The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Learning to Learn Better Visual Prompts

Fengxiang Wang', Wanrong Huang', Shaowu Yang'*, Fan Qi?, Long Lan'

'HPCL, College of Computer Science and Technology, National University of Defense Technology
>The Hong Kong University of Science and Technology
{wfx23, huangwanrong12, shaowu.yang } @nudt.edu.cn, fanqics @gmail.com,long.lan @nudt.edu.cn

Abstract

Prompt tuning provides a low-cost way of adapting vision-
language models (VLMs) for various downstream vision
tasks without requiring updating the huge pre-trained pa-
rameters. Dispensing with the conventional manual craft-
ing of prompts, the recent prompt tuning method of Con-
text Optimization (CoOp) introduces adaptable vectors as text
prompts. Nevertheless, several previous works point out that
the CoOp-based approaches are easy to overfit to the base
classes and hard to generalize to novel classes. In this pa-
per, we reckon that the prompt tuning works well only in
the base classes because of the limited capacity of the adapt-
able vectors. In addition, the scale of the pre-trained model
is a hundred times the scale of the adaptable vector, thus the
learned vector has a very limited ability to absorb the knowl-
edge of novel classes. To minimize this excessive overfit-
ting of textual knowledge on the base class, we view prompt
tuning as learning to learn (LoL) and learn the prompt in
the way of meta-learning, the training manner of dividing
the base classes into many different subclasses could fully
exert the limited capacity of prompt tuning and thus trans-
fer its power to recognize the novel classes. To be specific,
we initially perform fine-tuning on the base class based on
the CoOp method for pre-trained CLIP. Subsequently, pred-
icated on the fine-tuned CLIP model, we carry out further
fine-tuning in an N-way K-shot manner from the perspective
of meta-learning on the base classes. We finally apply the
learned textual vector and VLM for unseen classes. Exten-
sive experiments on benchmark datasets validate the efficacy
of our meta-learning-informed prompt tuning, affirming its
role as a robust optimization strategy for VLMs.

Introduction

Large-scale vision language pre-training (Zhang et al. 2023;
Li et al. 2021; Lu et al. 2019; Bao et al. 2022; Radford
et al. 2021) has achieved remarkable progress in zero-shot
and few-shot image classification. The large pretrained vi-
sion language models (VLMSs) encapsulates fundamental
universal knowledge, thus endowing models with commend-
able generalizability to diverse tasks. Despite VLM’s effi-
cacy in extracting visual and textual descriptions, their train-
ing requires an abundance of high-quality datasets. In real-
world vision language tasks, gathering requisite data for
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task-related model training is a formidable challenge. To
address the aforementioned quandary, prompt tuning (Gan
et al. 2022; Zhou et al. 2022b,a; Gao et al. 2021; Zhang
et al. 2021) has explored the application of pre-trained VLM
models to downstream tasks with limited data, and achieved
exceptional outcomes in zero-shot visual tasks.

Unlike CLIP utilizes a manually curated handcrafted fixed
prompt “a photo of a [Class]” as a text-based class embed-
ding for zero-shot classification, the methods such as CoOp
for prompt tuning concatenate learnable text tokens with
class labels to acquire specific textual knowledge for predic-
tion. However, this explicit textual understanding becomes
excessively tailored to downstream tasks, thus demonstrat-
ing poor generalization to new classes. Some previous works
(Zhou et al. 2022b,a; Yao, Zhang, and Xu 2023) demonstrate
the phenomenon of overfitting with CoOp-based methods:
CoOp’s accuracy on the base class initially increases then
declines, while on the new class, it continually drops and
remains unstable. Nevertheless, current efforts to mitigate
overfitting within CoOp still possess limitations. For exam-
ple, distinct from employing conventional anti-overfitting
techniques, CoCoOp (Zhou et al. 2022a) seeks to reduce
the extent of overfitting by introducing image prompts with
Multilayer Perceptron (MLP)-transformed images feature.
However, CoCoOp still shows a marked decrease in accu-
racy in the latter stages of training, manifesting a conspicu-
ous issue of overfitting. Furthermore, KgCoOp (Yao, Zhang,
and Xu 2023) introduces specific losses to minimize the
disparity between learnable prompts and manual prompts,
which alleviates CoOp’s overfitting phenomenon to some
extent. However, these methods exhibit limitations in alle-
viating the overfitting within CoOp. We argue that the scale
of the pre-trained model is a hundred times more than the
scale of the adaptable vector, thus the learned vector has a
limited ability to absorb the knowledge of novel classes. We
believe that the CoOp-based research lacks consideration for
the organization of input data during prompt tuning. They
merely use the base class data as a holistic input for training
and fitting, thereby resulting in the text knowledge becoming
overly tailored to the base class.

Recently, meta-learning (Hospedales et al. 2021), oth-
erwise termed “learning to learn”, has emerged as one of
the common techniques to address the problem of few-shot
learning. Inspired by meta-learning, we explore the advan-
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tages of both prompt tuning methods and meta-learning by
decoupling differences in the prompt tuning of VLM models
to predict from base classes to new classes. Diverging from
existing CoOp-based techniques, our approach, a prompt
tuning method named learning to learn (LoL), delves
into the organization of input data, adopting the N-way
K-shot framework for prompt learning. This meta-learning
task’s data input training strategy adeptly minimizes tex-
tual knowledge overfitting on the base class while optimally
retaining the ubiquitous prior knowledge embedded within
the expansive pre-trained CLIP model. The “meta” embod-
ies the network’s learning ability for each specific task,
furnishing the network with an abstract learning capability
through continuous adaptation to each task. Specifically, our
approach initially views the base class knowledge acquired
by CLIP as the feature-extracting backbone of meta-learning
while carrying out classification pre-training on base classes
via a CoOp-based approach. The meta-training method is
then utilized, and base class data is learned through Episodic
Training, followed by prediction on new classes. During
Episodic Training the model samples a few classification
tasks from the training samples of the base classes and opti-
mizes itself to perform well on these tasks. The task typically
assumes an N-way K-shot format, involving N classes,
each comprising K support samples and ) query samples.
The goal is to classify these N x @ query samples into N
classes, based on N x K supporting samples. Finally, test-
ing is conducted on the new class data.
In summary, our contributions are as follows:

* We propose a novel visual prompt tuning baseline
grounded in the philosophy of meta-learning, neglected
in prior works. It yields competitive performance across
7 datasets and is easy to comply with and extend to other
prompt tuning methods.

* The method we propose nicely tackles the base-to-new
generalization task. We performed comprehensive exper-
imental settings for the generalization capability from
base classes to new classes on 7 image classification
datasets. Evaluations reveal that our presented meta-
learning-based prompt tuning method is effective, ob-
taining a higher final performance on new classes than
existing approaches.

Related Works

Vision-Language Pre-training. Vision-Language pre-
training (Zhang et al. 2023) learns generic cross-modal rep-
resentations from large-scale image-text pairs, then it can
be fine-tuned directly on downstream visual-linguistic tasks.
The architecture of the vision-language models can be cate-
gorized into three ways of encoders: fusion encoder (single-
stream (Su et al. 2019; Li et al. 2020, 2019) and dual-stream
(Lietal. 2021; Lu et al. 2019; Tan, Bansal, and Assoc Com-
putat 2019)), dual encoder (Lee et al. 2018; Jia et al. 2021;
Radford et al. 2021) and the combination of both (Bao et al.
2022; Singh et al. 2022). The representative work of the dual
encoder model is CLIP (Radford et al. 2021), which uses
a contrastive learning approach to train images and corre-
sponding text descriptions, and then learns the relationship
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between images and text by comparing the embedding vec-
tors of these images and text descriptions. Since CLIP’s in-
ception, a series of subsequent studies and applications have
emerged. Enhancements to CLIP-based work are primar-
ily observed in three key areas: data augmentation (Cherti
et al. 2023; Gadre et al. 2023), model architecture (Chen
et al. 2023; Girdhar et al. 2023; Li et al. 2023; Shen et al.
2022), and the objective function (Yao et al. 2021; Yu et al.
2022). In terms of data augmentation, one strategy (Cherti
et al. 2023) involves curating larger datasets and implement-
ing multi-scale training paradigms. Alternatively, maintain-
ing the CLIP training methodology constant while varying
the datasets is another approach (Gadre et al. 2023). When it
comes to model design, enhancements can be made to the
image perspective (Li et al. 2023), the language perspec-
tive (Shen et al. 2022), improved interpretability (Chen et al.
2023), and the integration of additional modalities (Girdhar
et al. 2023). In terms of the objective function, fine-grained
supervision (Yao et al. 2021) and the incorporation of a gen-
erative branch (Yu et al. 2022) are key considerations. More-
over, the fusion of CLIP with other learning techniques, such
as supervised learning (Wu et al. 2023; Yang et al. 2022;
Zhai et al. 2022), image-only contrastive learning (Zhai et al.
2022; Mu et al. 2022; Zhou et al. 2023), and masked im-
age modeling (Fang et al. 2023; Sun et al. 2023; Wei et al.
2022), enlightens our understanding. The basis of our re-
search lies with the vision language model CLIP, striving
to deliver an adept solution for adapting pre-trained vision-
language models to downstream implementations.

Prompt Tuning. In the process of fine-tuning the pre-
trained vision-language models (VLMs) for downstream
tasks, prompt tuning (Gan et al. 2022) is seen as a method
of extracting useful information for these tasks. Initially, the
hand-crafted template in CLIP is used for zero-shot and few-
shot prediction. Furthermore, prompt learning aims to au-
tomate prompt design with the aid of adequately large la-
beled datasets. The concept of automatic prompts was in-
troduced by CoOp (Zhou et al. 2022b), which represented
the downstream task’s prompts as trainable continuous vec-
tors, improving flexibility and adjustability. CoCoOp (Zhou
et al. 2022a) creates an image-conditioned context combined
with a text-context for prompt tuning. ProGrad (Zhu et al.
2022) introduces prompt-aligned gradient to prevent knowl-
edge forgetting. MaPLe (Khattak et al. 2023) offers a dy-
namic prompt-building technique for dialogue between text
and image prompts during training. PTP (Wang et al. 2023)
redefines visual tasks to predict within a block or link to
an object’s block using fill-in-the-blank queries. KgCoOp
(Yao, Zhang, and Xu 2023) boosts learnable prompts’ gen-
eralizability to new classes by equating embeddings from
learned and hand-crafted prompts. CLIP-adapter (Gao et al.
2021) introduced an adapter with a feature blending resid-
ual for efficient VLMs transfer learning, while Tip-Adapter
(Zhang et al. 2021) proposed a training-free adapter using
embeddings from a few labeled images. SVL-Adapter (Pan-
tazis et al. 2022) introduced a self-supervised adapter by per-
forming self-supervised learning on images. Among these
methodologies, our work is primarily based on CoOp and its
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Figure 1: Overview of the proposed method. The main idea is that model uses a learning to learn method for the generation of
new classes, with a set of learnable vectors, which can be optimized by minimizing the classification loss.

follow-ups. We look to improve the fine-tuning performance
of VLMs for unseen classes by utilizing meta-learning tech-
niques.

Meta Learning. In the few-shot problem (Lake et al.
2017), meta-learning (Hospedales et al. 2021) serves as
an instrumental procedure in navigating challenges posed
by limited-data scenarios, honing the model’s abilities
over multiple categories by harnessing an abundance of
data before introducing new categories for predictive pur-
poses. Meta-learning techniques can be conveniently di-
vided into three principal sectors: optimization-based tech-
niques, black-box approaches, and metric-based operations.
Optimization-based strategies typically derive inspiration
from MAML (Finn, Abbeel, and Levine 2017), which pi-
oneers empirical optimization of neural networks through
scarce data. Variations of this method take different aspects
of optimization into account, encapsulating optimization of
model initialization (Rajeswaran et al. 2019; Rusu et al.
2018; Sung et al. 2018; Zintgraf et al. 2018), process opti-
mization (Munkhdalai and Yu 2017; Xu et al. 2020), or both
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(Baik et al. 2020). Contrarily, black-box methods (Garnelo
et al. 2018; Mishra et al. 2017) model the learning process as
a neural network without an explicit induction bias. Lastly,
the metric-based approach (Liu et al. 2020; Snell, Swersky,
and Zemel 2017; Vinyals et al. 2016) cultivates a feature
extractor via meta-learning, which yields a well-structured
feature space with predefined metrics.

Methods
Prompt-tuning Stage

The contrastive language—image pretraining (CLIP) incor-
porates two types of encoders: a visual encoder and a text
encoder. We adopt the encoders and lock them for prompt
training. The image encoder, represented by W (-), trans-
forms an image x € R3*H*W of height H and width
W from an d-dimension into a d-dimensional image fea-
ture w, € RV*9, where N denotes the number of parti-
tioned patches. While CLIP can be seamlessly employed for
zero-shot predictions, it resorts solely to fixed handcrafted
prompts “a photo of a[]” for generating textual embeddings.
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Crafting such prompts for the CLIP model could be labor-
intensive, demanding a wealth of time and expertise for
word optimization. Following CoOp, we introduces M con-
text vectors V' = {wy,v9,...,ups} as learnable prompts. It
then amalgamates the class token embeddings c; pertinent
to the i-th class with the learnable context vector V' to fash-
ion prompt p; = {v1, v, ...Upr, ¢; }. Subsequently, the learn-
able prompt p; is fed into the text encoder T'(-), yielding the
textual class embedding T'(p;). The image encoder is then
tasked to extract the image feature w,, of image x and obtain
the text feature ¢, by inputting the prompt description into
the text encoder. The prediction task is defined as classify-
ing the image into one of C classes, represented by the set
ze{1,...,C}. z is denoted as the predicted class. It refines
the learnable context token V' by minimizing the negative
log-likelihood function between image features and textual
encoding. Therefore, we have the predicted probability of
the ¢-th class:

ep(cos(w(x), T(p;))/7)
S5 exp(cos(w (@), T(p:)/7)

where cos(+,-) and 7 denote the cosine similarity and the
temperature parameter of the softmax function, respectively.
Throughout this optimization process, the visual encoder
and the pretrained text encoder remain static, akin to CLIP.
Contrary to CLIP which employs fixed prompts, This stage
produces task-specific prompts, augmenting its generaliz-
ability and discernment.

P(z =ilz) =

Meta-Learning Stage

We use the classifier on the base class trained from the
prompt tuning stage as the initialization of our meta-learning
stage. The next phase is the meta-learning stage, optimizing
the model based on the prompt-tuning stage. In the meta-
learning stage, LoL adapts the N-way K-shot manner from
the perspective of the N-way K-shot task format on the base
classes. N-way signifies N classes in the training data, while
K-shot indicates K labeled data under each class. Within an
N-way K-shot undertaking, the support set encompasses [V
classes, each with K samples, and the query set includes
samples from those same N classes with () samples per
class. The objective lies in classifying the N x @ query im-
ages into IV classes. Specifically, during the meta-learning
stage, given the entire feature encoder My trained for classi-
fication, N-way K-shot are sampled from the training sam-
ples of the base class, constituting N x () query samples.
Given the support-set S, let .S; denote the samples in class
1, it computes the average embedding e; as the centroid of

class i: L
€; = § Z M@(Z’)

i
TeS;

@

To compute the loss for each task, centroids for the N
classes defined in Eq.2 are calculated within the support-set,
facilitating the computation of predicted probability distri-
bution for each sample in the query-set. During these train-
ing procedures, each training batch may comprise multi-
ple tasks, with the computed loss being the average cross-
entropy. A comprehensive explanation of the entire process
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Algorithm 1: Meta-Learning Stage

Requirel: p({): distribution over tasks
Require2: «, 3: step size hyperparameters
Require3: M: Model after prompt-tuning stage
1: initialize 6 with M
2: while not done do

3:  Sample batch of tasks ¢; ~ p((¢)

4. for (;do

5: Evaluate 579, (Mp) with respect to K examples

6 Compute adapted parameters with gradient de-
scent: 0 = 60 — o 79 ¢, (Mp)

7:  end for

8:  Update 0 < 0 — B 70 3, p(c) Pc: (Mor)
9: end while

involved in the meta-learning stage is encapsulated in Algo-
rithm 1. The term Requirel represents the distribution of
tasks within the base classes in the dataset, which entails the
random extraction of data within the base classes, based on
the task-unit, for the creation of a task pool. This pool forms
the training set for the meta-learning stage. In Require2, the
step size essentially functions as the learning rate. Require3
indicates that the meta-learning stage is predicated upon the
parameters learned during the prompt tuning stage.

Step 1 indicates the initiation of the model parameters
after the learning phase of the prompt tuning stage. The
model then commences the cyclical process elaborated in
Step 2. Step 3 indicates a random selection of an array of
tasks to create a batch. The meta-learning stage heavily re-
lies on the dual-gradient basis, where each iteration includes
two parameter updates, often named as gradient by gradient.
Steps 4 through 7 outline the process of the first gradient up-
date. Specifically, the gradient parameters of the support set
within a task in the batch are calculated. Given an N-way
K-shot task, there are supposed to be N x K in this support
set. When adapting to a new task (;, the model’s parame-
ters &' morph into 6. The updated parameter vector ' in our
method is computed utilizing one gradient descent update on
task (;, with the step size « fixed as a hyperparameter.

0; =0 — a7 ¢c, (Mp) 3)

Step 8 is paralleled with the process of the second gradient
update. This secondary update enhances performance by op-
timizing Model M with parameter 6'. It is noteworthy that
the ultimate optimization of the model is achieved on the
basis of Model 6 parameters.

ming Y oo (Mg)= Y @ (Mg —aveec, (M)
¢i~p(C) Ci~p(C)
“4)

The optimization goal of the second gradient update, how-
ever, employs parameters 6. Therefore, a cross-task meta-
optimization of model parameters 6 is implemented. For in-
stance, by utilizing an optimizer, the model parameters are
updated as follows:

0 0-B8ve Y oc(My)
¢i~p(Q)

(&)
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K=1 K=2 K=4 K=8 K=16
Backbones | Methods
Base  New H Base  New H Base  New H Base  New H Base  New H
CoOp 67.08 72.65 69.75 | 69.63 73.42 7147 | 72.62 71.81 7221 | 7531 7229 73.77 | 77.26 7090 73.94
VIT-B/16 CoCoOp | 65.72 70.18 67.87 | 69.54 73.57 71.50 | 7293 71.80 72.36 | 74.09 69.58 71.76 | 76.40 69.43 72.75
KgCoOp | 68.53 76.63 7235 | 7046 7595 73.10 | 70.86 77.00 73.80 | 7295 77.10 7497 | 7494 76.52 75.72
LoL 67.08 83.25 7430 | 69.63 88.19 77.82 | 72.62 90.29 80.50 | 7531 91.87 82.77 | 77.26 91.59 83.82
CoOp 5822 64.66 6127 | 6140 6577 63.51 | 65.66 66.04 6585 | 68.70 64.73 66.66 | 70.86 66.46 68.59
ResNet-50 CoCoOp | 56.59 69.13 64.00 | 6145 6891 6497 | 6539 69.01 67.15 | 6792 6846 68.19 | 7042 67.68 68.02
KgCoOp | 59.93 70.64 64.85 | 63.10 72.21 6734 | 6540 7228 68.67 | 67.51 71.86 69.61 | 69.12 71.94 70.50
LoL 5822 70.86 6392 | 6140 78.78 69.01 | 65.66 83.12 73.36 | 68.70 80.84 74.28 | 70.86 83.72 76.76

Table 1: Comparison in the base-to-new setting with different K-shot samples in terms of the average performance among all 7

datasets and backbones(ViT-B/16 and ResNet-50).

[ represents the meta step size. The samples involved in the
calculations of Step 8 are the task’s query set. The aim is
to bolster the model’s generalization ability on the task to
prevent overfitting of the support set.

As shown in Fig. 1, the model loss is calculated from
the cross-entropy loss of the labels of the samples in the
query set and p. Additionally, cosine similarity is employed
to compute the similarity between the query set and the sup-
port set. As the range of cosine similarity is [-1,1], it aids in
scaling down the value before the application of the softmax
function during loss computation in training. In the train-
ing process, we multiply the cosine similarity by a learnable
scala 7, thereby transforming the probability prediction into
Eq.6 in the training.

exp(cos(M(x),e;)/T)
chzl exp(cos(M(x),e;)/T)

As a methodology, even though meta-learning has been ex-
pounded in prior work, none of these previous works have
excavated the performance potential of meta-learning in the
field of VLMs and prompt tuning. Therefore, the meta base-
line we proposed in prompt tuning also represents a ne-
glected, yet crucial baseline in this domain.

Pz =ilx) = (6)

Experiments

Following CoOp, we evaluate the models’ generalization
ability from base-to-new classes within various datasets. Ev-
ery model engaged in our experiments draws its foundation
from the publicly available CLIP. Prior to delving into the
outcome, we elucidate the specifics of the experimental de-
tails.

Experimental Setup

Datasets. We evaluate the methods on 7 image classifica-
tion datasets, which cover a diverse set of recognition tasks.
Specifically, the benchmark includes ImageNet (Deng et al.
2009) and Caltech101 (Fei-Fei, Fergus, and Perona 2004)
for classification on generic objects; Flowers102 (Nilsback
and Zisserman 2008) and FGVC Aircraft (Maji et al. 2013)
for fine-grained classification; SUN397 (Xiao et al. 2010)
for scene recognition; UCF101 (Soomro, Zamir, and Shah
2012) for action recognition; DTD (Cimpoi et al. 2014) for
texture classification.
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Baselines. Three types of CLIP-based methods are in-
cluded as baselines for comparison:

* CoOp (Zhou et al. 2022b) replaces the hand-crafted
prompts with a set of learnable prompts inferred by the
downstream datasets.

* CoCoOp (Zhou et al. 2022a) generates the image-
conditional prompts by combining the image context of
each image and the learnable prompts in CoOp.

* KgCoOp (Yao, Zhang, and Xu 2023) remedially miti-
gates the forgetfulness of pivotal knowledge. It achieves
this by lessening the inconsistency between the learnable
prompt and the manually constructed prompt.

Training Details. Our model’s underlying implementa-
tion is hinged on the approaches of CoOp and KgCoOp, en-
twined with the CLIP model. For the task of generalization
from base-to-new classes in CoOp, CoCoOp and KgCoOp,
we split the dataset categories into a train-test set at a ratio of
3:1. As well, for fair comparison, we divided the dataset into
training, validation, and testing sets at a ratio of 2:1:1 in our
methodology. The data for test is same. We conduct the ex-
periments based on the vision backbone with ResNet-50 (He
et al. 2016) and ViT-B/16 (Dosovitskiy et al. 2020). Glean-
ing inspiration from CoOp, we determinedly fix the context
length at 4 and not initialize the context vectors. And the
class token position is end. The data augmentation methods
are not adopted in our method. We use the setting of 5-way-
K-shot in meta training, K=1,2,4,8,16.

Base-to-Novel Generalization

Analogous to CoOp, each dataset is divided into two groups:
the base classes (Base) and the new class (New), with the
new class diverging from the categories within the base
class. In order to substantiate the generalizability of methods
predicated on CoOp-based methods, all comparative meth-
ods along with the one we propose have grounded their as-
sessment of the new class on the base class data. The de-
tailed results are depicted in Table 1 and Table 2. Table 1 en-
capsulates the average performance across all seven datasets
with diverse K-shot samples and backbones (ViT-B/16 and
ResNet-50). Table 2 offers a detailed account of the per-
formance based on ViT-B/16 backbone and 16-shots setting
across all 7 datasets.
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(a) Caltechl101. (b) FGVCAircraft. (c) DTD.
Base New H Base New H Base New H
CoOp 97.17 98.70 | 97.93 CoOp 40.47 39.70 | 40.08 CoOp 72.00 61.10 | 66.10
CoCoOp | 96.90 98.30 | 97.59 CoCoOp | 38.73 17.47 | 24.08 CoCoOp | 70.57 59.87 | 64.78
KgCoOp | 96.73 98.77 | 97.74 KgCoOp | 36.60 43.53 | 39.77 KgCoOp | 68.73 66.57 | 67.63
LoL 97.17 99.43 | 98.29 LoL 40.47 76.03 | 52.82 LoL 72.00 77.04 | 74.43
(d) Flowers102. (e) UCF101. (f) SUN397.
Base New H Base New H Base New H
CoOp 97.27 75.30 | 84.89 CoOp 83.47 63.87 | 72.37 CoOp 76.67 79.55 | 78.08
CoCoOp | 97.00 76.97 | 85.83 CoCoOp | 82.37 73.20 | 77.51 CoCoOp | 76.20 81.70 | 78.85
KgCoOp | 93.73 83.50 | 88.32 KgCoOp | 82.60 80.77 | 81.67 KgCoOp | 75.73 85.57 | 80.35
LoL 97.27 97.51 | 97.39 LoL 83.47 95.29 | 88.99 LoL 76.67 98.63 | 86.27
(g) Imagenet. (h) Average over 7 datasets.
Base New H Base New H
CoOp 73.79 78.07 | 75.87 CoOp 7726  70.90 | 73.94
CoCoOp | 73.03 78.48 | 75.66 CoCoOp | 76.40 6943 | 72.75
KgCoOp | 7043 76.90 | 73.52 KgCoOp | 7494 76.52 | 75.72
LoL 73.79 97.19 | 83.89 LoL 7726  91.59 | 83.82

Table 2: Comparison with existing methods in the base-to-new generalization setting with ViT-B/16 as the backbone. The
context length M is 4 for prompt-based methods with the 16-shot samples from the base classes. H: Harmonic mean.

SUN397 Flowers102 DTD
shots Method Base New H Base New H Base New H
Ishot LoL-CoOp 66.70 9347 77.85 | 84.17 89.23 86.63 | 50.93 61.13 55.57
LoL-KgCoOp | 70.63 93.57 80.50 | 84.47 89.33 86.83 | 53.83 62.86 58.00
2shots LoL-CoOp 69.20 96.22 80.50 | 86.57 93.08 89.71 | 5453 7126 61.78
LoL-KgCoOp | 72.33 96.82 82.80 | 80.00 93.14 86.07 | 55.60 75.35 63.99
Ashots LoL-CoOp 72.00 9791 8298 | 91.33 96.35 93.77 | 63.50 75.04 68.79
LoL-KgCoOp | 74.03 98.22 84.43 | 8523 96.36 90.45 | 59.33 7542 6641
gshots LoL-CoOp 74.80 98.30 84.95 | 9520 9727 96.22 | 66.57 75.76 70.87
LoL-KgCoOp | 74.93 98.55 85.13 | 89.90 97.30 9345 | 64.30 7845 70.67
16shots LoL-CoOp 76.67 98.63 86.27 | 97.27 97.51 9739 | 72.00 77.04 74.43
LoL-KgCoOp | 75.73 98.79 85.74 | 93.73 97.69 95.67 | 68.73 77.21 72.72

Table 3: Generality with other methods. Comparison in the base-to-new setting with different K-shot samples in terms of the
performance among 3 datasets and ViT-B/16 backbones. H: Harmonic mean.

Overall Analysis. As depicted in Table 1, the proposed
method shows superior performance in terms of Harmonic
mean and accuracy in new classes compared to existing
methods across all settings, highlighting its efficacy for
generalization from base-to-new classes. Our proposed ap-
proach chooses to harness the CoOp as the fundamental
infrastructure for further making extrapolations within the
New classes. Therefore, the performance of LoL in base
classes remains commensurate with CoOp.

Compared to CoOp, our method shows obviously im-
provement for new classes. For instance, using the ViT-
B/16 backbone, LoL attains new class performance scores
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of 91.87% and 91.59% for the 8-shot and 16-shot settings
respectively, which significantly surpass the 72.29% and
70.90% achieved by CoOp. In addition, LoL significantly
improves on new classes compared to KgCoOp and Co-
CoOp, for example, achieving an improvement of 22.16%
and 15.07% over CoCoOp and KgCoOp for the 16-shot set-
ting, respectively. The superior performance of LoL when
applied to new classes corroborates that our method is capa-
ble of augmenting the generality of a broader array of New
classes.

At the same time, our method obtains a higher perfor-
mance in terms of the harmonic mean (H) than KgCoOp.
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P FGVCAircraft DTD UCF101
Context initialization
Base New H Base New H Base New H

Yes, shots=4 3256 8225 46.65 | 60.70 82.51 69.94 | 78.52 95.06 86.00
No, shots=4 3343 74.10 46.07 | 63.50 76.54 69.41 | 7890 93.47 85.57
Yes, shots=8 36.53 83.73 50.87 | 65.12 84.63 73.60 | 81.97 96.11 88.48
No, shots=8 37.80 80.27 51.40 | 66.57 7576 70.87 | 82.87 95.53 88.75
Yes, shots=16 3853 84.27 5288 | 71.14 86.12 77.92 | 83.39 96.35 89.40
No, shots=16 40.47 76.03 52.82 | 72.00 7826 75.00 | 83.47 9529 88.99

Table 4: Context Initialization. Comparison in the base-to-new setting with different K-shot samples in terms of the performance
among 3 datasets and ViT-B/16 backbones. H: Harmonic mean.

Ilustratively, LoL raises H from 74.97% and 75.72% to an
impressive 82.77% and 83.82% within the 8-shot and 16-
shot settings respectively. The superior performance of our
method is clear evidence of its capacity to efficiently adapt
the pre-trained VLM model to downstream tasks, all the
while enhancing the generality of unseen classes.

Detailed Analyses. More detailed analyses are conducted
on several datasets by implementing the CoOp-based model
with ViT-B/16 as the backbone. As illustrated in Table 2,
we juxtapose our method (LoL) with the extant CoOp-based
strategies, namely CoOp, CoCoOp, and KgCoOp. CoOp
outperforms on 6 datasets than both CoCoOp and KgCoOp
in terms of accuracy on base classes. This can be attributed
to CoOp’s exclusive focus on learnable prompts, fostering
the creation of distinctive prompts for base classes. How-
ever, it is precisely owing to CoOp’s overfitting to the base
classes that it exhibits an inferior generalization capability
on the new class, compared to KgCoOp and CoCoOp.
Compared to existing methods, LoL, which adopts CoOp
as the prompt tuning stage, possesses the superior gener-
ative capability for new classes over CoOp-based prompt
methods, CoCoOp and KgCoOp. Simultaneously, LoL ef-
fectively alleviates the overfitting problem of CoOp, and ul-
timately achieving higher harmonic mean and accuracy in
new classes than CoCoOp and KgCoOp across all 7 datasets.

Further Analysis

Generality with other methods. The method we propose
boasts superior adeptly adapts to a variety of CoOp-based
methods. This is attributable to our strategy of employ-
ing various models, post-training on Base classes, as the
backbone for meta-learning stage. Compared to CoOp, Kg-
CoOp mitigates the forgetting of fundamental knowledge by
minimizing the discrepancy between text embeddings from
learnable prompts and handmade prompts. Therefore, Kg-
CoOp obtains a higher performance on New classes than
CoOp. Consequently, we embedded our technique within
the KgCoOp method, with the experimental results demon-
strated in Table 3.

It is evident from Table 1 and Table 2 that under most
experimental conditions, KgCoOp delivers superior perfor-
mance on new classes compared to CoOp. Similarly, under
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Figure 2: Query Size from 5 to 30. Comparison in the base-
to-new setting with different K-shot samples in terms of the
performance among 3 datasets and ViT-B/16 backbones.

all experimental conditions, our KgCoOp-based LoL outper-
forms the CoOp-based LoL when it comes to new classes.
For instance, under the 1-shots condition, the KgCoOp-
based method surpasses the CoOp-based approach by 0.1%,
0.1%, and 1.73% on the SUN397, Flowers102, and DTD
datasets respectively. The experimental results from Table 3
substantiate the effectiveness of our method for new-class
generalization and its commendable generality with other
methods.

Initialization. To comprehend the ramifications of initial-
ization, we conducted an ablation study, comparing word-
embedding-based initialization with random initialization,
whilst maintaining consistency with other settings. Imple-
menting CoOp (Zhou et al. 2022b) for word-embedding-
based initialization, we designated “a photo of a” for the
initialization of FGVCAircraft and UCF101 datasets, and “a
texture of a” for the DTD dataset. In the case of random
initialization, we adopted CoOp, drawing samples from a
Gaussian distribution with zero mean and a standard devia-
tion of 0.02. To establish an equitable comparison, we also



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

configured the context length to 4 during random initializa-
tion.

Table 4 signifies that the meticulously architected word-
embedding-based initialization significantly amplify the ef-
ficacy of our method. We posit that crafted prompt words,
when generalized to new classes, can assimilate the uni-
versal textual knowledge embedded within the CLIP pre-
trained model, and partially mitigate the overfitting phe-
nomenon of CoOp. Although the refinement of initial words
may engender certain advantages, in essence, it is an intri-
cate and laborious task to design appropriate prompt words
for different models. Therefore, in practice, a delicate bal-
ance needs to be achieved between performance and model
training complexity with respect to context length.

Query size. Our methodology harnesses the meta-
learning, commonly employing an approach referred to as
Episodic Training for instruction. Each episode typically
refers to the training samples in the training set as the “sup-
port set” and those in the testing set as the “query set”. In
Fig.2, while keeping all other parameters consistent, we ad-
justed the size of the query in each episode. All experiments
utilized random initialization with a context length set to
4. The experiment manifests that either excessively large or
small query sizes impair the model’s generalization perfor-
mance on novel classes. To be more precise, under the condi-
tion of 16 shots, a query value of 15 yields the most optimal
results. Whereas, for 4 shots and 8 shots, a query value of 10
is most efficacious. We surmise that, due to the adoption of
the N-way K-shot sampling method, there might be a direct
correlation between the increase in shots and the magnitude
of the query. Nonetheless, considering the specific condi-
tions for each dataset, there remains room for optimization
of the query size.

Conclusion

In this paper, we proposed a new “Learning to Learn” (LoL)
approach for learning better visual prompts. Instead of the
conventional way of manually creating prompts like in CLIP,
we adopt adaptable vectors as text prompts and learn the
prompt by an N-way K-shot task inspired by meta-learning.
We initially perform fine-tuning on the base class and then
carry out further fine-tuning in an N-way K-shot training on
the base classes. Our proposed method not only excels in
New class representation but also seamlessly integrates into
extant prompt tuning frameworks. Comprehensive evalua-
tions across multiple benchmark datasets attest to the effi-
cacy of our proposed LoL method as a potent prompt refine-
ment strategy.
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