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Abstract

Coalitions naturally exist in many real-world systems involv-
ing multiple decision makers such as ridesharing, security,
and online ad auctions, but the coalition structure among the
agents is often unknown. We propose and study an impor-
tant yet previously overseen problem – Coalition Structure
Learning (CSL), where we aim to carefully design a series of
games for the agents and infer the underlying coalition struc-
ture by observing their interactions in those games. We es-
tablish a lower bound on the sample complexity – defined as
the number of games needed to learn the structure – of any
algorithms for CSL and propose the Iterative Grouping (IG)
algorithm for designing normal-form games to achieve the
lower bound. We show that IG can be extended to other suc-
cinct games such as congestion games and graphical games.
Moreover, we solve CSL in a more restrictive and practical
setting: auctions. We show a variant of IG to solve CSL in the
auction setting even if we cannot design the bidder valuations.
Finally, we conduct experiments to evaluate IG in the auction
setting and the results align with our theoretical analysis.

1 Introduction
Coalitions are an integral part of large, multi-agent environ-
ments. Some coalitions can lead to undesirable outcomes.
For example, in ridesharing platforms (e.g., Uber, Lyft),
groups of drivers sometimes deliberately and simultaneously
disconnect themselves from the platform in hopes of artifi-
cially inducing a price surge which they enjoy later at the ex-
pense of the platform and riders (Hamilton 2019; Sweeney
2019; Dowling 2023), sparking studies on mechanisms to
discourage such behaviors (Tripathy, Bai, and Heese 2022).
In security domains, coordinated attacks are often more dif-
ficult to mitigate compared to those conducted in isolation.
(Jena, Ghosh, and Koley 2021; Lakshminarayana, Belmega,
and Poor 2019). On the other hand, coalitions are common
and crucial to the proper functioning of real-world societies.

Ultimately, knowing the underlying coalition structure in
such environments can lead to more accurate game models,
more robust strategies, or the construction of better welfare-
maximizing mechanisms. However, unlike payoffs, it is of-
ten not known apriori which coalitions (if any) exist. As
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such, we propose the Coalition Structure Learning (CSL)
problem, where we actively put agents through a small set
of carefully designed games and infer the underlying coali-
tion structure by observing their behavior.

We stress the difference between our work and coopera-
tive game theory. Our work identifies coalition structures by
exploiting the differences in interactions between agents and
is separate from the study of underlying mechanisms ensur-
ing the stability of the said coalitions.

In this paper, we assume members in a coalition secretly
share their individual utilities, i.e., they act as a joint agent
whose utility equals the sum of the individual utilities of its
members. Crucially, this difference in behavior allows us to
detect coalitions. Consider the game shown in Fig. 1a, a vari-
ant of the classic Prisoner’s Dilemma. Here, the only Nash
Equilibrium (NE) is for both agents to Defect. However, if
they are in a coalition, they behave collectively as a single
agent with payoffs shown in Fig. 1b. From the coalition’s
perspective, it is rational for both agents to Cooperate as it
maximizes the sum of both agent’s payoff.

Cy Dy

Cx (3, 3) (0, 5)
Dx (5, 0) (1,1)

(a) Not in a coalition

CxCy CxDy DxCy DxDy

3+ 3 0 + 5 5 + 0 1 + 1

(b) In a coalition

Figure 1: A variant of Prisoner’s dilemma when agents x
and y are (b) in and (a) not in a coalition. Bolded cells are
the (unique) Nash Equilibria.

More generally, we have a set N = {1, 2, . . . , n} of
n strategic agents1, divided into m separate coalitions. A
coalition S ⊆ N is a nonempty subset of the agents, in
which the agents coordinate with each other. A coalition
structure of the agents is represented by a partition S =
{S1, S2, . . . , Sm} of N , where S1, S2, . . . , Sm are mutu-
ally disjoint coalitions and

⋃m
i=1 Si = N . Note that some

of the coalitions might be singletons. We use [i]S to denote
the coalition that agent i belongs to under S . If [i]S = {i}
for each i ∈ N , we recover the regular game setting.

1We provide a list of key notations in Appendix A.
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In CSL, both m and S are unknown, and the goal is to re-
cover them by observing how the agents interact with each
other in a series of designed games. At each timestep, we
present a game G to the agents and make an observation O
about the equilibria in G. As shown in Fig. 1, different coali-
tion structures will lead to different sets of equilibria, which
makes CSL possible to solve. We restrictO to be a single-bit
oracle, indicating whether a pre-specified strategy profile Σ
is a Nash Equilibrium of G. This is the simplest observation
to make and can be implemented in practice by presenting
Σ as a default strategy profile to the agents and observing
whether any agent deviates from it.

We define the sample complexity of an algorithm on a
CSL instance as the number of games it presents to agents
before the correct coalition structure is learned. We are in-
terested in algorithms with low sample complexity.

In this paper, we thoroughly study CSL with the single-
bit observation oracle O. In many real-world settings, there
will be restrictions on what kind of games can be designed
and presented to the agents. Therefore, we study CSL un-
der various settings of the class of games that G belongs
to. Specifically, we make the following contributions: (1).
We propose and formally model the CSL problem. (2). We
show a lower bound of sample complexity as a function of
the number of agents n for algorithms solving CSL (Theo-
rem 3.1). (3). We propose our Iterative Grouping (IG) algo-
rithm for solving CSL when G is restricted to normal form
games (Algorithm 1) and show that it achieves the optimal
sample complexity up to low order terms (Theorem 3.2).
(4). We extend IG to solve CSL with congestion games
and graphical games, again with optimal sample complex-
ity (Section 3.4). (5). We propose AuctionCSL, a variant of
CSL in the grounded setting of second-price auctions with
personalized reserve prices, and extend IG to solve Auc-
tionCSL (Section 4). (6). We extensively conduct experi-
ments to evaluate IG in the auction setting (Section 5). The
experiments align with our theoretical results, showing that
IG is a practical approach to AuctionCSL. Below we sum-
marize the theoretical results of this paper in Table 1.

Setting Sample Complexity Section
Lower Bound (1− o(1))n log2 n Section 3.1
Normal Form n log2 n+ 3n Section 3.3
Congestion n log2 n+ 3n Section 3.4
Graphical n log2 n+ 3n Appendix C
Auction (4.16 + o(1))n log2 n Section 4

Table 1: Summary of theoretical results.

2 Related Work
In recent years, there has been significant interest in the
learning of games. One such direction is Inverse Game
Theory, which seeks to compute game parameters (e.g.,
agent utilities, chance) that give rise to a particular em-
pirically observed equilibrium (Waugh, Ziebart, and Bag-
nell 2011; Kuleshov and Schrijvers 2015; Ling, Fang, and
Kolter 2018; Geiger and Straehle 2021; Peng et al. 2019;

Letchford, Conitzer, and Munagala 2009). In an “active”
setting closer to our work, Balcan et al. (2015); Haghtalab
et al. (2016) show that attacker utilities in Stackelberg secu-
rity games may be learned by observing best-responses to
chosen defender strategies. More broadly, the field of Em-
pirical Game-Theoretic Analysis reasons about games and
their structure by interleaving game simulation and analy-
sis (Wellman 2006). Another related direction is given by
Athey and Haile (2002), who identify different auctions
based on winning bids or bidders. Recent work by Kenton
et al. (2023) distinguishes between agents and the environ-
ment by extending techniques from causal inference. In all
of these works, the focus is to learn agent payoffs and other
game parameters (e.g., chance probabilities, item valuations,
and distributions), assuming that agents and any coalitions
are pre-specified. In contrast, CSL learns coalition struc-
tures given the freedom to design agent payoffs or other
game parameters. Finally, Mazrooei, Archibald, and Bowl-
ing (2013) and Bonjour, Aggarwal, and Bhargava (2022) de-
tect the existence of a single coalition, but not the entire
coalition structure in multiplayer games.

3 CSL with Normal Form Games
In this section, we present how to solve the CSL problem
when G is restricted to the set of all normal form games. We
assume in this section that we have the power to design the
whole game matrix. This section demonstrates the main idea
of the paper, which will be recurring in more complicated
and restricted settings in Section 4.

3.1 Lower Bound of Sample Complexity
We start our investigation with a lower bound of the sample
complexity of any algorithm that solves the CSL problem. It
serves as a reference for designing future algorithms.
Theorem 3.1. An algorithm solving the CSL problem has a
sample complexity of at least n log2 n−O(n log2 log2 n).
Proof of Theorem 3.1: For every game G presented to the
agents, we get at most 1 bit of information from O. The
number of possible partitions of N is the Bell number Bn.
Therefore, to distinguish between all possible partitions, we
need at least ⌈log2 Bn⌉ = n log2 n−O(n log2 log2 n) bits of
information, which follows from the asymptotic expression
of Bell number established in De Bruijn (1981).

3.2 Pairwise Testing via Normal-Form Gadgets
Let S∗ be the ground truth coalition structure. It is useful
to consider the problem of determining if a given pair of
agents (x, y) are in the same coalition, i.e., [x]S∗ = [y]S∗ .
The solution to this subproblem is given by a normal-form
gadget game inspired by Fig. 1, and forms the building block
toward our eventual Iterative Grouping algorithm.
Definition 3.1. A game-strategy pair (G,Σ) is a n-player
normal form game with Σ as a default strategy profile in G.
Definition 3.2. A normal form gadget N (x, y) = (G,Σ) is
a game-strategy pair where players i ∈ N \{x, y} are dum-
mies with one action Di and recieve 0 utility. Players x and
y have actions {Cx,Dx} and {Cy,Dy} and utilities shown
in Fig. 1a. The default strategy profile is Σ = (D1, . . . ,Dn).
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Lemma 3.1. The default strategy profile of N (x, y) is a
Nash Equilibrium if and only if [x]S∗ ̸= [y]S∗ .

Proof of Lemma 3.1: If x and y are in the same coalition,
they act as a joint player with utility equal to the sum of
their individual utilities. Then, by deviating to (Cx,Cy), the
utility of the joint player will increase from 2 to 6. Thus the
default strategy profile is not a Nash Equilibrium. If x and
y are in different coalitions, then the unilateral deviation of
either the coalition of x or y will not increase their utility.
Thus the default strategy profile is a Nash Equilibrium.

We remark that the game in Fig. 1a is not the only game
that can be used to construct the normal form gadget in Def-
inition 3.2. A game with a unique NE from which agents
have incentives to deviate when they are in the same coali-
tion would serve the purpose. Definition 3.2 and Lemma 3.1
shows how to detect pairwise coalition. With Lemma 3.1,
we can already solve CSL with a sample complexity of
1
2n(n − 1) by querying the observation oracle O(N (x, y))
for all 1 ≤ x < y ≤ n. However, we can do better by check-
ing multiple agent pairs at the same time, as detailed next.

3.3 The Iterative Grouping Algorithm
Our Iterative Grouping (IG) algorithm solves CSL with a
sample complexity matching the bound in Theorem 3.1. IG
begins with an initial coalition structure where each agent is
in a separate coalition. Then, for agent i, IG iteratively tries
to find another agent j within i’s coalition. If it finds such an
agent, it merges i and j’s coalitions. Otherwise, it finalizes
i’s coalition and moves on to the next agent. In either case,
the number of unfinalized coalitions decreases. Therefore,
IG will eventually find the correct coalition structure.

To find such an agent j, IG uses a method similar to binary
search. Specifically, we will introduce in Lemma 3.2 a way
that allows us to use the observation of a single game to
determine for a set T ⊆ N , whether there is an agent j ∈ T
that is also within i’s coalition, i.e., whether T ∩ [i]S∗ ̸= ∅.
If so, we bisect T into two sets Tα and Tβ and use another
game to determine which of the two sets j is in. We then
repeat this process recursively to locate j efficiently.

With that in mind, we proceed to describe IG formally. We
start by defining the product of game-strategy pairs, which
returns a game equivalent to playing the two games sepa-
rately with utilities of each player summed, as well as a prod-
uct of default strategy profiles for each player.

Definition 3.3. Let σ1 = (c1, . . . , ck1
), σ2 = (d1, . . . , dk2

)
be two mixed strategies over the sets of actions A =
{a1, . . . , ak1

}, B = {b1, . . . , bk2
} respectively, where cθ, dη

are the probabilities of choosing aθ, bη respectively. The
product of σ1 and σ2 is a mixed strategy σ1×σ2 over A×B,
where the probability of choosing (aθ, bη) is cθdη .

Definition 3.4. Let (G1,Σ1), (G2,Σ2) be two game-strategy
pairs where Ax,i, ux,i are the action sets and utility func-
tion of player i in Gx respectively for x ∈ {1, 2}. Let Σ1 =
(σ1,i)i∈N and Σ2 = (σ2,i)i∈N . The product of (G1,Σ1) and
(G2,Σ2) is a game-strategy pair (Gp,Σp). Here, Gp is a nor-
mal form game with action set A1,i×A2,i and utility function
u1,i + u2,i for each player i ∈ N . Σp = (σ1,i × σ2,i)i∈N .

Then, by querying the observation oracle for the product
of several games, we will get an aggregated observation. We
formalize this idea in the following lemma.

Lemma 3.2. Let {N (xθ, yθ) = (Gθ,Σθ) | θ ∈ {1, . . . , k}}
be a set of k normal form gadgets. The default strategy pro-
file of N (x1, y1) × · · · × N (xk, yk) is a Nash Equilibrium
if and only if for each θ ∈ {1, 2, . . . , k}, [xθ]S∗ ̸= [yθ]S∗ .

Proof of Lemma 3.2: By Definition 3.4, playing the prod-
uct game is equivalent to separately playing G1, . . . ,Gk, and
sum up the resulting utilities of each player. Therefore, the
default strategy profile of the product is a Nash Equilibrium
if and only if the default strategy profile of each Gi is a Nash
Equilibrium. Applying Lemma 3.1 completes the proof.

With Lemma 3.2, we can design a more efficient Iterative
Grouping algorithm for the CSL problem (Algorithm 1).

Algorithm 1: Iterative Grouping (IG)
Input: The number of agents n and an observation oracleO
Output: A coalition structure S of the agents

1: Let S ← {{1}, {2}, . . . , {n}}.
2: for i ∈ N do
3: while O(

∏
[j]S ̸=[i]S

N (i, j)) = false do
4: Let T ← {j ∈ N | [j]S ̸= [i]S}.
5: while |T | > 1 do
6: Partition T into Tα, Tβ where ||Tα| − |Tβ || ≤ 1.
7: if O(

∏
j∈Tα

N (i, j)) = false then
8: Let T ← Tα.
9: else

10: Let T ← Tβ .
11: Let j ← the only element in T .
12: Merge [i]S and [j]S in S .
13: return S .

IG (Algorithm 1) starts with the initial coalition struc-
ture S = {{1}, {2}, . . . , {n}}, where each agent is in a
separate coalition (Line 1). In each iteration of the outer
for loop (Lines 3 to 12), we consider an agent i and try
to find all agents in i’s coalition [i]S∗ , where S∗ is the
ground truth coalition structure. In Line 3, we present a
game

∏
[j]S ̸=[i]S

N (i, j) to the agents, where we concur-
rently ask each agent j that is not currently recognized as in
i’s coalition [i]S to play the normal form gadgetN (i, j) with
i. If the default strategy profile in this game is not a Nash
Equilibrium (Line 3), then according to Lemma 3.2, there
must be an agent outside of [i]S that is in the same coali-
tion with i. We use binary search (Lines 4 to 10) to locate
this agent j (Fig. 2) and merge i and j’s coalitions (Lines 11
to 12). This is repeated until all players in i’s coalition are
found (Fig. 3). Repeating this for all players i ∈ N guaran-
tees we get S = S∗ once IG terminates.

Theorem 3.2. IG solves the CSL problem with a sample
complexity upper bounded by n log2 n+ 3n.

The proof of Theorem 3.2 is deferred to Appendix B.1.
Combined with Theorem 3.1, Theorem 3.2 shows that IG
solves the CSL problem with optimal sample complexity
and a matching constant up to low order terms.
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Tα Tβ

1 2 3
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Figure 2: Example of the binary search process in Algorithm 1 (Lines 4 to 11). The ground truth coalition structure is S∗ =
{{1, 2, 4}, {3, 6}, {5}} as shown by the solid lines. The algorithm is trying to find an agent in agent 1’s coalition. At first
T = {2, 3, 4, 5, 6} and is partitioned into Tα = {2, 3} and Tβ = {4, 5, 6} (left). As Tα contains an agent in 1’s coalition, T is
replaced by Tα and then partitioned into Tα = {2} and Tβ = {3} (middle). Then, as Tα still contains an agent in 1’s coalition,
T is replaced by Tα = {2} and we find an agent 2 in agent 1’s coalition (right).

1 2 3

4 5 6

i j 1 2 3

4 5 6

i

j

1 2 3

4 5 6

i

Figure 3: Example of one iteration of the outer for loop in Algorithm 1 (Lines 3 to 12). The ground truth coalition structure
is S∗ = {{1, 2, 4}, {3, 6}, {5}} as shown by the solid lines. The algorithm is trying to find all agents in agent 1’s coalition.
After finding agent 2 in agent 1’s coalition, the algorithm merges their coalitions {1}, {2} into one coalition {1, 2} (left). Then,
the algorithm finds agent 4 in agents 1 and 2’s coalition and merges their coalitions {1, 2} and {4} into one coalition {1, 2, 4}
(middle). Finally, the algorithm confirms that agent 1’s coalition is finalized (right).

3.4 Extension to Other Succinct Games
IG solves CSL with normal form games. However, some-
times there are external restrictions on what kind of games
we can design and present to the agents, forbidding us from
using general normal form games. Thus, in this subsection,
we briefly discuss how to extend IG to other succinct games,
like congestion games and graphical games.

CSL with congestion games. IG can also be extended to
congestion games (Rosenthal 1973) with a modified gadget
construction. For a pair of players x and y, we define the
congestion game gadget as the congestion game below.

S

1

2
T

c

2.5

2.5

c
0

This game is a variant of the well-known Braess’s paradox
(Braess 1968). In this game, both players want to go from
S to T . The costs of the edges are annotated on the graph
where c denotes the number of players going through the
edge. Let Σ denote the strategy profile where both players
go through S → 1 → 2 → T . We can see that Σ is a Nash
Equilibrium if and only if x and y are in different coalitions.
This is exactly what we have in Lemma 3.1. Moreover, the
products of congestion games can also be represented as a
congestion game. Therefore, we can use this gadget to re-
place N (x, y) in Algorithm 1 and solve the CSL problem
with congestion games. The sample complexity upper bound
of this algorithm is n log2 n+ 3n as well.

CSL with graphical games. A graphical game (Kearns,
Littman, and Singh 2001) is represented by a graph G, where
each vertex denotes a player. There is an edge between a pair

of vertices x and y if and only if their utilities are dependent
on each other’s strategy. To limit the size of the represen-
tation of a graphical game, a common way is to limit the
maximum vertex degree d in G. We show that with a slight
modification, IG can be extended to solve the CSL problem
with graphical games of maximum vertex degree d = 1 with
the same sample complexity upper bound n log2 n+3n. The
details are deferred to Appendix C.

4 CSL with Auctions
We now pivot from classic games to a more practical class
of games: second-price auctions with personalized reserves
(Paes Leme, Pal, and Vassilvitskii 2016). Collusion of multi-
ple agents in auctions has already been extensively observed
(see, e.g., Milgrom 2004). The auction mechanisms can be
exploited if these coordinated bidders deviate simultane-
ously. Thus, it is important to study the CSL problem with
auctions. We refer to this variant of CSL as AuctionCSL.

In such an auction, each agent i has a private value vi
for the item being auctioned and a personalized reserve
price ri. Each agent i submits a bid bi to the auction, af-
ter which the auction will choose an agent with the highest
bid i∗ ∈ argmaxi∈N{bi} and offer the item to i∗ with price
p = max{ri∗ ,maxi̸=i∗{bi}}. The agent i∗ can choose to ac-
cept or reject the offer. If i∗ rejects, the auction ends with no
transaction. Otherwise, i∗ pays p and gets the item. The item
is then redistributed within i∗’s coalition to the agent with
the highest private valuation for maximum coalition utility.

In this section, we consider an online auction setting
where we play the role of an auctioneer. Our goal is to re-
cover the coalition structure S∗. As the values {vi} are de-
termined by each agent’s valuation for the item being auc-
tioned, we study the setting where we can only design the
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reserve prices {ri}. We assume that a stream of items will ar-
rive to be auctioned, whose values {vi} are randomly gener-
ated each time, and we have no power to design them. How-
ever, we assume that we know {vi} before designing the
reserve prices {ri}: this happens when we are sufficiently
acquainted with the agents, so we can estimate their values
given a certain item. We fix the default strategy profile of the
agents as truthful bidding, i.e., bi = vi for all i ∈ N .

4.1 Group Testing via Auction Gadgets
Inspired by Algorithm 1, we still would like a way to tell
whether there is an agent j inside a set T that is in the same
coalition with another agent i using the result of a single
auction. However, since the product of two auctions is no
longer an auction (see Appendix B.6), the same method as
in Section 3 is not appropriate. Therefore, we need to design
a new gadget for auctions. The main idea remains the same.
Definition 4.1. Let v ∈ [0, 1]n and T ⊆ N . An auction
gadget A(v, T ) is a second price auction with personalized
reserves where the values of the agents are v. Let vmax and
vsmax be the maximum and second maximum value among v
respectively. The reserve prices of the agents are defined as

ri =

{
vsmax (i ∈ T )
vmax (i /∈ T ).

The default strategy profile is bidding bi = vi for all i ∈ N .
We similarly establish the following connection between

the result of an auction gadget and the coalition structure.
Lemma 4.1. Let v ∈ [0, 1]n be a vector such that vi is the
unique maximum. Let T ⊆ N\{i}. Then bidding truthfully
inA(v, T ) is a Nash Equilibrium if and only if [i]S∗ ̸= [j]S∗

(i.e., i and j are in different coalitions) for all j ∈ T .
Proof of Lemma 4.1: Let vmax = vi, vsmax = maxj ̸=i{vj}.
If ∃j ∈ T , such that i and j are in the same coalition, then
they can jointly deviate by bidding bi = vsmax and bj = vmax.
In this way, j wins the auction with price p = vsmax. j
can accept the item with this price, and redistribute it to i.
The total utility of i and j’s coalition increases from 0 to
vmax − vsmax. Thus bidding truthfully is not a Nash Equilib-
rium. If ∀j ∈ T , i and j are in different coalitions, then (i)
the unilateral deviation of i’s coalition cannot lead to pos-
itive utility as all members in this coalition have a reserve
price of vmax (ii) the unilateral deviation of any other coali-
tions cannot lead to positive utility as the maximum value
among them is vsmax, and the reserve prices of them is at
least vsmax. Thus bidding truthfully is a Nash Equilibrium.

From Lemma 4.1 and Lemma 3.2, we can see that auction
gadgets are analogous to normal form gadgets. Assuming we
have the freedom to design valuation vectors v ∈ [0, 1]n for
an auctioned item, then A(v, T ) may be used to determine
if an agent in T that is also in [i]S∗ . This yields an algorithm
similar to IG (Algorithm 1) for solving AuctionCSL under
this simplifying assumption. We describe this algorithm and
its theoretical guarantees in Appendix D.

4.2 IG under Auctions with Random Valuations
In real auctions, valuations of items are beyond our control.
We model this more realistic setting by assuming that the

values are drawn from an item pool V , which is a distribu-
tion U [0, 1]n over Rn. Intuitively, the randomness of the val-
ues makes CSL in this setting significantly more challenging
than the normal form game setting, as we cannot guarantee
progress of the algorithm if we get an unlucky draw of the
values. For example, if the item has 0 value for all agents,
then truthful bidding will always be a Nash Equilibrium no
matter what the reserve prices are. This suggests that we can
at best hope for a guarantee on the expected sample com-
plexity. We design AuctionIG for this setting.

Algorithm 2: IG with Auctions (AuctionIG)
Input: The number of agents n and an observation oracleO
Output: A coalition structure S of the agents

1: Let S ← {{1}, {2}, . . . , {n}}.
2: Let Ti ← ∅ for all i ∈ N .
3: Let Ci ← 0 for all i ∈ N .
4: Let Tfinalized ← ∅.
5: while Tfinalized ̸= N do
6: Get v ∼ V .
7: Let x← argmaxi∈N{vi} and Cx ← Cx + 1.
8: if Tx = ∅ then
9: if O(A(v, N \ [x]S)) = false then

10: Let Ti ← N \ [x]S for all i ∈ [x]S .
11: else
12: Let Tfinalized ← Tfinalized ∪ [x]S .
13: else
14: Partition Tx into Tα, Tβ where ||Tα| − |Tβ || ≤ 1.
15: if O(A(v, Tα)) = false then
16: Let Ti ← Tα for all i ∈ [x]S .
17: else
18: Let Ti ← Tβ for all i ∈ [x]S .
19: if |Tx| = 1 then
20: Let y ← the only element in Tx.
21: Merge [x]S and [y]S in S .
22: Let Ti ← ∅ for all i ∈ [x]S .
23: return S .

The main idea of AuctionIG is still similar to IG (Algo-
rithm 1). For agent x, we try to iteratively find other agents
in x’s coalition [x]S∗ using binary search. However, as we
do not have control over which agent has the largest value,
we cannot do this sequentially for each agent as in IG. In-
stead, we run multiple instances of binary search in parallel,
each progressing depending on which item is drawn.

In AuctionIG, for each i ∈ N we maintain Ti as a set
containing another agent in i’s coalition (Line 2), Ci as the
number of times vi has appeared as the largest value in v
(Line 3), and Tfinalized as the set of agents whose coalitions
have been finalized (Line 4). Each time we draw an item v
from V , we find the agent x with the largest value (Lines 6
to 7), and try to proceed with the binary search to expand
x’s coalition. If Tx = ∅, then we should start a new bi-
nary search for x’s coalition (Lines 9 to 12). We first check
whether there is an agent in x’s coalition in N \ [x]S . If so,
we set Ti to N \ [x]S for all i ∈ [x]S ; otherwise, we know
that x’s coalition is finalized, and we add the entire coali-
tion to Tfinalized (Line 12). If Tx ̸= ∅, then we are in the
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middle of a binary search for x’s coalition (Lines 13 to 18).
We partition Tx into Tα and Tβ and check whether there is
an agent in x’s coalition in Tα. If so, we set Ti to Tα for
all i ∈ [x]S ; otherwise, we set Ti to Tβ for all i ∈ [x]S . If
|Tx| = 1, then we have found another agent y in x’s coali-
tion (Lines 20 to 22). We merge their coalitions and set Ti

to ∅ for all i ∈ [x]S , indicating that binary search should
be restarted for this coalition. The outermost loop runs un-
til Tfinalized = N , which means that we have finalized the
coalitions of all agents.

To analyze AuctionIG, we utilize the invariants in the fol-
lowing Lemma, whose proof is deferred to Appendix B.2.
Lemma 4.2. Let S∗ be the correct coalition structure. The
following holds throughout the execution of AuctionIG.

(a) [i]S ⊆ [i]S∗ , ∀i ∈ N .
(b) [i]S = [i]S∗ , ∀i ∈ Tfinalized.
(c) Ti = Tj if [i]S = [j]S .
(d) ∃j ∈ Ti such that j ∈ [i]S∗ \ [i]S if Ti ̸= ∅.

Next, we show a termination condition for AuctionIG.
Lemma 4.3. AuctionIG terminates no later than the time
when Ci ≥ 2 log2 n+ 4 holds for all i ∈ N .

We will prove Lemma 4.3 in Appendix B.3. To sketch the
proof, we define Si = {[j]S | j ∈ [i]S∗} and

f(T ) =

{
⌈log2 n⌉+ 1 (T = ∅)
⌈log2 |T |⌉ (T ̸= ∅).

According to Lemma 4.2 (c), we can unambiguously use TS

to denote Tx for any x ∈ S ∈ Si and define the potential
function Φi(T,S) = ⌈log2 n⌉ · |Si|+

∑
S∈Si

f(TS), where
T is the vector of all Ti. Intuitively, the potential function
characterizes the remaining progress associated with agent
i, where ⌈log2 n⌉ · |Si| adds ⌈log2 n⌉ for each unmerged
coalition in Si and

∑
S∈Si

f(TS) adds ⌈log2 |TS |⌉ for each
coalition S ∈ Si, indicating the remaining steps in the bi-
nary search. To complete the proof, we show that Φi(T,S)
decreases by at least 1 after any Cj for j ∈ [i]S∗ increases.

Lemma 4.3 shows that we will have finalized the coalition
structures when we have gotten for each agent i, 2 log2 n+4
items that are most valuable to i. This connects the sam-
ple complexity of AuctionIG to a well-studied problem in
statistics, the coupon collector’s problem (Newman 1960;
Erdős and Rényi 1961). In this problem, there are n types of
coupons, and each time we draw a coupon, we get a coupon
of a uniformly random type. We want to collect k sets of
coupons, where each set contains one coupon of each type.
The coupon collector’s problem asks for the expected num-
ber of draws needed to collect k sets of coupons Tccp(n, k).

Lemma 4.3 demonstrates that the sample complexity of
AuctionIG is upper bounded by Tccp(n, 2 log2 n+ 4). Com-
bining this with the result of Papanicolaou and Doumas
(2020) from the coupon collector’s problem’s literature, we
have Theorem 4.1 with its proof deferred to Appendix B.4.
Theorem 4.1. AuctionIG solves AuctionCSL with expected
sample complexity upper bounded by (4.16+ o(1))n log2 n.

Using Markov’s inequality, we can also transform Theo-
rem 4.1 into a PAC learning type of result as below.

Corollary 4.1 (PAC Complexity). For any δ ∈ (0, 1), Auc-
tionIG correctly learns the coalition structure with probabil-
ity at least 1− δ using (4.16 + o(1))n log2 n

δ auctions.
We also study the performance of AuctionIG in the spe-

cial cases when m = 1 and m = n, i.e., when there is only
one coalition and when each agent is in a separate coalition.
The proof is given in Appendix B.5.
Theorem 4.2. Let m be the number of coalitions.
(a) When m = 1, the sample complexity of AuctionIG is

bounded by 2n log2 n+ 4n determinsitically.
(b) When m = n, the expected sample complexity of Auc-

tionIG is exactly nHn ≤ (0.70 + o(1))n log2 n.

5 Experiments
We conduct experiments to evaluate the performance of our
algorithms in practice. As IG (Algorithm 1, normal form
games) is deterministic and theoretically optimal (up to low
order terms) in sample complexity, we only evaluate Auc-
tionIG (Algorithm 2, auctions). We implement it in Python
and evaluate it on a server with 56 cores and 504G RAM,
running Ubuntu 20.04.6. The source codes can be found at
https://github.com/YixuanEvenXu/coalition-learning.

Experiment setup. We evaluate AuctionIG under differ-
ent settings of n and m, where n is the number of agents
and m is the number of coalitions. For each setting, we fix
n and either fix m or sample m from U [n]. Then, we syn-
thesize a coalition structure S∗ with exactly n agents and m
coalitions at random. We then run AuctionIG, check the cor-
rectness of its output, and record the sample complexity (the
total number of samples used). We repeat this process 100
times and report the distribution of the sample complexity.
We also report the theoretical upper bound of the expected
sample complexity given by Theorem 4.1 and whenever ap-
plicable Theorem 4.2. The results are shown in Fig. 4.

AuctionIG’s performance with different n. As shown in
Figs. 4a to 4c, we let n = {2, 50, 100, 200, 500, 1000} and
consider fixing m = 1 (Fig. 4a), fixing m = n (Fig. 4b) and
sampling m from U [n] (Fig. 4c). For m = 1, n, we apply
the bounds given in Theorem 4.2, and for m ∼ U [n], we ap-
ply the bound given in Theorem 4.1. The results show that
the actual performance of AuctionIG is always within a con-
stant factor of its theoretical bounds given in Theorems 4.1
and 4.2. Moreover, when m = n, the actual performance is
very close to the theoretical bound.

AuctionIG’s performance with different m. As shown
in Figs. 4g to 4i, we let m = {1, 0.1n, 0.2n, . . . , n} and
consider fixing n = 10 (Fig. 4g), n = 100 (Fig. 4h) and
n = 1000 (Fig. 4i). We plot the theoretical bounds given in
Theorem 4.1 for all m and those given in Theorem 4.2 for
m = 1, n. The results show that when m ∈ (1, n), the sam-
ple complexities of AuctionIG are similar across different
values of m. However, when m = 1, n, the sample com-
plexities are significantly lower. This trend is increasingly
visible when n grows larger. This shows that Theorem 4.2
complements Theorem 4.1 well in the sense that it provides
a tighter bound for the special cases when m = 1, n.
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(a) Expected sample complexity (m = 1)
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(b) Expected sample complexity (m = n)
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(c) Expected sample complexity (m ∼ U [n])
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(f) Sample complexity CDF (m ∼ U [n])
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(g) Expected sample complexity (n = 10)
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(h) Expected sample complexity (n = 100)
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(i) Expected sample complexity (n = 1000)

Figure 4: Performance of AuctionIG under different settings of n and m. Bound refers to the theoretical bound of its expected
sample complexity given by Theorem 4.1 and whenever applicable Theorem 4.2. AuctionIG refers to the average sample
complexity of AuctionIG over 100 runs with error bars indicating its standard deviation. The results show that the actual
performance of AuctionIG is always within a constant factor of its theoretical bounds given in Theorems 4.1 and 4.2.

Correct Probability 50% 90% 99%
Bound in Corollary 4.1 82916 414577 4145767

Algorithm
m = 1 11306 11401 11482
m = n 6610 7294 7915

m ∼ U [n] 16055 18009 19510

Table 2: The empirical sample complexity of AuctionIG
with 50%, 90% and 99% probability of correctness when
n = 1000 and the corresponding bounds given in Corol-
lary 4.1. The results show that in practice AuctionIG per-
forms much better than the bounds given in Corollary 4.1.

PAC complexity of AuctionIG. As shown in Figs. 4d
to 4f, we evaluate the PAC complexity of AuctionIG by plot-
ting the CDFs of its sample complexity over 100 runs un-
der different settings of n and m. We also highlight several
points on the CDFs that correspond to the sample complex-
ity of AuctionIG with 50%, 90%, and 99% probability of
correctness when n = 1000 in Table 2. We can see that the
actual sample complexity of AuctionIG is relatively stable
across different runs and is much lower than the theoretical
bounds given in Corollary 4.1 when we require a high proba-
bility of correctness. This is because Corollary 4.1 is derived
using Markov’s inequality, which is a very loose bound. In
fact, with a finer-grained analysis of the coupon collector’s

problem, we can improve it using the limit distribution of
the coupon collector’s problem (see e.g. Papanicolaou and
Doumas 2020). However, in that way, we will not be able to
write the PAC complexity in a simple closed form.

Summary of experiment results. The experiments show
that Theorems 4.1 and 4.2 characterize the expected sample
complexity of AuctionIG well with a tight constant, espe-
cially when m = n where the bounds are almost perfect.
Moreover, the empirical PAC complexity of AuctionIG is
much lower than the bounds given in Corollary 4.1, demon-
strating its practicality.

6 Conclusion and Discussion
In this paper, we propose and study the Coalition Struc-
ture Learning (CSL) and AuctionCSL problems under the
one-bit observations. We present a novel Iterative Grouping
(IG) algorithm and its counterpart AuctionIG to efficiently
tackle these problems, both achieving a sample complexity
with asymptotically matching lower bounds. Empirical re-
sults demonstrate that these algorithms are indeed sample
efficient and useful in practice. Future work includes (i) han-
dling cases where players are aware of and are strategically
manipulating our algorithm, (ii) handling bounded rational-
ity, (iii) more general classes of observations, and (iv) ad-
mitting equilibrium concepts beyond Nash.
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