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Abstract

Large Language Models (LLMs) have demonstrated im-
pressive performance in natural language processing tasks
by leveraging chain of thought (CoT) that enables step-by-
step thinking. Extending LLMs with multimodal capabili-
ties is the recent interest, but incurs computational cost and
requires substantial hardware resources. To address these
challenges, we propose KAM-CoT a framework that inte-
grates CoT reasoning, Knowledge Graphs (KGs), and mul-
tiple modalities for a comprehensive understanding of multi-
modal tasks. KAM-CoT adopts a two-stage training process
with KG grounding to generate effective rationales and an-
swers. By incorporating external knowledge from KGs dur-
ing reasoning, the model gains a deeper contextual under-
standing reducing hallucinations and enhancing the quality
of answers. This knowledge-augmented CoT reasoning em-
powers the model to handle questions requiring external con-
text, providing more informed answers. Experimental find-
ings show KAM-CoT outperforms the state-of-the-art meth-
ods. On the ScienceQA dataset, we achieve an average accu-
racy of 93.87%, surpassing GPT-3.5 (75.17%) by 18% and
GPT-4 (83.99%) by 10%. Remarkably, KAM-CoT achieves
these results with only 280M trainable parameters at a time,
demonstrating its cost-efficiency and effectiveness.

Introduction

Large Language Models (LLMs), particularly GPT-3 (Ko-
jima et al. 2022a), ChatGPT (OpenAl 2022) and re-
cently LLaMA, LLaMA2 (Touvron et al. 2023a,b) have
demonstrated exceptional performance in natural language
processing tasks. Additionally, incorporation of chain of
thought (CoT) method in LLMs has revolutionized the way
machines approach reasoning intensive tasks (Zhou et al.
2023). CoT refers to the ability of LLMs to think and rea-
son in a step-by-step manner, mirroring the human cogni-
tive processes (Wei et al. 2022b). Traditional language mod-
els (LMs) generate responses without explicit intermediate
steps, which may lead to sub-optimal answers, especially
in complex reasoning scenarios. CoT addresses the limita-
tions by enabling language models to reason by introducing
intermediate steps, thereby enhancing the model’s problem-
solving capabilities.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

18798

d N
Question: What is the direction of this push?
Options:
(A) Toward the stick.
(B) Away from the stick.
Answer: The answer is (B).
The direction of a push is away
from the object that is pushing.
The girl pushes the pinata away
from the stick.
@ away : !
' (push, relatedto, away)
@ ! (push, antonymof, pull)
@ (pull, relatedto, toward)
- - o J

Figure 1: An example from ScienceQA dataset (Lu et al.
2022) showing how graphs can aid in multi-modal QA.

Recently, there is a surge to extend LLMs with multi-
modal capabilities. The fusion of visual and textual infor-
mation has led to significant advancements in vision-and-
language tasks, like visual question answering (VQA), im-
age captioning, and image-text retrieval, and has opened
up potential for transformative progress. Authors Liu et al.
(2023a); Gao et al. (2023); Lu et al. (2023a) recognize
and advocate the value of amalgamating visual and linguis-
tic modalities. However, the behemoth scale of these mod-
els necessitates substantial computational resources, par-
ticularly in terms of hardware infrastructure. Zhang et al.
(2023c) proposes fine-tuning smaller models to adapt to
multimodality and elicit CoT capabilities. Nevertheless,
such an approach tends to result in hallucinations, where
the model generates plausible, but incorrect reasoning and
answers. One possible solution is to integrate Knowledge
Graphs (KGs) for enhancing model comprehension.

KGs serve as valuable structured knowledge sources, cap-
turing information from various domains. For CoT reason-
ing, KGs can supplement step-by-step reasoning. By incor-
porating information from KGs, language models can rea-
son more coherently, and leverage contextual relationships
between entities and attributes. Consider the question in Fig-
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ure 1. The knowledge about the direction of push is pivotal
to answer the question. The KG triples (shown in bottom-
right corner in Figure 1) about object relationship and orien-
tation, equips the model to answer correctly. The integration
enhances the quality of generated responses, especially in
tasks that require complex reasoning and context-aware un-
derstanding.

In this work, we propose to augment multiple modali-
ties with knowledge graphs to help the model solve com-
plex problems eliciting CoT capabilities. The proposed ap-
proach, KAM-CoT, consists of an LM that takes language
context, a vision encoder to encode visual features and a
graph neural network (GNN) that reasons over the KGs. Fol-
lowing Zhang et al. (2023c¢), we decouple the reasoning pro-
cess into two sequential stages. In the first stage, we generate
well-reasoned rationales. The second stage takes the gener-
ated rationale as an additional input and provides answers.
KAM-CoT seamlessly stitches text, vision and graph fea-
tures together, enabling machines to think and reason coher-
ently, similar to human cognition. We evaluate our proposed
model on the ScienceQA (Lu et al. 2022) benchmark. We
achieve an average accuracy of 93.87%, surpassing GPT-3.5
(75.17%) by 18% and GPT-4 (83.99%) by 10%. Addition-
ally, KAM-CoT achieves these results with only 280M train-
able parameters at a time, demonstrating its cost-efficiency
and effectiveness.

This paper makes the following contributions:

1. Graph Extraction: We extract salient triples from Con-
ceptNet (Speer, Chin, and Havasi 2017) based on the given
question context.

2. Fusion with KG: We propose a few indicative mecha-
nisms for fusing text and image modalities with the knowl-
edge graph, and examine their efficiency.

3. KAM-CoT: We propose the Knowledge Augmented
Multimodal CoT approach, KAM-CoT. The 280M model
jointly processes vision, text, and knowledge graph in
stages, does step-by-step reasoning to generate plausible
reasoning and answers.

We conduct extensive experiments and evaluation on the
ScienceQA dataset(Lu et al. 2022), achieving new state-of-
the-art performance. We also look into the effects and contri-
butions of each component and discuss potential directions
for future research.

Related Work

We explore related works in four key areas: in-context learn-
ing, CoT through fine-tuning approaches, vision-language
models and knowledge augmented methods.

In-context learning LLMs (Zhao et al. 2023) exhibit the
capability of CoT through two principal modes: Zero shot
and Few shot. Zero shot performs inference without neces-
sitating any explicit examples or guidance. Recent studies
have revealed that LLMs can achieve satisfactory results
when prompted with the phrase “Let’s think step by step”
(Kojima et al. 2022a). In few shot context, LLMs are pro-
vided with a set of demonstrative examples that serve as
guides, enabling them to grasp and learn patterns from these
instances. The examples are curated by human experts.
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Auto-CoT introduces the automatic construction of
demonstration examples using LLMs (Zhang et al. 2023b).
It generates examples with inherent noise. With automatic
sampling of diverse questions and post-processing qual-
ity control mechanisms, it gets usable chains. Wang et al.
(2022a) proposes a decoding self-consistent strategy that
samples from a diverse set of reasoning paths and subse-
quently selects the most consistent answer by marginalizing
all possible paths. PROMPTPG (Lu et al. 2023b) employs
policy gradient techniques to acquire the ability to discern
contextually related examples from the limited set of train-
ing samples and then construct the corresponding prompt
for a given sample. Chen et al. (2022) proposes Program
of Thoughts, where the computation is delegated to an in-
terpreter, decoupling complex computation from reasoning
and understanding. Another interesting work, least-to-most
prompting (Zhou et al. 2023) proposes to break a complex
problem into simpler ones and solve them sequentially by
leveraging the answer from previously solved sub-problems.
However, all these approaches are limited to LLMs, reason-
ably greater than 100B parameters (Wei et al. 2022a).

CoT through fine-tuning approaches Lu et al. (2022)
proposes a Science Question-Answer (ScienceQA) dataset
that consists of multimodal multiple choice questions with
corresponding lectures, explanations and correct answers.
Authors observe improvements in question answering by us-
ing CoT by 1.20% in few shot GPT-3 and 3.99% in fine-
tuned UnifiedQA (Khashabi et al. 2020). MM-CoT (Zhang
et al. 2023c) proposes to fine-tune an LM on ScienceQA
dataset with CoT method. They propose rationale genera-
tion and answer inference in two stages. The model outper-
forms GPT-3.5 by 16% on this dataset and surpasses human
performance.

Vision-Language Models With the proposal of visual
question answering tasks (Antol et al. 2015), there have
been plenty of works in aligning vision and language modal-
ities. ViLT (Kim, Son, and Kim 2021) proposes a sin-
gle transformer architecture for text and image modalities
that facilitates seamless cross modal interaction. Patch-TRM
(Transformer with cross-modal TRM) parses images into or-
dered patches in a hierarchical pyramid layout (Lu et al.
2021). The patches are encoded with pre-trained ResNet and
passed through a vision transformer. VisualBERT proposes
a unified architecture that leverages the expressive power of
transformer based BERT model and aligns the features ex-
tracted from images (Li et al. 2019, 2020). In particular, both
visual and textual inputs are masked, and the model learns
to predict the masked inputs, enabling it to capture contex-
tual alignment. BLIP2 (Li et al. 2023) proposes QFormer,
pretrained with a two-stage strategy to align image encoders
and LLMs. Liu et al. (2023b) proposes the Prismer model,
that uses an ensemble of domain experts. KOSMOS (Huang
et al. 2023) trains a model from scratch on web-scale multi-
modal corpora, including arbitrarily interleaved text and im-
ages, image-caption pairs, and text data.

Recently with the advent of LLaMA models, there has
been significant progress in instruction-following language
modelling. LLaVA (Liu et al. 2023a) relies on the text-
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Figure 2: KAM-CoT model architecture.

only GPT-4 (OpenAl 2023) model, to generate multimodal
data. The authors propose two stage training: pre-training
for feature alignment and instruction-following fine-tuning.
LLaMA-Adapter V2 (Gao et al. 2023) proposes a parameter-
efficient adapter based visual instruction model that dis-
tributes instruction following ability across the entire model.
LaVIN (Luo et al. 2023) is another parameter-effecient
technique based on mixture of modalities. SCITUNE (Ho-
rawalavithana et al. 2023) and T-SciQ (Wang et al. 2023) are
science-focused visual and language understanding models.
Chameleon (Lu et al. 2023a) mitigates the limitations of ac-
cessing up-to-date information, by augmenting LLMs with
plug-and-play modules for compositional reasoning. How-
ever all these instruction following methods require larger
models, usually greater than 7B parameters.

Knowledge augmented methods Several recent studies
have explored infusion of structured knowledge into LMs.
SKILL (Moiseev et al. 2022) proposes conversion of KG
triples into sentences and then using them for pretraining.
KagNet (Lin et al. 2019) proposes to ground a question-
answer pair from the semantic space to the knowledge-based
symbolic space as a schema graph, and then trains a graph
convolution network with a hierarchical path-based attention
mechanism. QA-GNN (Yasunaga et al. 2021) proposes the
use of LMs to estimate the importance of nodes in a KG
with respect to the given context, and does joint reason-
ing over a unified graph. Zhang et al. (2022) proposes the
GreaseLM model that fuses encoded representations from
pretrained LMs and graph neural networks over multiple
layers of language-KG interaction. Extending to multiple
modalites, VQA-GNN (Wang et al. 2022b) proposes to unify
the image-level scene graph with conceptual knowledge to
perform joint reasoning over the unified graph.

Method

We describe the proposed KAM-CoT approach in this sec-
tion. As an overview, KAM-CoT involves encoding the lan-
guage, image and the graph input. Note that the graph is
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derived from the language input. The three modalities are
then made to interact with each other using cross-attention.
Finally, the fused features are fed to a transformer decoder
that generates text autoregressively.

Task Formulation

Given a question ¢ along with %k answer choices
{a1,as,...,a;}, the task is to pick the correct choice. The
question g is optionally accompanied by an image Xjng and
a text c that adds context to it.

One potential approach is to use a neural network to gen-
erate the right choice directly. However, as already estab-
lished, chain-of-thoughts reasoning helps in inferring the
right answer, especially for complex reasoning tasks (Wei
et al. 2022b; Kojima et al. 2022b). We therefore train the
model to generate a rationale r for the answer, in the first
step. The next step involves picking the correct answer by
conditioning the generation process on r, along with the ex-
isting inputs. The rationale generation and answer identifi-
cation models are the same, but they are trained separately
from identical initializations. This is similar to the technique
used by Zhang et al. (2023c) who deal with just image and
text modalities. In our case, we extend their approach to han-
dle graphs as an additional modality that would ground the
generation process on factual knowledge.

To obtain the language input for rationale generation,

we simply concatenate the different text portions, X{;ﬁg

[¢;¢; [a1,aq, ..., ar]]. And for answer choice prediction,
we append the rationale r as well to obtain Xj\ =
[qa & [ala az, ... 7ak]; T]'

We extract a subgraph X, for each sample (discussed in
details below). For rationale generation, we learn a model
Fr,(.) that generates the rationale 7.

rat
r= Eat(Xlanga Ximga ng)

(D

Similarly, for generating text to identify the right answer, we

learn a model fys(.).
a=F ans(

ans
lang»

Ximga ng) (2)

Formalizing the procedure, with the modalities given to
the model as input, we compute and maximize the probabil-
ity of generating the reference text Y, which can either be
the rationale or the answer, of length N.

N
p(Y|X1ang; Ximg7 ng) = Hpe (}/z |X1ang7 Ximgy ng7 Y<1)

i=1

The model py is made with a combination of a graph en-
coder and a transformer network. Algorithm 1 lists the steps
involved in the KAM-CoT algorithm.

Encode Inputs From Different Modalities

Text Encoding We use a transformer based lan-
guage encoder to encode Xie to obtain Hiyg
LanguageEncoder(Xiung) € R"™*4 where n is the number
of tokens in Xy, and d is the output embedding size of the

language encoder.
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Algorithm 1: KAM-CoT Reasoning

Input: Language features X{:r‘lg, Image features X, and

Graph features X\,

Output: Rationale r, Answer a

Construct input X = { X5,

r 4 Eat(X )

Concatenate r to Xjil, to make X{i < [Xjil;7]

Construct new input X' = {X{, Ximg, Xk}

a <+ Fus(X)

procedure F'(X)
Get the encoded representations, Hyang, Himg, and Hyg
Obtain the feature representations, Hi‘;‘;'g‘, and Hfjg“
Fuse these representations with Hja,g to obtain Hyyge
Input Hyye to the decoder to get the target Y
return Y

: end procedure

Ximg7 ng}

AN A S ol e

—_—
M=oY

Image Encoding We encode the image X, using a
transformer based image encoder to obtain Hi,, =
ImageEncoder(Ximg) Wimg € R™*4 where m is the number
of patches in the image. The projection matrix Wy, brings
the output embedding dimension to d, same as that of Hip,.

Subgraph Extraction For every sample, we extract a sub-
graph from ConceptNet (Speer, Chin, and Havasi 2017) by
following a method similar to that in Yasunaga et al. (2021).
We group the relations in ConceptNet into 17 distinct types.
These relations can be either forward or backward, yield-
ing a total of 34 possible edge types. The triples are con-
verted to sentences, and corresponding sentence patterns are
stored. These patterns are used to ground and extract nodes
from the question, context and answer choices. A subgraph
is made of (i) V, a set of nodes, (ii) E, a set of edges and
(iii) ¢, a function which maps every edge to an integer in
the range [0, 33], representing the edge type. To get the ini-
tial node embeddings, we the same pretrained checkpoint of
the language encoder used for text encoding, and average
the embeddings over the span of all occurences of that node
(Feng et al. 2020). The thought behind using the same lan-
guage encoder checkpoint is to ensure that the language and
node embeddings start from the same space.! Let N, rep-
resent this set of grounded nodes. For every pair of nodes,
Na, My € Nga, we append all common nodes in their 1-hop
neighbourhood into Ny.,p. We repeat this process for each
pair of nodes in Ny, and Nj_p,, and append the nodes into
Nanop- This way, we get a graph connecting all nodes in
Nga to each other with a path length of atmost 2 intermedi-
ate nodes: V = Ny, U Nipop U Nahop. Since the number of
nodes could grow exponentially, we follow the pruning strat-
egy in Yasunaga et al. (2021) to keep the top 200 nodes for
every sample. For the edges, we build an embedding table
and learn embeddings during training.

Graph Encoding Using a combination of graph layers,
we encode the extracted subgraph Xi, to obtain the node

"We also experiment with using image captions for grounding.
In that case, we simply append the caption to the existing context.

embeddings Hy, = KGEncoder(Xy,) € RP*?, where p is
the number of extracted nodes.

Interaction Between Modalities

We use cross-attention to enable the interaction between the
representations of text, image and subgraph. For this we use
two seperate single-headed attention modules (see Figure 2).
For the first attention module, the language and image em-
beddings interact. Similarly, in another attention module in-
teraction between language and node embeddings happen.

.
Hipe = softmax(M) Hime (3)
Vd

Hy HY
Hig" = softmax (M> Hy, 4)

Vd

Fusion

We use gated fusion (Wu et al. 2021; Zhang and Zong 2020;
Li et al. 2022) to get the final representation.

So = HiangW1 + HSW, + HIS"W5 € R™*?

img
Sp = HungWa + HmaWs + Hi"Ws € R™*4 - (5)
Sy = HangWr + HimaWs + Hi"Wy € R™4

@ij, Bij, vij = softmax([Sa,;, S5, Sy,,])
Hfuse = Q- Hlang + 5 . H}lttn =+ v - Hﬁg“ c Rnxd

img

(6)

Here o, 3,7 € [0,1]"*? and sum to 1 element-wise, and all
W € R¥? We will refer to this fusion method as Fusion-1.
We discuss and compare a few other fusion variants in the
Discussion and Analysis section.

Decoding

We use a transformer decoder that utilizes Hy,s. to generate
text autoregressively.

p(Yf |Y<t7 Xlang» Ximg7 ng) = DeCOder(Y<t7 Hfuse) (7)

Experiments
Dataset

We evaluate our method on the ScienceQA benchmark (Lu
et al. 2022). It comprises of 21208 multiple-choice questions
with multimodal contexts, sourced from the science curricu-
lum. It covers substantial domain diversity, spanning 3 sub-
jects, 26 topics, 127 categories and 379 skills. ScienceQA
provides us with an in-house training, dev and test split con-
taining 12726, 4241 and 4241 samples respectively.

Baseline Comparisons

We choose the following baselines, (i) VQA models (Kim,
Son, and Kim 2021; Lu et al. 2021; Li et al. 2020), (ii) Mod-
els with similar backbones (Khashabi et al. 2020; Lu et al.
2022; Zhang et al. 2023c; Wang et al. 2023), (iii) Parameter-
efficient finetuned LLMs (Zhang et al. 2023a; Luo et al.
2023), and (iv) the GPT family and GPT-assisted models
(OpenAlI 2022, 2023; Liu et al. 2023a).
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Model Size | NAT SOC LAN TXT IMG NO GI1-6 G7-12 | Avg
Human Average - 19023 8497 8748 89.60 87.50 88.10 91.59 8242 | 88.40
VILT (Kim, Son, and Kim 2021) 112M | 6048 63.89 60.27 6320 6138 57.00 60.72 6190 | 61.14
Patch-TRM (Lu et al. 2021) 90M | 65.19 46.79 6555 6696 5528 6495 58.04 67.50 | 61.42
VisualBERT (Li et al. 2020) 111M | 5933  69.18 61.18 6271 62.17 5854 6296 5992 | 61.87
UnifiedQAgase (Khashabi et al. 2020) 223M | 68.16 69.18 7491 63.78 6138 77.84 7298  65.00 | 70.12
UnifiedQApgase W/ CoT (Lu et al. 2022) 223M | 71.00 76.04 7891 6642 66.53 81.81 77.06 68.82 | 74.11
MM-CoTrs.Base (Zhang et al. 2023c) 223M | 87.52 77.17 8582 87.88 8290 86.83 84.65 8537 | 84.91
MM-CoTELAN-T5-Base 250M | 915 7492 90.09 91.69 8428 9052 88.14 87.01 | 87.74
MM-T-SciQgase (Wang et al. 2023) 223M | 91.52 9145 9245 9194 9033 9226 92.11 91.10 | 91.75
LLaMA-Adapter (Zhang et al. 2023a) 6B (1.2M) | 84.37 88.30 8436 83.72 80.32 8690 85.83 84.05 | 85.19
LaVIN-13B (Luo et al. 2023) 13B (5.4M) | 89.88 9449 8992 8895 87.61 91.85 9145 89.72 | 90.83
GPT-3.5 w/ CoT (OpenAl 2022) >175B | 75.44 77097 78.09 74.68 67.43 7993 7823 69.68 | 75.15
GPT-4 w/ CoT (OpenAl 2023) >175B | 8548 72.44 9027 82.65 7149 9289 86.66 79.04 | 83.99
LLaVa (GPT-4) (Liu et al. 2023a) 13B | 91.56 96.74 91.09 90.62 88.99 9352 9273 92.16 | 92.53
KAM-CoTrs.Base (Ours) 223M | 9321 9221 90.64 9321 93.26 9150 9251 9242 | 92.48
KAM-CoTrLAN-T5-Base (Ours) 250M | 94.76  92.24 9336 94.53 93.16 94.15 94.24 93.21 | 93.87

Table 1: Comparing the results against baselines. Here, Size = size of the backbone model, NAT = Natural Science, SOC =
Social Science, LAN = Language Science, TXT = Text context, IMG = Image context, NO = No context, G1-6 = Grade 1 to
6, G7-12 = from Grade 7 to 12. Segment 1 compares against the human average. Segment 2 shows the performance of chosen
VQA baselines. Segment 3 has models whose backbone sizes are comparable to ours. In Segment 4, we show parameter-
efficient finetuned versions of larger models, and the number of trainable parameters are provided inside parantheses. Segment
5 has the performance of the GPT family. MM-CoTgan-T5.Base here has been given caption as context along with the vision
features. Results, other than ours and MM-CoTg AN.T5-Base, are taken from respective papers and the ScienceQA leaderboard.

Training Details

The size of the proposed model is 2564M with T5-Base and
280M with FLAN-T5-Base. All our experiments are run
on a single NVIDIA A100 40G GPU. We train our mod-
els for 20 epochs, and also evaluate them after each, with
ScienceQA’s dev split. We use a learning rate of 5e-5 and
batch-size of 1, a maximum input length of 512 tokens, and
maximum output length of 512 and 64 tokens for rationale
and answer generation respectively.

Experimental Setup

For our experiments, we discuss the effect of using different
image encoders. (i) CLIP (Radford et al. 2021) aligns images
and text into a common embedding space. (ii) DETR (Car-
ion et al. 2020) leverages transformers to perform object de-
tection and localization. The chosen variants of DETR? and
CLIP? are used without their classification heads, to provide
patch embeddings of shape (100,256) and (49,2048), re-
spectively.

We experiment with caption features as well, where cap-
tions are generated using ViT-GPT2.* Yet another set of ex-
periments use these captions for extracting graph nodes. In
this case, right after generating the possible entailments of
the sample, we put the caption seperated by a white-space.
The grounding process then continues as discussed in the
Method section. We also experiment with both the above
mentioned settings.

To encode the knowledge-graph we use two layers: a Re-
lational Graph Attention layer (Busbridge et al. 2019), fol-

Zhttps://huggingface.co/facebook/detr-resnet- 101-dc5
3https://huggingface.co/google/vit-base-patch16-384
*https://huggingface.co/nlpconnect/vit- gpt2-image- captioning
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lowed by a Graph Convolutional layer (Kipf and Welling
2017), both implemented in PyTorch Geometric (Fey and
Lenssen 2019). We refrain from using more than two graph
layers as that might lead to a node forgetting its own identity
(Li, Han, and Wu 2018). The first graph layer uses 768 input
and output features, matching the language encoder’s em-
bedding dimension size. It is also provided with the number
of possible relations, 34 and the edge embedding size, 64.
Next, the Graph Convolution layer is given only the input
and output feature sizes, both being set at 768. As mentioned
in the Method section, for representing the edges, we learn
an embedding table in the training process. Given an integer
for the edge-type, it produces an embedding, ecqg. € R
for that edge, and is fed to the graph-encoder.

Our approach uses T5-Base (Raffel et al. 2020) as its
backbone. The well defined encoder-decoder architecture
gives a good entry-point to introduce other modalities. To
ensure the applicability of our approach to other language
models, we conduct experiments and present results on the
instruction-tuned FLAN-T5-Base (Chung et al. 2022) also.

Results

To assess the effectiveness of our model, we use two evalua-
tion metrics: average accuracy and RougeL (Lin 2004). Av-
erage accuracy quantifies the model’s correctness in predict-
ing the correct answer, and is treated as the primary metric
for evaluating the quality of our method. We use the RougeL.
metric to to compare the generated rationale to the human
reference, as done in Zhang et al. (2023c). ScienceQA con-
tains multiple groups, that enables us to compare group-wise
accuracies, giving an insight to the model’s strengths and
limitations within each group, which is valuable in under-
standing how the model generalizes across content areas.
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Image Features | Feature Size | Rougel. | Avg. Acc
DETR (100, 256) 98.29 91.65
CLIP (49, 2048) 98.15 91.02

Table 2: Comparative results using different image encoders
with T5-Base. DETR outperforms the CLIP based encoding.

Method RougeL. | Avg. Acc
without captions 98.29 91.65
with captions as context 98.33 92.45
captions for node extraction 98.31 91.84
captions for nodes + context | 98.32 92.48

Table 3: Summary of results that showcase different ap-
proaches using captions with T5-Base.

For a fair and consistent evaluation, we obtain the scores
of the baseline models directly from their respective research
papers. Additionally, we take scores from the ScienceQA
leaderboard® for closed-source models. This enables us to
make informed assessments of our model’s contributions
in comparison to existing state-of-the-art. Table 1 shows
the main results. Our model outperforms all other known
approaches under 300M and does not use any very large
auxiliary model. With FLAN-T5-Base as the backbone, we
achieve a RougeL score of 98.40 and an average accuracy
of 93.87, which is well above the performance of GPT3.5
(75.17%), and also surpasses LLaVa (92.53%) by 1.34%.
This conceretely establishes that our proposed method is su-
perior compared to other approaches including LL.Ms, while
being under 300M parameters.

A closer look into Table 1 reveals that questions about
Natural Science, Social Science and Language Science see
a boost compared to the baselines. The same is also observed
for No-Context questions. ConceptNet is expected to aid
with these kind of questions, which is visible here clearly.

We conduct further experiments and ablation studies to
delve deeper into the performance and robustness of our pro-
posed model. We also explore the effects of varying the in-
dividual modalities and encoders. We explore more fusion
methods in the Additional Fusion Mechanisms subsection.

Unless explicitly mentioned, all experiments are trained
and evaluated for 20 epochs, and then tested on the test-split.

Table 2 shows the effect of using different image en-
coders. DETR gives a marginal improvement (0.63%) over
CLIP features, despite having a smaller feature size (74k
floats lesser) per sample, making it our default choice.

We observe from Table 3, captions concatenated with the
context gave a boost to both the rationale and the accuracy
scores. In another setting where captions are concatenated
with the context, and then used to extract nodes, shows a
marginal boost over not using them at all (91.65 — 91.84),
but also with a very little fall in the RougeL score (0.02).

The final combination, where captions are added to the
context and also used for extracting node embeddings, turns
out to be the best setting for average accuracy.

>https://scienceqa.github.io/leaderboard.htm]
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Number of nodes | RougeL. | Avg. Acc
50 97.78 88.66
100 97.84 88.85
200 97.85 89.51

Table 4: Effect of varying the number of nodes in a graph
with T5-Base as the backbone.

Image Captions KG | RougeL. | Avg. Acc
X X X - 83.420
v X X - 85.85°6
v context X 97.27 87.74
v context v 98.34 92.62
v context, nodes | v 98.40 93.87

Table 5: Ablation study on the KAM-CoT framework, using
FLAN-T5-Base.

We study the effect of taking the top 50, 100 and 200
nodes. If the node extraction process yields a smaller num-
ber of nodes, they are zero-padded to the minimum num-
ber. To expedite these experiments with varying number of
nodes, and to reduce GPU consumption, we limit training
to 10 epochs. Limiting the maximum number of nodes has
a proportional effect on the accuracy. Table 4 shows the
trend that more nodes help the model reason and choose
better. Although we could not perform exhaustive experi-
ments with higher number of nodes, we anticipate that the
performance would saturate and might even decline beyond
a certain threshold. We defer this aspect to future research.

Having explored the effects of various settings over the
modalities, we perform ablation studies, with FLAN-TS-
Base as the backbone. The complete model amounts to a
total of 279M trainable parameters with the graph encoder
included. From Table 5, it is easily seen that just plugging in
the graph encoder gives an accuracy boost of 4.88%, totaling
to 92.62, which surpasses the performance of LLaVA (Table
1) with 13B parameters, and is yet not the highest score we
could reach.

As reported in the beginning of this section, the best out of
all our experiments come with the captions as context + node
extraction setting. With 280M paramters, our achitecture has
a RougeL score of 98.40 and an average accuracy of 93.87,
with a model 47 times smaller than its next best performer.

Discussion and Analysis

In this section, we examine, a few alternative fusion mecha-
nisms, model convergence, and results using subset of train
data.

Additional Fusion Mechanisms

Unlike the bottleneck-style (Yasunaga et al. 2021) interac-
tion between node embedding and other modalities, our fu-
sion mechanisms have no such constraints. Along with the
proposed primary fusion method in the Fusion subsection,
we experiment with two more settings.

Results are taken from (Zhang et al. 2023c)
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Fusion Method | # Parameters | Rougel. | Avg. Acc
Fusion-1 254M 98.29 91.65
Fusion-2 251M 98.23 91.23
Fusion-3 250M 98.14 90.14

Table 6: Comparative performance of the varying fusion

methods. Fusion-1 outperforms the other fusion methods.
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Figure 3: Performance of the fusion mechanisms on the val-
idation set, evaluated using T5-Base.

2-step fusion (Fusion-2) In the first stage, we fuse
language-vision and language-KG features and get Hiyg k-
Considering language as the primarily modality, we fuse it
with Hipg ke in the second stage.

Ao = sigmoid(Hima Wy + H{"Ws) € R™*¢

attn attn nxd (8)
Himg,kg = (]' - )\a) : Himg + Ao kg €ER
Ay = sigmoid( Himg kg W3 + HiangWs) € R™*? )

Htyse = (1 - >\b) : Himg,kg + Ay Hlang € ]RnXd

1-step fusion (Fusion-3) In this approach we take the
linear projection of Hiung, Hig, Hi," and compute their
weighted sum to merge all the modalities.

Sa = HlangWI ; SB = HSSEWQ ; S’y = Hl?gnWS ,  (10)
Qjj, ﬂija Yij = softmax([Sai]. ’ Sﬁz‘j ’ S"/”D (11)
Hiyge = o - Hlang + 8- Hldnl‘ltg +7- Hl?gn € R™*4

We summarise the results of these fusion mechanisms in
Table 6 and find that Fusion-1 gives the best performance on
ScienceQA test data.

Comparing Model Convergence

Figure 3 compares our model’s convergence trend (with all
fusion techniques) with MM-CoT (Zhang et al. 2023c) on
the validation. We observe that the proposed method as well
as MM-CoT converge at 10 epochs. Note that, the accuracy
of the proposed approach starts much higher as compared
to MM-CoT. Also, Fusion-1 demonstrates the highest accu-
racy, along with greater stability in comparison to others.
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Figure 4: Comparative performance using subsets of training
data with MM-CoTgpaN.T5.Base (100% training data, Zhang
et al. (2023c¢)), and the human average.

Dataset Variation

To examine the scalability of the proposed model, we also
train on subsets of the training data. These sets are made
in the proportion of 20%, 40%, 60% and 80% of all the
12k total training samples, preserving the distribution over
the 26 topics. Figure 4 shows that KAM-CoT surpasses hu-
man accuracy (88.4%) even when trained with only 50% of
the training data. Surprisingly, the model outperforms the
fully trained MM-CoT (Flan-T5g,) (93.87% vs 85.85%)
with only 35% of the training data. The results highlight the
model’s generalization ability with little training data.

We also evaluate the model with A-OKVQA dataset. The
proposed model outperforms the baseline by 3.67%.

Conclusion

In this paper, we propose KAM-CoT, Knowledge Aug-
mented Multimodal Chain of Thought reasoning, to enhance
the reasoning capability and quality of answers from lan-
guage models. We propose a framework that uses CoT rea-
soning, leverages knowledge graphs and other modalities
for a comprehensive understanding of multimodal tasks. We
provide a few possible methods to fuse these modalities. We
find that the incorporation of KG in the two-stage training
process helps reduce hallucinations. With only 280M pa-
rameters at a time, our approach yields a new state-of-the-art
having an accuracy 93.87%, outperforming GPT-3.5 by 18%
by and GPT-4 by 10%. In the future, we want to further in-
tegrate specific knowledge-intensive domains, and also ex-
plore efficient fusion mechanisms. We would also like to
scale our solution to larger models like the LLaMA family.
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