaptive distribution for IWB in the deci-
sion space. Unlike existing inverse image frequency that im-
plements a multiplicative margin adjustment transformation
in the classification layer, our approach can be interpreted as
an adaptive distribution alignment strategy using not only the
class-wise number distribution but also the sample-wise diffi-
culty distribution in both encoder and classifier. Experiments
show that our method can greatly improve performance on
imbalanced datasets such as CIFAR100-LT with different im-
balance factors, ImageNet-LT, and iNaturelists2018.

Introduction
A great deal of progress has been made in image recog-
nition with the development of deep learning (Krizhevsky,
Sutskever, and Hinton 2017; He et al. 2016), but all of
these are based on relatively perfect datasets. In the presence
of imbalanced datasets, deep convolutional neural networks
will perform poorly. Imbalanced data in the real world is a
common problem, particularly in the medical field. We may
not be able to obtain enough relevant data for some rare dis-
eases, resulting in a data imbalance between head-class and
tail-class. Thus, solving the data imbalance problem, also
known as deep long-tailed learning, has great practical sig-
nificance (Zhang et al. 2021c).

In traditional classification methods, deep convolutional
neural networks tend to focus on head-class. They are more
accurate because they contribute more gradients than other
classes. Tail-class accuracy is often poor because of the
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Figure 1: Inverse weight-balancing (IWB) for long-tailed
learning (note the opposite trends in naive and our classifier
weight distribution). Previous studies balance the weight-
norm classifier to cope with long-tailed datasets, ignoring
the imbalance problem in the encoder. We use IWB-based
adaptive distribution alignment to reverse the weight-norms
distribution and compensate for the imbalance in both the
encoder and the classifier.

small number of samples and too little attention from the
network. Oversampling tail-class and downsampling head-
class is the simplest way to solve the long-tail problem.
Oversampling (Joloudari et al. 2023; Han, Wang, and Mao
2005; Feng, Zhong, and Huang 2021) generates new sam-
ples from existing samples. Having few tail samples reduces
the diversity of generated samples, so the overfitting prob-
lem is easily aggravated and an effective generation method
cannot be determined. Furthermore, this method of gen-
erating additional data introduces additional costs in both
the generation and training phases. When downsampling
(Drummond, Holte et al. 2003; Estabrooks, Jo, and Japkow-
icz 2004) is performed, there is often an issue of information
loss during model training.

In this paper, we propose a new method called inverse
weight-balancing (IWB) to address the problem of imbal-
anced data. In previous studies (Kang et al. 2019; Alsham-
mari et al. 2022), cross-entropy loss classifiers are found to
be imbalanced, as the weight-norms for the head-class are
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higher than those of the tail-class (see Figure 1). As shown
in (Zhang et al. 2021c), it is often more difficult to clas-
sify samples in the tail-class than those in the head-class.
To solve this unfairness issue, existing studies (Alshammari
et al. 2022; Kang et al. 2019) increase the weight-norms re-
lated to the tail-class and decrease the weight norms-related
to the head-class simultaneously. The hope is to balance the
classifier’s weight norms using the two-stage method (Al-
shammari et al. 2022; Kang et al. 2019), while overlooking
the imbalance in the encoder. As shown in Figure 2, as the
degree of imbalance in the dataset intensifies, the features of
tail-class become more dispersed. It is desirable to compen-
sate for the imbalance in the encoder by ”overbalancing” the
classifier. Specifically, we propose a learnable target inverse
distribution to inverse the distribution of weight-norms, as
shown in Figure 1.

To better explain the mechanism of IWB, we resort to the
concept of decision space. The features after the encoder
are distributed in the same latent space L with a fixed size.
The classifier parameters divide this latent space into C sub-
spaces (C is the number of classes). In the case of long-
tailed distribution, a larger weight-norms implies a larger
decision space, which means that the tail-class occupies less
space. This is disadvantageous to the tail-class, leading to
poor classification performance. Note that a large decision
space is not needed for the head-class because the features of
the head-class are often more concentrated than those of the
tail-class, as shown in Figure 2. An important new insight
brought by this work is that a more effective use of decision
space should make the decision boundary closer to the head-
class. Due to the imbalance of the dataset, the features of
the tail-class are more scattered and require more space than
the head-class. To achieve this objective, IWB increases the
weight-norms associated with the tail-class and decreases
the weight-norms associated with the head-class. By invers-
ing weight-norms distribution of classifier, we compensate
for the imbalance in the encoder. Extensive experimental
results have shown that our method performs the best on
the CIFAR100-LT dataset. It is simple and effective com-
pared to other methods such as knowledge distillation (Iscen
et al. 2021; Li, Wang, and Wu 2021; Li et al. 2022; Hinton,
Vinyals, and Dean 2015), contrastive learning (Yang et al.
2022; Cui et al. 2021; Zhu et al. 2022), model ensemble
(Wang et al. 2020; Cai, Wang, and Hwang 2021; Zhang et al.
2021b) because our method does not require additional data
and model resources.

Our main contributions are summarized as follows:
(1) We propose a class-wise and sample-wise distribution

to guide network training. Our method can greatly improve
performance on imbalanced datasets.

(2) We introduce a new loss function that does not re-
quire additional data or model resources. Tail-class accuracy
is greatly improved by this simple and effective method.

(3) A target distribution is constructed with two heuristic
coefficients, and experiments indicate that both coefficients
improve model performance.

(4) The two-stage learning strategy in this work can be
combined with other representation learning methods for
greater accuracy.

Related Work

Long-tailed identification: Long-tailed recognition is a
common problem in computer vision and pattern recogni-
tion. Because of the large number of samples in head-class,
they dominate the training of the network. The most direct
solution is oversampling (Joloudari et al. 2023; Han, Wang,
and Mao 2005; Feng, Zhong, and Huang 2021) and down-
sampling (Drummond, Holte et al. 2003; Estabrooks, Jo, and
Japkowicz 2004). Oversampling is often accompanied by
the problem of overfitting and has higher requirements on
the method of oversampling. Undersampling is associated
with the problem of information loss. In addition, some re-
searchers use the method of contrastive learning, and others
use the method of knowledge distillation.

Logits adjustment: By adjusting the logits (Alshammari
et al. 2022; Zhao et al. 2022; Kang et al. 2019; Cao et al.
2019; Menon et al. 2020; Ren et al. 2020; Wang et al. 2021;
Alexandridis et al. 2022) of the network, the tail-class score
can be adaptively improved. They compensate for the log-
its of tail-class based on Bayesian theory. Specifically, they
use p(i) to compensate for logits, where p(i) represents the
probability of the i-th class appearing in the dataset. This
method can effectively improve the accuracy of the tail-
class, but it is often accompanied by a decrease in the ac-
curacy of the head-class. Our method can maintain the accu-
racy of the head-class as much as possible while improving
the accuracy of the tail-class. In this paper, we increase the
weight norms in the classifier to the tail-class, which can
also play a role in compensating for the logits of the tail-
class. Our method indirectly adjusts logits by adjusting the
parameters of the classifier, which are more in-depth than
them. The experimental results also show that the effect of
adjusting classifier parameters directly is better than that of
compensating by Bayes’ theorem. The latest inverse image
frequency (IIF) (Alexandridis et al. 2022) is a multiplicative
margin adjustment transformation of the logits in the classi-
fication layer of CNN.

Difficult sample mining: Difficult sample mining is an
important tool to long-tailed recognition (Zhao et al. 2022;
Gal and Ghahramani 2016; Peng, Islam, and Tu 2022; Agar-
wal, D’souza, and Hooker 2022). In the head-class, there
may be samples that are difficult to classify, and in the tail-
class, there may also be samples that are easy to classify
(Zhao et al. 2022). Therefore, more detailed adjustments
can be made to the model training from the perspective
of samples. In previous studies, they used cosine similarity
(Zhao et al. 2022; Wang and Yan 2022), gradient (Agarwal,
D’souza, and Hooker 2022), uncertainty (Gal and Ghahra-
mani 2016; Peng, Islam, and Tu 2022), margin gap (Lin
and Bradic 2021) to measure the difficulty of sample learn-
ing. For simplicity, this paper uses cosine similarity to mea-
sure the learning difficulty of samples. Unlike previous work
(Zhao et al. 2022), this paper not only considers the cosine
similarity between the sample and its corresponding cate-
gory center, but also considers the similarity between the
sample and other category centers. We believe that informa-
tion from other categories should not be discarded, which
has been proven useful by experiments.
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Figure 2: t-SNE (Laurens and Hinton 2008) feature visualization on CIFAR100-LT dataset equipped with ResNet32. Imbalance
in the encoder was overlooked in other literature. It can be seen that as the degree of imbalance increases, the degree of
imbalance in the encoder gradually intensifies, mainly reflected in the more dispersed tail-class features and almost unchanged
aggregation of head-class features.

Proposed Method
Preliminary and Motivation
Deep long-tail learning faces a serious imbalance problem
in the encoder and classifier. We aim to obtain a balanced
network f(x,Θ) with a collection of parameters Θ = θij ,
where i represents the i-th layer of the network and j rep-
resents the j-th filter. Let the real label of the input data be
y, and the output label of the network be ŷ, ŷ = f(x,Θ).
The measurement prediction error through the loss func-
tion l(y, ŷ), where l is a common classification loss such as
the cross-entropy loss and the class-balance loss (Cui et al.
2019).

In this paper, for each sample x, we assume that the en-
coder output features x̂ belong to the latent space L, and the
corresponding category of each sample is yi belonging to
C = {1, 2, ..., C}. |Wi| is the i-th vector norm in the fully
connected layer, where i ∈ C. For category yi, we define its
decision boundary as,

Wix̂+ bi = Wj x̂+ bj ,

that is,
(Wi −Wj)x̂+ (bi − bj) = 0, (1)

where i, j ∈ C, i ̸= j, and x̂ represent the sample feature
output by the encoder, bi represents the bias corresponding
to class yi in the classifier. When the feature of the network
output falls on the decision boundary. The network cannot
distinguish whether the sample belongs to yi or yj . When
the left side of Eq.1 is greater than 0, we believe that the
sample belongs to the category yi.

Assuming that yi belongs to the head-class, yj belongs
to the tail-class, several studies (Menon et al. 2020; Kang
et al. 2019) have found that |Wi| is often greater than |Wj |,
as shown in Figure 1(naive classifier). However, they did
not explain why this would affect the accuracy of tail-class
recognition. From Eq. (1), it can be seen that |Wi| > |Wj |
means the decision space of class yi’ s is larger than that of
yj’s. Due to the small size of the tail-class decision space and
the scattered tail-class features, more tail-class features will

fall into the head-class decision space, leading to misclassifi-
cation. Therefore, we decide to adjust the weight-norms dis-
tribution of the classifier. Unlike other methods (Kang et al.
2019; Alshammari et al. 2022), we consider the imbalance
issue in the encoder, as shown in Figure 2. Specifically, we
compensate for the imbalance in the encoder by inversing
the weight-norms distribution of the classifier.

Weight-Norms Distribution Construction to
Inversely Balance the Classifier
In this section, we show how to inverse the weight-norms
distribution in the classifier. The weight-norms distribu-
tion of the classifier is made to be close to the class-wise
and sample-wise distribution P . The distribution P is con-
structed as follows:

P = NC ∗HC. (2)
where the two terms (number coefficient NC and hardness
coefficient HC) will be defined next.

Number coefficient NC: Intuitively, NC is prior knowl-
edge about the data distribution. Let N =

∑
i Ni represent

the total number of samples and Ni represent the number
of samples in class i. In the long-tailed problem, the num-
ber of samples is the most important information, so how to
use this information is particularly important. NC is related
to the number of samples Ni of each class in the dataset.
It should be noted that we find that the weight-norms dis-
tribution of the classifier is consistent with the logarithmic
distribution of the number of samples, as shown in Figure 3.
Therefore, we obtain the inverse weight-norms distribution
through −log2(Ni + 1). To ensure that NC > 0, we added
a constant term log2N . Finally, NC can be calculated as
follows:

NC = log2(
N

Ni + 1
). (3)

Similarly to other logits adjustment methods (Zhao et al.
2022; Alexandridis et al. 2022), NC is negatively correlated
with the number of samples. The difference is that our NC
is inverted, as shown in Figure 3.
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Figure 3: Each row (from top to bottom) represents the respective dataset CIFAR100-LT, ImageNet-LT and iNaturalist18, each
column (from left to right) represents the weight norms distribution of classifier, the logarithmic distribution of the number of
images and the distribution of NC. It can be seen that the weight-norms distribution of the naive classifier is highly consistent
with the distribution of the number of samples in each class. The distribution of NC is opposite to the other two distributions.

Hardness coefficient HC: In the head-class, there may
be samples that are difficult to classify, and in the tail-class,
there may also be samples that are easy to classify (Zhao
et al. 2022). However, NC only has relations with the num-
ber of samples in each category, which does not contain in-
formation about the difficulty of classifying a sample. To
properly account for the difficulty with classification, we in-
troduce the other parameter HC - a parameter to measure
the learning difficulty of the sample. It is related to not only
the category of the sample but also the sample itself. The
cosine similarity (Zhao et al. 2022; Wang and Yan 2022)
between the features of the sample and the center of the cat-
egory is used to measure the difficulty of a sample:

g(xi) =
Wj x̂i

|Wj ||x̂i|
, (4)

where Wj is the parameter vector corresponding to j-th class
in the fully connected layer and x̂i is the feature of sample
xi. For each sample, g(xi) is a scalar. Our approach is differ-
ent from this. We believe that information from other cate-
gories should not be discarded during the calculation of HC.
In this way, we can obtain the relative difficulty between dif-
ferent categories. HC with category information can better
guide the classifier to learn, that is,

g(xi) =
Wx̂i

|W ||x̂i|
, (5)

where W is the parameter matrix in the fully connected
layer.

For each sample, g(xi) is a vector of length C, of the
same form as logits. Experimental results have shown that
this method is better than using the scalar cosine similarity
directly. Similarly, HC should be negatively correlated with
cosine similarity, and the higher the similarity, the lower the
value of HC. To avoid negative HC values, we map the in-

terval of [−1, 1] to [0, 1] by

HC =
1− g(xi)

2
. (6)

HC can mine difficult samples in the head-class and sim-
ple samples in the tail-class. The general trend is still that
HC in the tail-class is larger, which is consistent with our in-
tuition. However, this does not mean that it can be replaced
by NC because it is a finer and more adaptive parameter
than NC. At the same time, to smooth out the distribution
P , we introduce the hyperparameter λ ∈ (0, 1), and rewrite
Eq. (2) into

P = λ ∗NC ∗HC. (7)
Experiments show that the hyperparameter λ is necessary
to moderate the parameter distribution of the classifier and
reduce the absolute difference between |Whead| and |Wtail|,
as shown in Figure 5.

KL divergence constraint: To make the distribution |W |
close to the distribution P , we used the KL-divergence con-
straint training procedure as shown below.

DKL(|W |, P ) = softmax(|W |)
[(log(softmax(|W |))− log(softmax(P ))] .

(8)

It is important to note that the KL-divergence measures a
probability distribution, so softmax operations for |W | and
P are required in the above equation. Furthermore, we found
that using MSE-loss to constrain |W | did not work well for
the following two reasons: 1) MSE-loss constraints of the
network are too strict (Kang et al. 2019). It is not conducive
to network learning because we do not require |W | and P to
be equal in value. Instead, it is better to let the network learn
the numerical size by itself. 2) MSE-loss is often used in re-
gression problems, which is not suitable to have two distri-
butions close together. As shown in Table 4, KL-divergence
is better than MSE-loss.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11716



Training Pipeline
In end-to-end training (Cui et al. 2019; Zhang et al. 2017;
Zhao et al. 2022; Menon et al. 2020; Cao et al. 2019), some
methods are used to improve the accuracy of the tail-class,
but the representation of the head-class feature is damaged.
To achieve an improved trade-off between the head-class
and tail-class, we adopted a two-stage training approach
(Zhong et al. 2021; Alexandridis et al. 2022; Alshammari
et al. 2022; Kang et al. 2019) to separate the feature learning
stage from the accuracy improvement stage of the tail-class.
The loss function l(y, ỹ) is used to predict the error between
the real value and the predicted value, and l is the classifica-
tion loss such as the cross-entropy (CE) loss, class-balanced
(CB) loss (Cui et al. 2019). We used the CE-loss training
network in the first stage, as shown below.

Θ∗ = argmin
Θ

F (Θ;D) =
N∑
i=1

l(f(xi; Θ), yi), (9)

where Θ indicates the network parameter and D denotes the
entire dataset.

There is a serious category imbalance in the classifier and
encoder obtained in the first stage, as shown in Figure 1
and Figure 2. Therefore, in the second stage, the encoder
is fixed, CB-loss (Cui et al. 2019) and KL-divergence are
used to fine-tune the classifier. The purpose of using the KL-
divergence is to get |W | close to the inverse distribution P .
The final loss functions are as follows:

Θ∗ = argmin
Θ

F (Θ;D)

=
N∑
i=1

(l(f(xi; Θ), yi) +DKL(|W |, P )).
(10)

Relationship to Existing Works
The idea of weight balancing for long-tailed recognition is
not new. For example, the τ -normalized classifier (Kang
et al. 2019) attempts to eliminate the imbalance of the classi-
fier by adjusting the weight-norms of the classifier through a
so-called τ -normalization procedure. More recently, weight
balancing strategies, consisting of L2-normalization, weight
decay, and MaxNorm, were developed in (Alshammari et al.
2022). The difference between our approach and those ex-
isting works is that we consider the imbalance phenomenon
in the encoded feature. We compensate for the imbalance
in the encoder by ”overbalancing” the classifier. Conven-
tional wisdom such as τ -normalized (Kang et al. 2019) and
WD+MaxNorm(Alshammari et al. 2022) believes that the
weight-norms distribution of the classifier should be bal-
anced. As shown in the curve highlighted in yellow and
green in Figure 4, the distribution of the weight-norms ob-
tained by their method is almost balanced. The change
in weight-norms obtained by WD+MaxNorm(Alshammari
et al. 2022) is small, which means that the decision space is
nearly uniform. This is equivalent to setting λ small in our
method.

Both MaxNorm (Alshammari et al. 2022) and
WD+MaxNorm(Alshammari et al. 2022) did not con-
sider the imbalance in the encoder. We challenge their

Figure 4: Comparison of different weight norms distribution.
The x-axis represents the number of class and the y-axis rep-
resents the value of weight-norms.

view by advocating higher priority for the tail class.
Specifically, we believe that the imbalance in the encoder
is consistent with the classifier due to end-to-end training,
so we compensate for the imbalance in the pre-trained
encoder by inverting the weight-norms distribution of
the classifier. We hope to combine an imbalanced encoder
with an ”overbalanced” classifier to create a more balanced
model. As shown in Fig. 4, the result of compounding the
two distributions highlighted in red and blue leads to a
balanced distribution.

It is also interesting to contrast our approach with the dis-
tribution alignment method (Zhang et al. 2021a). The key
idea behind distribution alignment is to introduce a cali-
bration function that facilitates the adjustment of classifi-
cation scores for each data point. Similarly to ours, distri-
bution alignment (Zhang et al. 2021a) also involves a two-
stage learning to balance the class prior by generalized re-
weighting. Unlike ours, the two-stage imbalance learning in
(Zhang et al. 2021a) adopts a balanced distribution as a ref-
erence for calibration. Note that our method is not a deriva-
tive of the re-weighting approach such as (Cui et al. 2019)
but a combination of imbalanced encoder and overbalanced
classifier during the second-stage training. The outstanding
performance of this work is due to the inverse distribution
which simultaneously considers both the imbalance and the
difficulty of the different categories and samples (i.e., re-
weighting + re-margining).

Experimental Results

We conducted a number of experiments to demonstrate the
effectiveness of our method. The model was first evaluated
on a variety of popular long-tailed datasets. In addition,
some key parameters of the ablation experiment are proving
to be necessary. Finally, we compare the proposed method
with other competing methods.
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Experimental Setup
Datasets: We have carried out a series of experiments in
CIFAR100-LT (Krizhevsky, Hinton et al. 2009), ImageNet-
LT (Liu et al. 2018), iNaturalist2018 (Van Horn et al. 2018).
CIFAR100-LT was obtained from CIFAR100 by exponential
decay downsampling. It contains 10.8k training images in
100 categories. ImageNet-LT contains 115.8K training im-
ages, a total of 1000 categories. The sample number for each
category ranges from 5 to 1280, and the imbalance factor is
256. It is a subset of the ImageNet dataset. iNaturalist 2018
is a large-scale real dataset that contains 437.5k training im-
ages with a total of 8142 categories. The category with the
largest sample size contains 2101 images, while the category
with the smallest sample size has only one image.
Implementation details: CIFAR100-LT dataset requires
only one GeForce RTX 2080 card, and the other two datasets
require 8 GeForce RTX 2080 cards due to batch size and
image size. According to previous studies (Cui et al. 2019;
Jamal et al. 2020; Kang et al. 2019; Liu et al. 2019; Yang
and Xu 2020; Alshammari et al. 2022), the baseline net-
works used ResNet32 (He et al. 2016)(for CIFAR100-LT),
ResNeXt50 (Xie et al. 2017)(for ImageNet-LT), ResNet50
(He et al. 2016) (for iNaturalist 2018). First, in the first stage,
for CIFAR100LT, the batch size is 64, the learning rate is
0.01, and the weight decay is 5e-3. For ImageNet-LT, the
batch size is 128, the learning rate is 0.01, and the weight
decay is 5e-4. For iNaturalist 2018, the batch size is 512,
the learning rate is 0.02, and the weight decay is 1e-4. Each
of the three datasets trains 200 epochs, and the learning rate
uses the cosine decay to 0. Next is the second stage. For
CIFAR100-LT, the batch size is 64, the learning rate is 0.005
and the hyperparameter λ=0.15. For ImageNet-LT, the batch
size is 512, the learning rate is 0.01, and the hyperparameter
λ=0.05. For iNaturalist 2018, the batch size is 512, the learn-
ing rate is 0.0002, and the hyperparameter λ=0.01. Each of
the three datasets trains only 10 epochs in the second stage,
and the learning rate uses the cosine decay to 0.
Evaluation protocol: All training is done on the long-tailed
dataset, and the test or valid set is balanced. Consistent with
other long-tail work (Alshammari et al. 2022; Ren et al.
2020), we divide the categories according to the number of
images Ni, the head class: Ni > 100, the medium class
100≥Ni ≥ 20, and the tail class Ni < 20.

Comparison with Competing Methods
Our approach is essentially a logits adjustment approach,
and some of the main comparison methods (Alshammari
et al. 2022; Zhao et al. 2022; Kang et al. 2019; Cao et al.
2019; Menon et al. 2020; Ren et al. 2020; Wang et al. 2021;
Alexandridis et al. 2022) in this paper are based on this idea.
As well as other comparison methods such as knowledge
distillation, contrast learning, model ensemble. Our method
achieves the best results among logits adjustment methods.
In the following, we present the experimental results for
each dataset.

Experimental results on CIFAR100-LT dataset. As
shown in Table 1, the top-1 accuracy of our method is 1.25%
higher than the current best result WD+MaxNorm (Alsham-
mari et al. 2022), and 5.7% higher than RIDE (Wang et al.

Imbalance factor 100 50

naive CE 38.38 43.85

rebalance loss focal 38.41 44.32
CB 39.60 45.32

logits adj.

LDAM-DRW 42.04 46.62
LogitAjust 43.89 47.03
τ -norm 47.73 52.53

IIF 48.8 -
BALMS 49.20 -
MARC 52.96 -

WD+MaxNorm 48.60 53.20
WD+MaxNorm+CB 53.55 57.71

IWB(ours) 53.3 56.3
IWB+CB(ours) 54.8 57.82

knowledge dis. KD 40.36 45.49
SSD 46.00 50.50

contrastive lea. Paco 52.00 56.00
BCL 51.93 56.59

model ensemble ACE 49.6 51.90
RIDE(4 experts) 49.1 -

Table 1: Top-1 accuracy on the testset of CIFAR100-LT. Im-
balance factor is 50 and 100.

ImageNet-LT iNaturalist2018
Method Many Med. Few All Many Med. Few All

CE 65.9 37.5 7.7 44.4 72.2 63.0 57.2 61.7
LogitAjust - - - 51.1 - - - 69.9
τ -norm 59.1 46.9 30.7 49.4 65.6 65.3 65.5 65.6

cRT 61.8 46.2 27.3 49.6 69.0 66.0 63.2 65.2
BALMS 50.3 39.5 25.3 41.8 - - - -
MARC 60.4 50.3 36.6 52.3 - - - 70.4
ALA 64.1 49.9 34.7 53.3 71.3 70.8 70.4 70.7

WD+MaxN. 62.5 50.4 41.5 53.9 71.2 70.4 69.7 70.2
IWB (ours) 64.2 52.2 40.2 55.2 72.3 70.6 72.5 71.5

Table 2: Top-1 accuracy on the testset of ImageNet-LT and
iNaturalist2018.

2020). Although RIDE is a model ensemble method, which
requires much larger computational resources than ours, we
can still achieve higher accuracy with a single model. To
make a fair comparison with WD+MaxNorm, we also used
CB-loss in stage 2. Their method decreased sharply without
CB-loss, but our success does not depend on CB-loss. The
effectiveness of our method can be seen from Table 1. As
the imbalance factor increases, the gain gradually increases
(1.25%(0.11%)higher than WD+MaxNorm+CB when ima-
balance factor is 100(50)). This is mainly because the imbal-
ance problem in the encoder also increases, as described in
Fig 2. This proves the effectiveness of the IWB from another
perspective.

Experimental results on ImageNet-LT and iNatural-
ist2018 dataset. Our method achieves the best results
among the published methods of logits adjustment. As
shown in Table 2, we outperformed (Alshammari et al. 2022)
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by 1.3%, much more than other logits adjustment methods.
Unlike other logits adjustment methods, these methods sac-
rifice the head-class accuracy to improve the tail-class ac-
curacy. Our method can ensure the preservation of head-
class accuracy; meanwhile, improve the accuracy of the tail-
class and medium-class, as shown in Table 2. Similar to
the results on ImageNet-LT, we have achieved best results
than all existing methods of logits adjustment on iNatural-
ist2018 dataset. As shown in Table 2, the top-1 accuracy of
our method is 1.3% higher than (Alshammari et al. 2022).
Again, we have a better trade-off between head-class and
tail-class.

Ablation Study
Effect of λ on experimental results. The quality of target
distribution P directly affects the distribution in the latent
space L. However, if NC ∗HC is used as the distribution P
directly, the result is not satisfactory. This is mainly because
a direct use of NC ∗ HC will cause a large difference be-
tween |Whead| and |Wtail|. Accordingly, we multiply it by λ
(λ ∈ (0, 1)), to smooth the distribution P and reduce the gap
between |Whead| and |Wtail|. This is conceptually similar to
the effect of annealing in knowledge distillation. Parameter
smoothing is also adopted by other works (Kang et al. 2019)
without substantial justification.

Figure 5 shows the effects of different λ on CIFAR100-LT
dataset. As shown in Figure 5, the model performs poorly
when λ is not used (λ = 1). As λ decreases, the effect of
the model gradually increases, but λ can not be too small.
First, if λ is too small, the total accuracy of the model will
be reduced. For example, when λ=0.05, the total accuracy of
the model will be 54.4%; when λ is 0.15, the total accuracy
of the model will be 54.8%. Second, as shown in Figure 5,
when λ decreases, the model’s effect on the tail-class will
gradually decline, while its effect on the head-class will in-
crease. In contrast, as λ increases from 0.05 to 0.2, the accu-
racy of the tail-class has improved from 33. 5% to 36. 1%.
Based on our previous analysis, this is because the absolute
gap between |Wtail| and |Whead| increases, the compensa-
tion for imbalance in encoder is gradually increasing. Fur-
thermore, during the experiment, we found that the larger
the dataset, the smaller the optimal value of λ. In our opin-
ion, this is due to the fact that the more categories there are,
the more detailed the division of latent space, and the model
is more sensitive to changes in λ.

The influence of NC and HC. Studies on NC and HC
were used to demonstrate their effectiveness. We remove
NC and HC successively to measure the performance of
the model. To eliminate the influence of λ on the experi-
mental results, we adjust λ to the optimal value for each ex-
periment. As shown in Table 3, we observe that when NC
acts alone, the accuracy is 7.2% higher than that of naive and
0.2% lower than that of the combined action. When NC is
combined with HC, the accuracy can reach the highest of
54.8%. Furthermore, the combined action can greatly im-
prove the precision of the tail-class as shown in the penul-
timate line. In the last row of Table 3, we show the result
of using scalar cosine similarity to measure the difficulty
of the sample. Although the total accuracy is not affected,

Figure 5: Influence of λ on CIFAR100-LT, imbalance factor
is 100. The x-axis represents the value of λ and the y-axis
represents top-1 accuracy. Notice that the x-axis is not uni-
form.

NC HC Many Medium Few All

× × 77.5 46.5 13.3 47.4
✓ × 72.3 54.3 34.5 54.6
✓ ✓(vector) 71.9 54.2 35.7 54.8
✓ ✓(scalar) 72.4 55.5 33.3 54.8

Table 3: Ablation studies of NC and HC on CIFAR100-LT.
The imbalance factor is 100.

the recognition accuracy of the tail-class decreases sharply,
2.4% lower than the best result.

Method Many Medium Few All

MSE 72.7 54.3 33.4 54.4
KL 71.9 54.2 35.7 54.8

Table 4: Ablation studies of MSE Loss and KL Loss on
CIFAR100-LT. The imbalance factor is 100.

Conclusion
This paper uses a two-stage approach to solve the long-tailed
issue. In the second stage, we introduced a sample-wise and
class-wise distribution to make the weight-norms distribu-
tion of the classifier reversal, which improves the size of
the tail decision space in the latent space and compensates
for imbalance in the encoder. In case of ensuring the accu-
racy of head-class, the recognition accuracy of tail-class is
greatly improved. Our method is essentially a logits adjust-
ment method with inverse weight-balancing. According to
our experimental results, our method makes the best scores
in logits adjustment methods. Last but not least, our ap-
proach is simple to implement and requires no additional
data or model resources.
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