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Abstract

The study of emergent communication has been dedicated to
interactive artificial intelligence. While existing work focuses
on communication about single objects or complex image
scenes, we argue that communicating relationships between
multiple objects is important in more realistic tasks, but un-
derstudied. In this paper, we try to fill this gap and focus on
emergent communication about positional relationships be-
tween two objects. We train agents in the referential game
where observations contain two objects, and find that gener-
alization is the major problem when the positional relation-
ship is involved. The key factor affecting the generalization
ability of the emergent language is the input variation be-
tween Speaker and Listener, which is realized by a random
image generator in our work. Further, we find that the learned
language can generalize well in a new multi-step MDP task
where the positional relationship describes the goal, and per-
forms better than raw-pixel images as well as pre-trained im-
age features, verifying the strong generalization ability of dis-
crete sequences. We also show that language transfer from the
referential game performs better in the new task than learn-
ing language directly in this task, implying the potential ben-
efits of pre-training in referential games. All in all, our exper-
iments demonstrate the viability and merit of having agents
learn to communicate positional relationships between multi-
ple objects through emergent communication.

Introduction

In order to achieve interactive agents, a major problem to
be solved is to endow artificial agents with the ability to
communicate. Supervised methods are considered incapable
of capturing functional meanings of language (Lazaridou,
Peysakhovich, and Baroni 2017; Kottur et al. 2017). There-
fore, a series of studies on emergent communication probe
into this problem by providing agents with simple environ-
ments where they learn to communicate with each other
from scratch to accomplish specific tasks (Havrylov and
Titov 2017; Choi, Lazaridou, and de Freitas 2018; Li and
Bowling 2019; Ren et al. 2020). Most of these tasks are
based on referential games (Lewis 1969), where Speaker ob-
serves and describes a target object while Listener receives
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the message sent by Speaker and must pick out the target
from several candidates.

In existing emergent language studies, agents’ observa-
tions are mainly focused on a single object, be it a geometric
object or a categorical image. Some studies involve images
showing more complex scenes, but these studies usually
also involve natural language (Das et al. 2017; Gupta, Lanc-
tot, and Lazaridou 2021). Communicating the relationships
between multiple objects explicitly is understudied. Then,
problems may arise when we consider the development from
communication in tasks like referential games to communi-
cation in tasks with more realistic settings, e.g., multi-step
Markov decision process (MDP) tasks, since there the in-
formation about multi-object relationships is usually help-
ful, and sometimes even crucial. So in this paper, we try to
fill this gap and address two questions: Can neural agents
learn to extract the information about multi-object rela-
tionships and express it through discrete communication
channels in the referential game? If so, can the learned
protocol help in more complex multi-step MDP tasks? We
focus on positional relationships between two objects in this
paper, because it is one of the most common and fundamen-
tal relationships, also usually most useful, and it is not too
complicated, hence suitable as a starting point.

We train agents in the referential game where the obser-
vations are images each containing two geometric shapes,
and see whether the agents can communicate the two ob-
jects and their positional relationship shown in each im-
age. Since the positional relationship is abstraction informa-
tion that can have various manifestations in specific images,
we propose to use a random dataset to test generalization,
where each image is generated randomly each time, and the
target image observed by Speaker and Listener is also dif-
ferent in pixel level but the same in abstraction. This is a
stronger dataset than the standard setup, forcing agents to
communicate abstract information to get high accuracy. We
also use two common datasets as baselines, the fixed dataset
where images are fixed and the variation dataset where im-
ages are randomly generated but the target image observed
by Speaker and Listener is exactly the same. We find that
agents trained with these two common datasets, though per-
form well if tested by the corresponding datasets, cannot
generalize in the random dataset. This demonstrates that the
two commonly used datasets cannot well test agents’ ability
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to express abstract information, and also fail to help agents
learn multi-object positional relationships. Instead, we find
that agents trained with the random dataset can general-
ize well, implying that the input variation between Speaker
and Listener is crucial for learning abstract information in
emergent communication, so is necessary for extracting po-
sitional relationships. We also use an image encoder pre-
trained by a contrastive learning method, SimCLR (Chen
et al. 2020), for comparison, and show that the language
learned through the referential game with the random dataset
generalizes better.

Then we show how communication about multi-object
positional relationships helps in multi-step MDP tasks. We
design a simple communication game where the positional
relationship describes the goal. We find that the emergent
language can generalize well in the new task, and is more
powerful than raw-pixel images as well as pre-trained image
features, proving the good generalization ability of discrete
sequences. Besides, we find that language transfer from
the referential game could achieve better performance than
learning language from scratch in the new task, which may
provide evidence for the benefits of language learning in the
referential game.

We summarize the main contributions of our work as fol-
lows: (1) We explore agents’ communication about multi-
object positional relationships in raw-pixel images from
scratch through emergent communication. (2) We propose to
use the random dataset to test the generalization of emergent
languages, and find the environmental pressure where Lis-
tener observes target images different from Speaker’s crucial
for agents to emerge generalizable languages in the referen-
tial game. (3) Our experiments show that the emergent lan-
guage can generalize well in the new multi-step MDP task,
and is more powerful than raw-pixel images as well as pre-
trained image features.

Related Work

Emergent communication. A series of studies have been
done on emergent communication that trains interactive
agents to learn protocols from communication games. Most
studies focus on language learning in the referential game,
where a speaker agent refers to targets using a message and
a listener agent tries to understand the message (Lazaridou,
Pham, and Baroni 2016; Lazaridou, Peysakhovich, and Ba-
roni 2017; Lazaridou et al. 2018; Havrylov and Titov 2017
Evtimova et al. 2018; Choi, Lazaridou, and de Freitas 2018;
Chaabouni et al. 2019, 2020, 2022; Dessi, Kharitonov, and
Baroni 2021; Dagan, Hupkes, and Bruni 2021; Gupta, Lanc-
tot, and Lazaridou 2021; Denamganai and Walker 2020b).
These studies provide in-depth insights for learned proto-
cols as well as learned representations of agents, but mostly
stop at the single task. Chaabouni et al. (2022) proposed ease
and transfer learning (ETL) to evaluate the generalization of
the emergent language to new tasks, but they do not involve
multi-step MDP tasks.

Most studies exploring emergent communication in the
context of the referential game use inputs containing a sin-
gle object, e.g., a geometric shape or a natural image depict-
ing a specific object. This restricts the generalization of the
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emergent language to complex MDP tasks. We go one step
further to explore the positional relationship between two
objects in observations.

Some other work explores emergent communication in
multi-step MDP tasks directly, where agents learn to use dis-
crete communication channels to cooperate (Bogin, Geva,
and Berant 2018; Mordatch and Abbeel 2018; Eccles et al.
2019; Tucker et al. 2021; Lin et al. 2021). These studies usu-
ally focus on methods for improving the ability of agents to
accomplish the tasks through efficient communication, and
explore whether the communication captures critical infor-
mation for the tasks. However, the protocols are usually still
specific to training tasks. We consider the generalization of
the emergent language and probe into the language trans-
fer from the referential game to more complex MDP tasks.
And we think of the relationship between objects as an entry
point.

Input variation between Speaker and Listener in the
referential game. Most studies concerning the referential
game use the same target input for Speaker and Listener.
However, as Bouchacourt and Baroni (2018) mentioned,
agents may fail to capture conceptual properties in inputs un-
der this setup. Mihai and Hare (2019) augmented input im-
ages to Speaker with noise and random rotations to increase
visual semantics of agents. Lazaridou, Peysakhovich, and
Baroni (2017) and Choi, Lazaridou, and de Freitas (2018)
used a setup where Listener should choose a different image
containing the same object as observed by Speaker to en-
courage the use of abstract information. Sharing the same
idea, Dessi, Kharitonov, and Baroni (2021) used the data
augmentation pipeline in SImCLR (Chen et al. 2020) to pro-
cess input images. In our experiments, we find that adding
noise alone is not enough for agents to communicate abstract
information. We use a random image generator to introduce
the environmental pressure more severely so that agents can
almost never observe two same images. Moreover, we make
a comparison with two other datasets, and find the random
image generator really helpful for the communication about
positional relationships.

Generalization of agents. There are studies that delve
into the influencing factors and testing methods of the gener-
alization abilities of agents (Denamganai and Walker 2020a;
Montero et al. 2021; Chaabouni et al. 2020). Hill et al.
(2019) found a rich stimuli is critical for generalization in
a 3D environment where agents can recompose known con-
cepts in new combinations. Similarly, Denamganai, Mis-
saoui, and Walker (2022) deeply discussed the richness of
stimuli. Hill et al. (2018) shows the effect of an adversarial
training regime on generalization. We explore generalization
of emergent language across tasks, and propose to introduce
pressure with input variation between different agents.

Experimental Setup
The Referential Game

We train our agents in the two-player referential game where
Speaker describes a target image to Listener who should
pick out the target image among several candidates. Con-
cretely, Speaker observes a target image z, and generates a
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Figure 1: The referential game, agent architecture and exam-
ples of images in the random dataset.

message m to describe it. The message m is a sequence of
discrete symbols from a vocabulary V. The message length
is T'. Listener receives m as well as a set of candidate im-
ages C including the target = and several distractors. Then
Listener selects an image £ € C according to m. If z = %,
both agents get a reward r = 1. Otherwise, the reward is 0.

Agent Architecture

Speaker, parameterized by 6, consists of an image encoder
and a sequence generator. The target image z is fed into a
CNN network fp to get the image embedding fp(x). Then
a projector gg maps the embedding into the initial hid-
den state of an LSTM (Hochreiter and Schmidhuber 1997),
h_1 = go(fe(x)). Then at each time step ¢ a linear layer
o maps h; into a vector of dimension |V|, and a symbol
w; is sampled from the distribution induced by applying the
softmax function to 7 (h;). And the one-hot embedding of
the generated symbol e(w;) is fed back to the LSTM Iy to
update the hidden state hy11 = lp(e(wy), ht). The first in-
put symbol is a special token labeled as a start of sequence,
ho = lg(e(sos), h_1). The symbols are generated until the
message length reaches T'. At test time, the symbols are not
sampled but selected greedily.

Listener, parameterized by ¢, consists of an image en-
coder and a sequence encoder. An LSTM network [4 en-
codes the sequence m = wg,wsy, ..., wr—1 from Speaker
into the message embedding e,,, = ls(e(m)), with each
symbol in the sequence transformed to a one-hot embedding
e(m) = e(wp), e(w1), ...,e(wr—_1). A CNN network f; en-
codes each image # € C into image embedding e; = f,(Z).
A linear projector p,, 4 and an MLP projector pz 4 projects
the message embedding and each image embedding respec-
tively to compute the cosine similarity between p,, ¢(em,)
and pz 4(ez). The resulting similarities are passed to a soft-
max function to get a distribution over all images in the can-
didate set, and the image with the highest probability is se-
lected.

Datasets and the Random Image Generator

We create a dataset where we generate images of size 128 x
128 each depicting two objects with a certain positional re-
lationship between them. There are 5 different objects and 4
positional relationships (right, top right, top, and top left)',

"Due to the symmetry of the positional relationships, we do not
include left, bottom left, bottom, and bottom right.
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so there are total 100 (5 x 5 x 4) combinations. We use the
word ‘combination’ to refer to the (object, object, relation-
ship) tuple in the rest of the paper. We separate 20 of 100
combinations into the test set. We additionally add noise to
the images for the robustness of the representation learning
of image encoders, and to prevent degenerate policies of us-
ing pixel-level information. Accordingly, we set the message
length T = 6, the size of vocabulary |V| = 5, and the num-
ber of candidate images |C| = 32 for training and |C| = 20
for test in the referential game, which is illustrated in Fig-
ure 1.

In realistic environments, the observation of agents is
ever-changing. So we propose to use a random image gen-
erator to generate specific images according to the combi-
nations, where the absolute position, size, and orientation of
objects vary. In our experiments, we draw white shapes on
the black background while adding randomization to the pa-
rameters of the size, rotation and position of each object. We
hypothesize that using the random generator to provide im-
ages for Speaker and Listener separately can better test the
generalization, since agents can only succeed when they ex-
press and understand the abstract information in the images,
especially when the multi-object positional relationship is
involved because now images containing the same content
are diverse at the pixel level.

To verify this hypothesis, we use other two kinds of
datasets for comparison. Then we have three kinds of
datasets as follows: (1) Fixed dataset. We do not use the
random generator but generate one image for each combina-
tion, and the absolute position, size, and orientation of ob-
jects are fixed. This setup is similar to using structured in-
put in some studies (Li and Bowling 2019; Chaabouni et al.
2020; Ren et al. 2020), since there are no variations of each
input in the dataset. Agents trained and tested with the fixed
dataset can always observe only one instance of each com-
bination. (2) Variation dataset. We use the random gener-
ator to generate images, but the target image observed by
Speaker and Listener is the same one. This setup is similar to
using natural images as inputs as in some studies (Chaabouni
et al. 2022; Gupta, Lanctot, and Lazaridou 2021), where dif-
ferent images depicting a same object exist in the dataset.
Here agents see diverse images of a combination at training
time, but may still use pixel-level information to succeed in
the game. (3) Random dataset. We use the random genera-
tor and generate images for Speaker and Listener separately.
Here agents almost never observe two same images and are
forced to use abstract information to win the game.

Optimization

We use REINFORCE (Williams 1992) to train Speaker
which only uses the reward of the game. We also apply en-
tropy regularization in the loss function to encourage explo-
ration. To train Listener, we use the cross-entropy loss func-
tion which compares the output distribution of Listener with
a one-hot vector indicating the target image. We use the de-
fault Adam optimizer (Kingma and Ba 2015) with a learning
rate of 3e-5 to update the parameters.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

— fixed
variation

o o o
> o ©

Test Accuracy

o
N

0 5000 10000 15000

Epoch

20000 25000 30000

(a) test accuracy on fixed and variation datasets

o
o

—— random
fixed
—— variation

Test Accuracy
o
Y

o
N

-

0

0.0

5000 10000 15000

Epoch

20000 25000 30000

(b) test accuracy on random dataset

Figure 2: Test accuracy of agents. (a) Agents trained with the fixed dataset or variation dataset are tested using the corresponding
test set. (b) Agents trained with three kinds of datasets are tested with the test set of the random dataset.

Evaluation Methods

Generalization in referential games. One of the most im-
portant properties of emergent language is the generalization
ability to unseen inputs. We measure generalization in the
referential game by the test accuracy.

Compositionality. We adopt a popular metric in emer-
gent communication literature called topographic similarity
(TopSim) (Brighton and Kirby 2006) for measuring language
compositionality, which can also reflect generalization abil-
ity. It is computed by the Spearman correlation between the
distances in the input space and the message space, so high
TopSim means that similar inputs lead to close messages.
According to the characteristics of our setup, we compute
the distance in the input space by the number of different at-
tributes in the (object, object, relationship) tuple. We use the
Levenshtein distance in the message space.

Visual representations. We explore the quality of the vi-
sual representations learned through the referential game.
We focus on whether the representations contain features for
abstract information, especially the positional relationship.
Following (Dessi, Kharitonov, and Baroni 2021), we apply
a linear projection head to the learned image encoder, and
conduct a classification task trained by supervised learning
on the test set. Then we use the classification accuracy to
evaluate the learned visual representations.

Ease and transfer learning (ETL). Chaabouni et al.
(2022) proposed ETL to evaluate the generality of the emer-
gent language to new Listener in new tasks. We measure
ETL by feeding the deterministic language (i.e., symbols are
selected greedily) of Speaker to new Listener in new tasks
and report the performances. We use two tasks for ETL, im-
age classification and Object Placement. Object Placement
aims at our main research goal: whether and how the emer-
gent language can generalize to multi-step MDP tasks.

Experiments and Results

Input Variation in the Random Dataset Is
Important for Communication about Multi-Object
Positional Relationships

In this section, we analyze the performance of agents in the
referential game learning to communicate the multi-object
positional relationship from scratch. For all experiments, we
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run five times with different random seeds, and report the
results in Figure 2. We first use the fixed dataset and the
variation dataset respectively for both training and testing.
Results in Figure 2a show that agents trained with the varia-
tion dataset perform well at test time, so it seems to prove
good generalization abilities. And agents trained with the
fixed dataset can also get accuracies much higher than a ran-
dom guess (5%). However, when we use the random dataset
for test, agents trained in the previous two datasets cannot
generalize as shown in Figure 2b. This implies that testing
with the two commonly used datasets does not really re-
flect the generalization ability of agents. So we argue that
input variation between Speaker and Listener is necessary
for evaluating generalization in the referential game. Be-
sides, agents trained in these datasets, though random noise
is added, fail to communicate human-level conceptual infor-
mation, at least when the positional relationship is involved.

Then how can agents learn to extract the positional re-
lationship from images when communicating? A natural
idea is to train agents with the random dataset, which pro-
vides a harsher environment. As mentioned in Lazaridou,
Peysakhovich, and Baroni (2017) and Choi, Lazaridou, and
de Freitas (2018), the input variation should encourage
agents to use the abstract information. We show the results
in Figure 2b, and now the agents can perform well in the
random dataset, with average accuracy close to 80%. This
proves that agents are communicating semantic information
so Listener can understand and select the target even if the
exact image is different from that observed by Speaker. So
we argue that input variation between Speaker and Listener
is also necessary for emergent communication about posi-
tional relationships, or even other abstract information, in
the referential game. We present some examples of the gen-
erated sequences by Speaker observing images from the test
set in Figure 3. We can observe obvious patterns of different
positional relationships in the sequences.

Dessi, Kharitonov, and Baroni (2021) argues that the ref-
erential game is similar to the contrastive learning frame-
work in SimCLR (Chen et al. 2020). From this perspective,
using the random dataset can be seen as a data augmentation
process where the target image is changed but the seman-
tic information is preserved. So we are curious about the
performance of the representation learned with SimCLR in-
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Figure 3: Examples of generated sequences by Speaker after
training with the random dataset. The images are from the
test set.
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Figure 4: Train and test accuracy of agents whose image en-
coders are pre-trained by SimCLR with the random dataset.

stead of the referential game from scratch. We train a model
using SimCLR, where the positive pairs are images gener-
ated by the random generator using the same combination in
the training set, and the negative samples are images gener-
ated with different sematic concepts. Then we use the frozen
SimCLR model as pre-trained image encoders of Speaker
and Listener, and train them in the referential game with the
random training dataset. Finally, we test the agents using the
random test dataset. The result is shown in Figure 4. Surpris-
ingly, using the pre-trained SimCLR model leads to worse
performance compared to Figure 2b, i.e., the agents cannot
generalize well on the test set, though we find that they get
a high accuracy at training time. One reason to explain the
result may be that after SimCLR pre-training, the image rep-
resentations of different images generated by the same com-
bination are very similar, so the effect of using the random
dataset in the following referential game is diminished, since
the target representations observed by Speaker and Listener
is almost the same now. From another perspective, the pre-
trained encoders in advance separate different representa-
tions for different semantic information in the feature space,
so the agents lose the environmental pressure to encode se-
mantic information with emergent languages in the referen-
tial game, but can make use of some detailed information
in the rich representation to accomplish the task. Then in
the test set, though the pre-trained encoders can generate
good representations for the new combinations, the agent
language cannot generalize well to the new representations.
This result shows that using pre-trained image encoders may
do bad to generalization in emergent communication.

Analysis of Protocols and Representations Learned
through the Referential Game

We report the results for computing TopSim for agents
trained with different datasets in Figure 5. Obviously, agents
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Figure 5: TopSim of agents trained with different datasets.

Fixed Variation Random
Representation (%) 84.4 (5 762389  100.0 (0.0)
ETL %) 32.8@1) 31.872 90.8 23)

Table 1: We report the mean classification accuracy on our
test set with images generated by the random image gen-
erator of five different seeds, and one standard error in the
brackets. The first row is the evaluation of Speaker’s visual
representations trained with different datasets. The second
row is the image classification task of ETL.

trained with the random dataset get higher TopSim, so they
tend to use similar messages to describe similar inputs, im-
plying more compositional languages. This again demon-
strates the benefit of using the random dataset for training.
Then we evaluate Speaker’s visual representations learned
through the referential game. We conduct a classification
task to examine whether the visual representations encode
conceptual information. We apply a linear classifier to the
frozen CNN of Speaker and train it on test set with im-
ages generated by the random image generator based on the
20 combinations in the test set. Results in Table 1 demon-
strate that agents trained with the random dataset learn bet-
ter visual representations that capture conceptual informa-
tion, and perform perfectly in the classification task on the
test set. This shows us a promising direction that the refer-
ential game can serve as a good representation learning ap-
proach that may help encode high-level abstract information
in features. On the other hand, the variation dataset does not
perform better than the fixed dataset, so the key factor influ-
encing the quality of visual representations is the input vari-
ation between Speaker and Listener instead of variations in
the dataset. Since representation learning plays an important
role in emergent communication, the result tells us that input
variation between Speaker and Listener should get attention.

Language Generalization in New Tasks

We adopt ETL proposed in Chaabouni et al. (2022), which
is considered a more robust metric, to evaluate the ability
of the emergent language to generalize to new Listener and
new tasks. We first conduct a image classification task as
in Chaabouni et al. (2022). Moreover, we want to extend the
new tasks to more complex multi-step MDP tasks, which can
hardly be achieved if agents can only refer to single objects.
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Figure 6: Object Placement task. Speaker observes the target
state (image) and describes it to Listener. Listener observes
the grid world containing the two objects and receives the
message from Speaker. Then it moves the objects to place
them to form the correct positional relationship as depicted
in the target state.

So we then explore this with a task named Object Placement.

Image Classification For the image classification task, the
frozen Speakers encode input images to languages, and we
feed the deterministic language of Speaker to new Listener
and train a linear classifier on the hidden state of Listener’s
sequence encoder on our test set with images generated by
the random image generator. The results are shown in Ta-
ble 1. We can find that ETL faithfully reflects the general-
ization ability of agents, with the random dataset showing
the best performance. On the other hand, since ETL focuses
on the information content conveyed by Speaker, the result
implies that agents trained with the random dataset can ex-
press the positional relationship well. Note that the combina-
tions are never seen by Speaker in the referential game, and
the random image generator provides totally different im-
ages of the same content, but new Listener can easily under-
stand the messages and achieve the classification accuracy
over 90%, proving that Speaker has already learned to con-
vey the conceptual information in images. Contrarily, agents
trained with the fixed dataset and variation dataset cannot
learn to communicate such information clearly. So in gen-
eral, we can conclude that agents can learn to communicate
multi-object positional relationships through emergent com-
munication, but necessary environmental pressure should be
involved, such as the input variation between Speaker and
Listener.

Object Placement Now, according to the analysis above,
we have addressed the first question that agents can learn to
express positional relationships in the context of the refer-
ential game. Then we explore the second one: whether the
learned protocol can be helpful in multi-step MDP tasks
with the ability to convey information about positional re-
lationships. We design a task named Object Placement, as
illustrated in Figure 6. Speaker observes a target image de-
picting the target positional relationship of two objects. It
then sends a message to Listener, who should move the ob-
jects in the 3 x 3 grid to place them in the corresponding
positional relationship. The action of Listener is to choose
a grid and a direction, and if there is an object in the grid,
the object is moved according to the direction by one grid.
The observation of Listener is the state of the grid world and
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the message sent by Speaker. If Listener places two objects
in the correct positional relationship, the reward is +1 and
the episode terminates, otherwise, the reward is —0.01 for
each step. The maximum episode length is set to 20. The
target images are sampled from our training set generated
by the random image generator. We use Speaker trained with
the random dataset in the referential game, and generate de-
terministic messages to Listener. Listener uses a newly ini-
tialized sequence encoder to process the messages. We train
Listener with PPO (Schulman et al. 2017).
We also compare with five baselines:

The raw-pixel-input baseline uses target images to re-
place the messages sent by Speaker, and Listener learns
a CNN model to process the images;

The cnn-feature baseline also uses target images to re-
place the messages, but Listener uses a frozen CNN
model pre-trained on our training set with the random
generator by an image classification task;

The simclr-feature baseline uses a pre-trained SimCLR
model instead of the pre-trained CNN model compared
with the cnn-feature baseline;

The rl-scratch baseline trains Speaker from scratch us-
ing REINFORCE to send messages. For this method, we
train Speaker and Listener alternately;

The state baseline gives the true target relation to Lis-
tener directly, showing the optimal performance.

Figure 7 shows the learning curves of all the methods in
the Object Placement task: the episode reward in Figure 7a,
and the episode length of agents accomplishing the task in
Figure 7b. Except the rl-scratch and raw-pixel-input base-
lines, all other methods converge to the same performance
but differ in learning speed.

Firstly, from the ETL’s perspective, our Speaker’s lan-
guage can generalize pretty well in the new multi-step task,
so new Listener can understand the message and learn a
good policy in the new task quickly, close to the state base-
line (the upper bound) that tells Listener the true target rela-
tionship. This demonstrates the generalization ability of the
emergent language in the referential game, and shows that
the agent has learned a general communication skill instead
of a protocol overfitting to a single task. And this addresses
our second question that emergent language in the referen-
tial game can be helpful in multi-step MDP tasks. Previous
studies where agents learn to refer to single objects hardly
explore the language transfer to multi-step tasks, probably
because the object-level information is usually not sufficient
for accomplishing these tasks. Our research on the learning
of positional relationships can be seen as a step to break the
restriction and towards the application of emergent commu-
nication in more complex tasks.

Besides, the raw-pixel-input baseline fails to learn a pol-
icy to accomplish the task. This result proves that agents
trained with deep reinforcement learning may feel difficult
to capture the abstract information from raw-pixel images
directly, so the Listener seems confused with this input.
Therefore, state representations become important for re-
inforcement learning agents when the environment requires
abilities for conceptual abstraction.
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Figure 7: Performance of new Listener trained with different inputs of the target state in the Object Placement task. All experi-
ments are run for 5 seeds, and the shaded part of the curves is one standard error.

Then which kind of representation is better? In Fig-
ure 7 we can find that, though the cnn-feature baseline and
the simclr-feature baseline achieve comparable performance
with our method using the learned Speaker, Listener learns
faster if the input is discrete symbols. This is to some ex-
tent in line with the point of view in Garnelo, Arulkumaran,
and Shanahan (2016) that conceptual abstraction provided
by symbolic representations promotes data efficient learn-
ing. So it comes to the significance of research on language
learning about conceptual information that is useful in vari-
ous MDP tasks, such as positional relationships, spatial re-
lationships, or numeric concepts (Guo et al. 2019).

From the result of the rl-scratch baseline, directly train-
ing Speaker and Listener in the Object Placement task gets
poorer performance than using pre-trained emergent lan-
guage. This may provide evidence that the referential game
is more suitable for a starting point for language learning,
since it is easier for compositional and generalizable lan-
guages to emerge. It is reasonable because in the referential
game Speaker receives the feedback more effectively.

Discussion

The goal of emergent communication should be making
neural agents acquire general communication skills instead
of merely the ability to solve specific communication games.
Many studies have been dedicated to the research on learn-
ing compositional languages in the context of referential
games, but few have probed into the generalization of the
emergent language to more complex tasks such as multi-step
MDP tasks. We wonder about the viability of this develop-
ment, while we argue referential games restricted to refer-
ring to single objects limit such development. So we go one
step forward to explore communication about positional re-
lationships, which may be an entry point of emergent com-
munication about more high-level conceptual information.
We first find that agents can learn to communicate posi-
tional relationships well through training with the referential
game, but the key factor that influences the ability is the in-
put variation between Speaker and Listener. So we may need
stronger environmental pressure when more conceptual in-
formation is involved. We also show that we need stronger
datasets to test the true generalization ability of emergent
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languages.

Then we use a simple environment to evaluate the per-
formance of language transfer from the referential game
to a multi-step MDP task. We find that the emergent lan-
guage, which can convey information about positional re-
lationships, not only generalizes well in the new task, but
also overperforms pre-trained image features and language
learned directly in the specific task. So it verifies the via-
bility of language transfer from referential games to more
complex tasks, and shows a promising path to employ emer-
gent communication for conceptual abstraction in complex
environments and games.

It is worth noting that we focus on learning positional re-
lationships in the referential game in this paper, and we have
carried out preliminary experiments of language transfer
from the referential games to complex MDP tasks. The lim-
itations in this work should be addressed in future: whether,
or how, the learned positional relationships can generalize
well to out-of-distribution datasets? Then the acquired com-
munication skills can be applied to more diverse tasks. Be-
sides, the Object Placement task in our work is somewhat
simple, and we should explore language transfer to more
general MDP tasks in future work. Furthermore, positional
relationship is not enough for general tasks, whether other
conceptual information can be learned through emergent
communication? In addition to serving as a function simi-
lar to state representation, grounding the emergent language
into actions in MDP tasks is also a future direction. Finally,
our use of a random generator for input variation may not be
applicable in some scenarios. While other generative mod-
els can be used, different ways for input variation may be
explored such as using different views of a same scene. Our
work may be seen as one of the openings for research on task
scaling up for more general agent language learning through
emergent communication.
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