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Abstract

To infer a diffusion network based on observations from
historical diffusion processes, existing approaches assume
that observation data contain exact occurrence time of each
node infection, or at least the eventual infection statuses of
nodes in each diffusion process. They determine potential
influence relationships between nodes by identifying frequent
sequences, or statistical correlations, among node infections.
In some real-world settings, such as the spread of epidemics,
tracing exact infection times is often infeasible due to a
high cost; even obtaining precise infection statuses of nodes
is a challenging task, since observable symptoms such as
headache only partially reveal a node’s true status. In this
work, we investigate how to effectively infer a diffusion
network from observation data with uncertainty. Provided
with only probabilistic information about node infection
statuses, we formulate the problem of diffusion network
inference as a constrained nonlinear regression w.r.t. the
probabilistic data. An alternating maximization method is
designed to solve this regression problem iteratively, and
the improvement of solution quality in each iteration can be
theoretically guaranteed. Empirical studies are conducted on
both synthetic and real-world networks, and the results verify
the effectiveness and efficiency of our approach.

Introduction
The spread of viewpoints, rumors, and diseases are often
modelled as probabilistic processes over a diffusion net-
work. In the network, a directed edge represents a parent-
child influence relationship, which indicates that the parent
node can influence the child node with a certain proba-
bility. In most cases, such influence relationships are not
naturally visible or traceable, and we only observe a set
of diffusion results from a limited number of historical
diffusion processes (Gan et al. 2021). Diffusion network
inference aims to infer the diffusion network structure (i.e.,
the topology of influence relationships) from the observation
data. This problem has received considerable attention in
areas such as information propagation (He et al. 2015),
viral marketing (Leskovec, Adamic, and Huberman 2007),
and epidemic prevention (Wallinga and Teunis 2004) since
the inferred diffusion network structure enables an intuitive
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understanding of the underlying interactions between nodes,
and is essential for developing strategies to control future
diffusion processes (Huang et al. 2021).

Most existing approaches assume that observation data
contain the exact times when node infections occurred.
With this temporal information, they determine potential
influence relationships between nodes by identifying fre-
quent sequences of node infections, since nodes infected
sequentially within a short time interval are considered more
likely to possess influence relationships (Gomez-Rodriguez,
Leskovec, and Krause 2010; Myers and Leskovec 2010;
Gomez-Rodriguez, Balduzzi, and Schölkopf 2011; Gomez-
Rodriguez and Schölkopf 2012; Du et al. 2012; Gomez-
Rodriguez, Leskovec, and Schölkopf 2013a,b; Daneshmand
et al. 2014; Wang et al. 2014). Nonetheless, monitoring
every node constantly during each diffusion process to
obtain such temporal information of node infections is often
expensive in practice. Therefore, some other approaches aim
to carry out diffusion network inference without temporal
information, using only the eventual infection statuses of
nodes observed at the end of each diffusion process (Amin,
Heidari, and Kearns 2014; Huang et al. 2019, 2021, 2022,
2023a; Han et al. 2020; Gan et al. 2021). Toward this,
they measure the statistical correlations of node infections,
and identify influence relationships by checking which node
pairs have high infection correlations.

In this paper, we study the problem of diffusion network
inference in a less idealized and more realistic setting, i.e.,
only probabilistic information about node infection statuses
is provided. This uncertainty is interpreted differently in
various contexts. For example, in epidemic containment, it is
difficult to confirm the infection statuses of outpatients based
on observable symptoms such as headache and fatigue, since
there is a certain probability that these symptoms may be
caused by other reasons like lack of sleep; in viral marketing
campaigns, it is often the case that the respondents are more
prone to probabilistic feedback than a clear-cut answer. To
the best of our knowledge, only one existing work (Sefer
and Kingsford 2015) has partially addressed the problem
of inferring diffusion networks based on probabilistic data.
In addition to the probabilistic information about node in-
fection statuses, that work further requires prior knowledge
on the transmission probabilities between different node
statuses, and the temporal information of node infections.
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Aiming at a more general solution to inferring diffusion
networks from probabilistic data, we formulate the problem
as a constrained nonlinear regression w.r.t. the probabilis-
tic data, and propose an effective and efficient algorithm
called PIND (a re-ordered acronym of Inferring Networks
from Probabilistic Data) to solve the regression problem
iteratively. In each iteration, an alternating maximization
method is adopted to update the estimate on the probability
of the existence of each potential influence relationship,
and the influence relationship strengthens. The quality of
the estimate is theoretically guaranteed to improve across
the iterations. After the convergence of iterations, the most
probable influence relationships in the objective diffusion
network can be easily identified based on the estimate.

The remainder of the paper is organized as follows. We
first present our problem statement, and then introduce our
proposed PIND algorithm, followed by reporting experi-
mental results and our findings before concluding the paper.

Problem Statement

A diffusion network is represented as a directed graph
G = (V,E), where V = {v1, ..., vn} is the set of
n nodes in the network, and E is the set of directed
edges (i.e., influence relationship) between the nodes. A
directed edge (vj , vi) ∈ E from a parent node vj ∈
V to a child node vi ∈ V indicates that when vj is
infected and vi is uninfected, vj will infect vi with a certain
probability αji, which is known as infection propagation
probability and can be regarded as the strength of the
influence relationship from vj to vi. We assume that the
diffusion processes on G follow the Independent Cascade
(IC) model, in which each infected parent node tries to infect
each of its uninfected children with corresponding infection
propagation probability independently. This assumption is
customarily adopted in prior art, and we would like to point
out that our proposed algorithm can be extended to other
propagation models such as the linear threshold model.

In the problem of diffusion network inference, the node
set V is given, while the network structure, i.e., directed
edge set E, is unknown, neither the infection propagation
probabilities w.r.t. the structure. To infer the structure of a
diffusion network, a set S of diffusion results observed from
a number of historical diffusion processes on the network is
required. In this paper, we assume that the diffusion results S
contain only the probabilistic information of node infection
statuses, i.e., S = {sℓi | i ∈ {1, ..., n}, ℓ ∈ {1, ..., β}},
where β is the number of historical diffusion processes, and
sℓi ∈ [0, 1] refers to the probability that node vi is infected
in the ℓ-th historical diffusion process. Then, our problem
statement for diffusion network inference with probabilistic
data can be formulated as follows.

Given: a set S = {S1, ..., Sβ} of diffusion results
observed on a diffusion network G at the end of β diffusion
processes, where Sℓ = {sℓ1, ..., sℓn} (ℓ ∈ {1, ..., β}) records
the infection probability sℓi of each node vi ∈ V in the ℓ-th
diffusion process.

Infer: the edge set E of the diffusion network G.

The PIND Algorithm
In this section, we first elaborate how to estimate the
existence of influence relationships in a probabilistic way,
and then present how to reduce redundant computation in
the influence relationship estimation with a pruning method
for candidate parent nodes. We conclude this section with a
complexity analysis on our approach.

Estimation of Influence Relationships
Objective Function Let Fi be the set of parent nodes of
node vi ∈ V in objective diffusion network, according to IC
model, the log-likelihood of vi being infected by any node
in set Fi in the ℓ-th diffusion process can be calculated as

log(1−
∏

vj∈Fi

(1− sℓjαji)), (1)

the log-likelihood of vi not being infected by any node in set
Fi in the ℓ-th diffusion process can be calculated as

log(
∏

vj∈Fi

(1− sℓjαji)) =
∑
vj∈Fi

log(1− sℓjαji). (2)

Since the probability that node vi is infected in the ℓ-th
historical diffusion process is sℓi and the probability that
node vi is not infected in the ℓ-th historical diffusion process
is 1− sℓi , then the log-likelihood of observation sℓi is

G(sℓi) =sℓi log
(
1−

∏
vj∈Fi

(1− sℓjαji)
)
+

(1− sℓi)
∑
vj∈Fi

log(1− sℓjαji).
(3)

Let variable xji ∈ {0, 1} indicate whether there is a directed
edge from node vj to node vi (1 for yes and 0 for no), and
Ci = V \{vi} denote the set of all possible candidate parent
nodes of vi if we can infer each variable xji (vi ∈ V, vj ∈
Ci) accurately, then according to Eq. (3), the following
equation should be satisfied.

G(sℓi) =sℓi log
(
1−

∏
vj∈Ci

(1− sℓjαji)
xji

)
+

(1− sℓi)
∑

vj∈Ci

xji log(1− sℓjαji).
(4)

Let x be the collection of all xji (vi ∈ V, vj ∈ Ci), and α be
the collection of all αji (vi ∈ V, vj ∈ Ci), then the overall
log-likelihood of data S is

G(S) =
β∑

ℓ=1

n∑
i=1

G(sℓi), (5)

which is a function w.r.t. x and α. Let

L(x, α) = G(S). (6)

A greater value of L(x, α) indicates that the corresponding
x and α are more close to the truth. Therefore, our goal is
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to find optimal x and α that maximize the value of L(x, α),
which can be formulated as follows.

maxL =

β∑
ℓ=1

n∑
i=1

sℓi log
(
1−

∏
vj∈Ci

(1− sℓjαji)
xji

)
+

β∑
ℓ=1

n∑
i=1

(1− sℓi)
∑

vj∈Ci

xji log(1− sℓjαji)

s.t. xji ∈ {0, 1}, αji ∈ [0, 1], ∀i, j.

(7)

The constrained maximization problem above is a nonlinear
mixed integer programming, which is difficult to be solved
directly. Therefore, we relax the integer constraint on each
xji by allowing xji ∈ [0, 1] (j, i ∈ {1, ..., n}) such that
continuous programming methods can be applied to this
problem, where the continuous value of each xji denotes
the probability that there is a directed edge from node vj to
node vi. This kind of relaxations are commonly used to solve
the problem of integer programming. Then, the problem in
Eq. (7) is relaxed and reformulated as follows.

maxL =

β∑
ℓ=1

n∑
i=1

sℓi log
(
1−

∏
vj∈Ci

(1− sℓjαji)
xji

)
+

β∑
ℓ=1

n∑
i=1

(1− sℓi)
∑

vj∈Ci

xji log(1− sℓjαji)

s.t. xji ∈ [0, 1], αji ∈ [0, 1], ∀i, j.

(8)

Solving Method To solve the problem in Eq. (8), the
straightforward method is solving equations ∂L

∂x = 0 and
∂L
∂α = 0, where ∂L

∂x and ∂L
∂α are the derivatives of L(x, α)

w.r.t. x and α, respectively, which can be calculated as

∂L
∂αji

=

β∑
ℓ=1

xjis
ℓ
j

1− sℓjαji
Lℓ
i , (9)

∂L
∂xji

= −
β∑

ℓ=1

log(1− sℓjαji)L
ℓ
i . (10)

where

Lℓ
i = sℓi

∏
vk∈Ci

(1− sℓkαki)
xki

1−
∏

vk∈Ci
(1− sℓkαki)xki

− (1− sℓi). (11)

Nevertheless, directly solving equations ∂L
∂x = 0 is still

difficult, and its solution may not satisfy the constraints
in Eq. (8). To address this issue, we adopt an alternating
maximization method, which works as follows.

Step 1. Initializing α and x under constraints that xji ∈
[0, 1], αji ∈ [0, 1], ∀i, j.

Step 2. Selecting an appropriate update direction y (based
on ∂L

∂x ) and an appropriate step size θ, and updating x as

x← x+ θy. (12)

Step 3. Selecting an appropriate update direction z (based
on ∂L

∂α ) and an appropriate step size λ, and updating α as

α← α+ λz. (13)

Step 4. Repeating Steps 2 and 3 until convergence.
In the above alternating maximization method, how to

selecting appropriate update directions and step sizes for x
and α is of central importance. Let x(T ) be the value of x,
and α(T ) be the value of α, in the T -th iteration of Steps
2 and 3, f(x) = L(x, α(T )) be a function w.r.t. x, and
g(x) = L(x(T ), α) be a function w.r.t. α, then we have

∂f

∂x
=

∂L
∂x
|α=α(T ) , (14)

∂g

∂α
=

∂L
∂α
|x=x(T ) . (15)

As the direction of gradient is the steepest ascent di-
rection, we can utilize the gradient to update x and α.
Furthermore, to make the constraints in Eq. (8) satisfied, we
modify the gradient and select the update directions y and z
of variables x and α as follows.

yji=



0, if x(T )
ji =0,

∂L
∂xji

|(x,α)=(x(T ),α(T ))< 0;

0, if x(T )
ji =1,

∂L
∂xji

|(x,α)=(x(T ),α(T ))> 0;

∂L
∂xji

|(x,α)=(x(T ),α(T )), otherwise.

(16)

zji=



0, if α(T )
ji =0,

∂L
∂αji

|(x,α)=(x(T ),α(T ))< 0;

0, if α(T )
ji =1,

∂L
∂αji

|(x,α)=(x(T ),α(T ))> 0;

∂L
∂αji

|(x,α)=(x(T ),α(T )), otherwise.

(17)

Next, we discuss how to select step sizes θ and λ. To this
end, first, we define θji and λji as follows.

θji =



xji

−yji
, if yji < 0;

1− xji

yji
, if yji > 0;

+∞, if yji = 0.

(18)

λji =



αji

−zji
, if zji < 0;

1− αji

zji
, if zji > 0;

+∞, if zji = 0.

(19)

Let
θ′ = min{θji | i ∈ {1, ..., n}, vj ∈ Ci}, (20)

relationship θ ⩽ θ′ can guarantee that if x(T ) is feasible
(i.e., x(T )

ji ∈ [0, 1], ∀i, j), then x(T ) + θy is also feasible.
Similarly, let

λ′ = min{λji | i ∈ {1, ..., n}, vj ∈ Ci}, (21)

relationship λ ⩽ λ′ can guarantee that if α(T ) is feasible,
then α(T ) + λz is also feasible. In other words, θ′ and
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λ′ should be the upper bounds of step sizes θ and λ, re-
spectively. Furthermore, to guarantee the value of objective
function L becoming greater after the updating of x and α,
we could select step sizes θ and λ based on the following two
lemmas. Note that all the proofs related to this section are
given in the supplementary material (Huang et al. 2023b).
lemma 1. If y ̸= 0 (i.e., ∃yji ̸= 0), then there exists a
nonnegative integer m such that f(x(T )+ θ′

2m y) > f(x(T )).
lemma 2. If z ̸= 0 (i.e., ∃zji ̸= 0), then there exist a
nonnegative integer k such that g(α(T ) + λ′

2k
z) > g(α(T )).

Based on Lemmas 1 & 2, we can set the step sizes θ and
λ as θ = θ′

2m and λ = λ′

2k
, and then gradually increase the

values of nonnegative integers m and k until relationships
f(x(T ) + θ′

2m y) > f(x(T )) and g(α(T ) + λ′

2k
z) > g(α(T ))

are satisfied. In this way, the following two theorems can
guarantee that the value of objective function L will become
greater in the next iteration of Steps 2 & 3.

Theorem 1. Let x(T ) and α(T ) be the current values of x
and α, respectively, and m be a great enough nonnegative
integer such that f(x(T ) + θ′

2m y) < f(x(T )), if we update
x(T ) to x(T+1) by Eq. (12), then we have

L(x(T+1), α(T )) ⩾ L(x(T ), α(T )), (22)

where the equal sign holds if and only if x(T ) = x(T+1).
Theorem 2. Let x(T ) and α(T ) be the current values of x
and α, respectively, and k be a great enough nonnegative
integer such that g(α(T ) + λ′

2k
z) > g(α(T )), if we update

α(T ) to α(T+1) by Eq. (13), then we have

L(x(T ), α(T+1)) ⩾ L(x(T ), α(T )), (23)

where the equal sign holds if and only if α(T ) = α(T+1).
With the selected update directions and step sizes, the

problem in Eq. (8) can be solved by applying the alternating
maximization method. Let (x∗, α∗) be the solution found by
this method, then x∗ indicates our estimated probabilities
of the existence of each potential parent-child influence
relationship. As the original problem in Eq. (7) aims at an
integral solution for x, we carry out the following two steps:
(1) By repeatedly sampling the value of each xji ∈ {0, 1} in
x from probability x∗

ji ∈ [0, 1], we obtain a set of samples
{x̂1, ..., x̂r} for x, where r is the times of sampling; (2) we
select an optimal sample x̂∗ from {x̂1, ..., x̂r} by solving

x̂∗ = argmaxx̂i,i∈{1,...,r} L(x̂i, α
∗). (24)

Then, x̂∗ is our estimated integral solution for x.

Pruning of Candidate Parent Nodes
Given the fact that the infections of nodes are only caused by
their parent nodes with a certain probability, the infections
of the parent nodes and corresponding child nodes should
have relatively great positive correlations. In contrast, if the
infection statuses of two nodes have no or an extremely low
positive correlation, there is a very low probability that these
two nodes have an influence relationship between them. To

quantify the correlations of node infections, mutual infor-
mation (abbreviated as MI) is a commonly used criterion
(Huang et al. 2019). In our problem, it can be calculated as

MI(Xi, Xj)

=
1∑

a=0

1∑
b=0

p(Xi=a,Xj=b) ln
p(Xi=a,Xj=b)

p(Xi=a)p(Xj=b)
,

(25)

where Xi is the infection status variable of node vi,

p(Xi=a) =
1

β

β∑
ℓ=1

p(Xℓ
i = a),

p(Xj=b) =
1

β

β∑
ℓ=1

p(Xℓ
j = b),

p(Xi=a,Xj=b) =
1

β

β∑
ℓ=1

p(Xℓ
i = a)p(Xℓ

j = b),

(26)

and p(Xℓ
i =0) = 1−sℓi , p(Xℓ

i =1) = sℓi .
A greater MI value indicates a stronger correlation be-

tween the infection statuses of nodes vi and vj . For a node
that has no influence relationship with vi, its infection status
often has no (or very low) correlations to the infection status
of vi, resulting in a very small MI value (close to 0).

Inspired by this line of reasoning, we screen out insignif-
icant candidate parent nodes for each node by the following
two steps. First, we calculate the MI value for each two
nodes in the network. Then, we perform a modified K-
means algorithm with K=2 and one of the two means fixed
at 0 through all iterations of K-means, to efficiently partition
all MI values into two groups, where one group has a small
mean close to 0. Let η be the largest value in the group
with a mean close to 0. Then, for each MI(Xi, Xj) ⩽ η,
we regard the corresponding node vj as an insignificant
candidate parent node for node vi and exclude vj from the
candidate parent node set Ci of vi.

This heuristic pruning method should be performed be-
fore the estimation of influence relationship, to screen out
insignificant candidate parent nodes from the set Ci of the
candidate parent nodes for each node vi, and enables the
PIND algorithm to focus on influence relationships that are
more likely to exist in the real diffusion network.

Complexity Analysis
PIND algorithm consists of the following two parts. (1) In
the phase of pruning candidate parent nodes, calculating
MI values requires O(βn2) time, and performing K-means
on these MI values takes O(τn2) time, where β is the
number of historical diffusion processes, n is the number
of network nodes, and τ is the number of iterations of K-
means. (2) In the phase of estimating influence relationship,
the optimization problem in Eq. (8) is iteratively solved by
an alternating maximization method. In each iteration of this
method, calculating the partial derivatives can be finished
within O(βc2n) time, and updating variables x and α takes
about O(cn) time, where c is the upper bound of the number
of candidate parent nodes of each node in the network, i.e.,
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Graphs Number n of Nodes Average Degree
G1–G5 1000, 1500, 2000, 2500, 3000 4

G6–G10 2000 2, 3, 4, 5, 6

Table 1: Properties of LFR benchmark graphs.

c = max{|Ci| | i = 1, ..., n} ≪ n. Therefore, solving
the problem in Eq. (8) takes O(tβc2n) time, where t is the
number of iterations of alternating maximization method.

In summary, the overall time complexity of PIND algo-
rithm is O(βn2 + τn2 + tβc2n).

Experimental Evaluation
In this section, we first introduce the experimental setup,
and then evaluate our PIND algorithm on synthetic
and real-world networks. We investigate the effects of
diffusion network size, the average degree of diffusion
network, the uncertainty of observed infection data, and
the amount of diffusion processes, on the accuracy
and running time of PIND. All algorithms in the
experiments are implemented in Python, running on
a MacBook Pro with Intel Core i5-1038NG7 CPU at
2.00GHz and 16GB RAM. The source code of PIND
and the data used in the experiments are available at
https://github.com/DiffusionNetworkInference/PIND.

Experimental Setup
Network. We adopt LFR benchmark graphs (Lancichinetti,
Fortunato, and Radicchi 2008) as the synthetic diffusion
networks. By setting different generation parameters, such
as the number n of nodes and the average degree of each
node, we generate a series of LFR benchmark graphs with
properties summarized in Table 1. Similar synthetic network
generation methods are commonly used in existing studies
(Huang et al. 2019, 2021; Gan et al. 2021; Han et al.
2020). In addition, we also adopt two commonly used real-
world microblogging networks (Wang et al. 2014), namely,
(1) DUNF, which contains 750 users and 2974 following
relationships, and (2) DPU, which contains 1038 users and
11385 following relationships.

Infection Data. The diffusion results S = {S1, ..., Sβ}
can be generated by simulating β times of diffusion pro-
cesses on each network with randomly selected initially in-
fected nodes in each simulation (the ratio of initially infected
nodes is 15%). In each diffusion process, each infected
node tries to infect its uninfected child nodes with a certain
probability, which subjects to a Gaussian distribution with a
mean of 0.3 and a standard deviation of 0.05, to make about
95% of infection propagation probabilities within a range
from 0.2 to 0.4. Besides diffusion results S, the cascades
(i.e., the exact times when node infections occurred) are
also recorded for cascade-based tested algorithms in the
experiments. Similar generation methods for infection data
are commonly used in existing studies (Gomez-Rodriguez,
Leskovec, and Krause 2010; Amin, Heidari, and Kearns
2014; Wang et al. 2014; Huang et al. 2019, 2021, 2023a;
Han et al. 2020; Gan et al. 2021; Yan et al. 2017). To

add uncertainty into the infection data, for each exact node
infection status s ∈ {0, 1}, we replace it with |s− u|, where
u is a random uncertainty factor and its value subjects to a
Gaussian distribution with a mean µ and a standard deviation
of 0.1 (if µ = 0, the standard deviation is 0). All generated
infection data are stored by OceanBase (Yang et al. 2023).

Performance Criterion. We evaluate the performance
of PIND algorithm in terms of the accuracy of structure
inference. For an inferred diffusion network, the accuracy
of structure inference can be measured by the F-score of the
inferred directed edges: F -score = 2·precision·recall

precision+recall , where
precision = NTP

NTP+NFP
, recall = NTP

NTP+NFN
, NTP is the

number of true positives, i.e., the true edges which are cor-
rectly inferred by the algorithm; NFP is the number of false
positives, i.e., the wrong inferred edges which are not in the
real network; and NFN is the number of false negatives,
i.e., the true edges which are not correctly inferred by the
algorithm. On each network, we execute PIND 10 times, and
report the average F-score as the accuracy of PIND on this
network (the corresponding standard deviations are always
less than 0.001 in all experiments).

Benchmark Algorithms. We compare PIND with (1)
CORMIN (Sefer and Kingsford 2015), which is, to the
best of our knowledge, the only existing approach to diffu-
sion network inference with probabilistic data, (2) NetRate
(Gomez-Rodriguez, Balduzzi, and Schölkopf 2011), which
is a classical cascade-based approach to diffusion network
inference, and (3) TENDS (Han et al. 2020), which is a
high-performance node infection status-based approach to
diffusion network inference. In our PIND algorithm, the
number r of sampling rounds for x is set to 100, and the
stop condition for the iterative updates of x and α is that the
variations of each xji ∈ x and each αji ∈ α are less than
0.01. Since CORMIN requires to know the node statuses
at different timestamps, we provide it with the temporal
information of node infections. Since NetRate takes only
cascades as input, the uncertainties of node infection statuses
do not work for NetRate. Therefore, we execute NetRate
with exact cascades in the experiments. Since TENDS
cannot directly deal with probabilistic data, we repeatedly
sample 0/1 value 50 times from each probability sℓi (i ∈
{1, ..., n}, ℓ ∈ {1, ..., β}) to obtain 50 groups of samples
of exact node infection statuses, and then report the best
F-score of TENDS on these 50 groups of samples as the
accuracy of this approach.

Effect of Diffusion Network Size
To study the effect of diffusion network size on algorithm
performance, we adopt five synthetic networks, i.e., G1–G5,
whose sizes vary from 1000 to 3000. We simulate 300 times
of diffusion processes on each network (i.e., β = 300), and
set the mean µ of uncertainty factor to 0.3.

Fig. 1 illustrates the F-score and execution time of each
tested algorithm, from which we can observe that PIND
outperforms CORMIN, NetRate and TENDS in terms of
accuracy, and we can also have the following observations.

(1) The accuracy of PIND and TENDS is reasonably
insensitive to diffusion network size. TENDS’s insensi-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20434



1000 1500 2000 2500 3000

Network Size

0

0.2

0.4

0.6

0.8

F
-s

c
o

re

CORMIN

NetRate

TENDS

PIND

(a) Accuracy

1000 1500 2000 2500 3000

Network Size

103

104

105

R
u

n
n

in
g

 T
im

e
 (

s
)

CORMIN

NetRate

TENDS

PIND

(b) Running time

Figure 1: Effect of diffusion network size.
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Figure 2: Effect of network’s average degree.

tivity to diffusion network size has also been verified in
existing study (Han et al. 2020). Nonetheless, TENDS’s
accuracy in this experiment is poor. This is because the
samples of node infection statuses are far from the real
situation, leading to large inference errors for TENDS. This
observation indicates that straightforward sampling from the
probabilistic data is not a very suitable approach to dealing
with probabilistic data. In contrast, in our PIND algorithm,
the theoretical guarantee on the improvement of its solution
quality helps it achieve a reasonably robust accuracy on
networks with different sizes.

(2) Larger network sizes degrade the accuracy of
CORMIN and NetRate. This is because CORMIN and
NetRate infer influence relationships by checking whether
the infections of two nodes are often within a time interval
in historical diffusion processes. Nonetheless, a few nodes
may be infected at nearly the same time, even though they
have no direct influence relationship. In a larger network,
more nodes are likely to be involved in each diffusion
process, causing more aforementioned phenomena, which
will result in more false positives in the inference results of
CORMIN and NetRate.

(3) The running time of each algorithm increases with
the diffusion network size. PIND has better running time
performance than CORMIN and NetRate. Although TENDS
shows comparable efficiency to PIND on larger diffusion
networks, it has a poor accuracy as it has no effective
strategy to resist to the uncertainty in infection data.

In addition, based on extensive testing on larger networks,
we have found that the running time of CORMIN and
NetRate rapidly increase with the growth of network size,
and soon exceed acceptable levels. Given this fact, we have
selected networks with sizes varying from 750 to 3000. Most
existing related work adopt similar network sizes.
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Figure 3: Effect of infection data uncertainty.

Effect of Network’s Average Degree
To study the effect of the average degree of diffusion
network on algorithm performance, we test the algorithms
on five synthetic networks with the same size, i.e., G6–G10,
whose average degree varies from 2 to 6. We simulate 300
times of diffusion processes on each network (i.e., β = 300),
and set the mean µ of uncertainty factor to 0.3.

Fig. 2 illustrates the F-score and running time of each
tested algorithm, from which we can observe that PIND has
the best accuracy compared with other tested algorithms,
and we can also have the following observations.

(1) With the increase of the average degree of diffusion
network, the accuracy of CORMIN and PIND decrease.
The accuracy of NetRate increases when the average degree
increases from 2 to 5 and then tends to decrease when the
average degree reaches 6. The reason behind is that a greater
average degree often brings more complicated influence
relationships between nodes, and thus adding complexity to
the task of diffusion network inference.

(2) The running time of each tested algorithm increases
with the growth of average degree, and PIND is faster than
CORMIN, NetRate and TENDS.

Effect of Infection Data Uncertainty
To study the effect of the uncertainty of infection data on
algorithm performance, we test the algorithms on two real-
world networks, i.e., DUNF and DPU, varying the mean µ
of uncertainty factor from 0 to 0.3 (with β = 200).

Fig. 3 illustrates the F-score and running time of each
tested algorithm on DUNF and DPU. From the figure we
can have the following observations.

(1) Compared with other tested algorithms, PIND often
shows a significant advantage on accuracy, while TENDS
achieves a very close accuracy to PIND when µ ⩽ 0.05 on
DUNF and when µ = 0 on DPU. The reason behind is that
with a small enough mean of uncertainty factor, the sampled
node infection statuses for TENDS will be equal or close
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Figure 4: Effect of the amount of diffusion processes.

enough to the real situation. With correct infection data,
TENDS is able to achieve a high accuracy performance.

(2) A higher uncertainty tends to degrade the accuracy
of PIND, CORMIN and TENDS. This is because a higher
uncertainty makes measuring the correlations between node
infections more difficult. When the uncertainty exceed a
threshold, for example, µ ⩾ 0.5, the distinction between
infected and uninfected statues will totally lose, then it
becomes almost impossible to recover the real influence
relationships. Note that the accuracy of NetRate does not
change with uncertainty, since NetRate uses exact cascades
for diffusion network inference in this experiment.

(3) PIND outperforms CORMIN in running time per-
formance, and is often relatively faster than NetRate and
TENDS. In addition, the uncertainty has mild effect on the
running time of tested algorithms. This is because the time
complexity of each tested algorithm is mainly dominated by
the network size and the amount of diffusion processes.

Effect of Diffusion Process Amount
To study the effect of diffusion process amount on algorithm
performance, we test the algorithms on DUNF and DPU
with different number β of diffusion processes, varying from
100 to 300. For the diffusion results obtained with each β,
we set the mean µ of uncertainty factor to 0.3.

Fig. 4 illustrates the F-score and running time of each
tested algorithm on DUNF and DPU. From the figure we
can have the following observations.

(1) A greater amount of diffusion processes often helps
the algorithms achieve higher accuracy. This is because
more diffusion processes tend to involve more nodes, and
activate more influence relationships (i.e., infections spread
through these influence relationships), which enable the
algorithms to learn a more complete network structure.

(2) Compared with other algorithms, PIND achieves sig-
nificantly better accuracy in all but two settings, i.e., β =
100 and β = 150 on DPU. This is because when β ⩽ 150,
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Figure 5: Effect of the iterations of PIND.

the amount of diffusion processes are insufficient to activate
enough influence relationships in DPU, and thus degrade the
accuracy of PIND in these settings.

(3) The running time of each algorithm increase with the
amount of diffusion processes. PIND has significantly better
running time performance than CORMIN, and tends to be
relatively more efficient than NetRate. Although TENDS
shows comparable (or even slightly better) efficiency to
PIND on larger diffusion networks, it suffers from a poor
accuracy as it can not effectively deal with probabilistic data.

Effect of Iterations of PIND
To study the effect of iterations on the performance of PIND,
we execute PIND on DUNF and DPU (with β = 200, µ =
0.3) and report the accuracy of its latest inference result at
the end of each iteration.

Fig. 5 (a) illustrates the F-score of PIND at the end of
each iteration, from which we can observe that the accuracy
of PIND can be improved with more iterations, and shows a
fast convergence property.

The direct reason behind this is that PIND can accurately
estimate the existence of influence relationships. Another
important reason is that PIND can accurately infer infection
propagation probabilities. To demonstrate this effectiveness,
Fig. 5 (b) illustrates the MAE (Mean Absolute Error) of
infection propagation probabilities learned by PIND at the
end of each iteration. A lower MAE indicates a higher
accuracy. From Fig. 5 (b), we can observe that the MAE of
learned αji can also be improved with more iterations. For
comparison, the corresponding MAE values of NetRate on
DUNF and DPU are 0.2822 and 0.2791, respectively, which
are significantly higher than that of PIND.

Conclusion
In this paper, we have investigated the problem of how to
infer a diffusion network using only the probabilistic data of
the node infection statuses observed in historical diffusion
processes. Towards this, we have formulated the problem
as a constrained nonlinear regression w.r.t. the probabilistic
data, and proposed an effective and efficient algorithm,
PIND, to solve the regression problem in an iterative way.
The improvement of solution quality in each iteration can
be theoretically guaranteed. Extensive experimental results
on both synthetic and real-world networks have verified the
effectiveness and efficiency of PIND.
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