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Abstract

Linear programming has been practically solved mainly by
simplex and interior point methods. Compared with the
weakly polynomial complexity obtained by the interior point
methods, the existence of strongly polynomial bounds for the
length of the pivot path generated by the simplex methods re-
mains a mystery. In this paper, we propose two novel pivot
experts that leverage both global and local information of the
linear programming instances for the primal simplex method
and show their excellent performance numerically. The ex-
perts can be regarded as a benchmark to evaluate the per-
formance of classical pivot rules, although they are hard to
directly implement. To tackle this challenge, we employ a
graph convolutional neural network model, trained via imita-
tion learning, to mimic the behavior of the pivot expert. Our
pivot rule, learned empirically, displays a significant advan-
tage over conventional methods in various linear program-
ming problems, as demonstrated through a series of rigorous
experiments.

1 Introduction

Linear programming (LP) is among the most fundamental
problems and has been well-studied in the field of optimiza-
tion. LP is not only directly used across various industries
but has also become an important cornerstone of mixed inte-
ger programming (MIP) and sequential linear programming
(SLP) methods for solving nonlinear programming (NLP).
Nowadays, most commercial (Ge et al. 2023; Gurobi Op-
timization, LLC 2023; Nickel et al. 2022; Xpress 2014)
and open-source (Huangfu and Hall 2018; Achterberg 2009)
solvers have implemented fast and stable LP solvers (soft-
ware for solving LP) and constantly achieve new advance-
ments for large-scale LP problems.

A general LP formulation solves the problem with only a
linear objective function and linear constraints. It is well-
known that these linear constraints geometrically form a
polyhedron and if the optimal solution exists, it exists in
one of the vertices which belong to basic solutions from
an algebra point of view. The state-of-the-art methods for
LP include the simplex methods, the interior-point meth-
ods (IPMs), and some recently developed first-order meth-
ods (FOMs) (Applegate et al. 2021; Deng et al. 2022). For
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high accuracy and reliability, the simplex methods and IPMs
are preferred and become two main classes of algorithms im-
plemented in commercial solvers.

The simplex methods start from a basic solution and im-
prove objective or feasibility by reaching a certain adjacent
basic solution, which is called the pivot. The criterion for
switching from the current basic solution to its neighbor is
called the pivot rule. Different pivot rules greatly affect the
performance of the simplex methods, so designing a smart
pivot rule is one of the most significant simplex’s tasks.
From the theoretical aspect, whether there exists a strongly
polynomial bound for the length of the pivot path, which rep-
resents the iteration number of the simplex methods, attracts
much research interest but is still an open problem.

Instead of moving between vertices, IPMs keep an interior
point and walk along a central path approaching the optimal
solution (Karmarkar 1984). In practice, IPMs usually yield
a dense primal-dual approximate solution, from which mod-
ern commercial solvers tend to conduct a crossover and run
simplex methods for a sparse exact solution.

In this paper, we focus on designing smart pivot rules for
the primal simplex method. It is believed that our study can
be easily migrated to other types of simplex methods. The
smart pivot rules are expected to generate short pivot paths
for different kinds of LP instances in different scales and
should not run intolerably slow.

Our contribution We propose a class of novel pivot ex-
perts that can outperform several classical and popular pivot
rules. To modify the experts for practical use, we also apply
machine learning methods to imitate the pivot expert. Our
contribution can be summarized as follows.

* First, we design novel pivot experts. Compared with clas-
sical pivot rules that only utilize local information, we
consider a smart pivot rule should be able to combine
global and local information together. Based on this idea,
two pivot experts are proposed and can generate signifi-
cantly shorter pivot paths than classical pivot candidates
in a series of experiments. The pivot paths generated by
experts are also analyzed on Klee-Minty variants.

» Second, to the best of our knowledge, this paper is the
first to combine imitation learning with dynamic pivot for
general LP of different scales. Incorporating a graph con-
volutional neural network (GCNN) model, our learned
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rule pivots by predicting the experts’ pivot behavior,
which removes the requirement for global information
but maintains expert performance.

Organization of the paper The paper is organized as fol-
lows. Section 2 reviews related studies in simplex methods
and machine learning methods to help optimization, espe-
cially for LP. Section 3 describes the novel class of pivot
experts and discusses its merits and demerits. Section 4 pro-
vides an imitation learning method to help our idea of ex-
perts become practical. Section 5 presents twofold experi-
ments to verify the superiority of our pivot experts and the
learned pivot rule. Section 6 concludes the paper and dis-
cusses some relative topics.

Notations Several commonly used notations are listed be-
low. We use bold letters for vectors and matrices. Let R™
denote the n-dimensional Euclidean space. We use R and R
to express RU {400} and RU {—o0}. Let x; be the jth ele-
ment of vector x. We use x > y to express the element-wise
inequality x; > y;. Let 0, 1, and oo be a vector of zeros,
ones, and infinities. Let I be the identity matrix and e; be the
jth column of I. The dimension of a vector or a matrix will
be unspecified whenever it is clear from the context. || - ||¢ is
¢-norm (2-norm if ¢ is omitted) while | - | is absolute value.
Let A; ; be the entry in the 7th row and jth column of matrix
A. Let A; be the jth column of matrix A, and Az be the
matrix formulated by columns A ; for j € Z. Let A; . be the
ith row of matrix A.

2 Related Work
2.1 Simplex Methods

In this subsection, we will describe a series of pivot rules for
LP in standard form

min ¢’ x

s.t.Ax=Db
x>0,

ey

where x € R" and A € R™*", b € R™,c € R". Let
B and N be indices of basic and non-basic variables. This
formulation is used for academic research, but will not be
preferred in modern LP solvers. Our implementation of pivot
experts considers a more practical formulation which will be
described in Section 3 later.

Pivot rules in primal simplex method The simplex meth-
ods switch between adjacent basic solutions, which is called
the pivot, at each iteration. Pivot is algebraically selecting a
non-basic variable to enter the basis, conducting a ratio test
evaluating distance to go, and letting one basic variable leave
the basis. How to choose among adjacent basic solutions is
key to a successful simplex method.

When Dantzig proposes primal simplex method, he also
provides a pivot rule to choose the candidate with the most
negative reduced cost ¢; = ¢; — chglAj, which is called
Dantzig’s rule (Dantzig 1963). To avoid cycling in a pivot
path, Bland’s rule (Bland 1977) of choosing the candidate
with minimum index and other lexicographic pivot rules
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are proposed. These anti-cycling rules make simplex termi-
nate in finite steps but perform poorly in real applications.
Since other practically anti-cycling methods like perturba-
tion work well, more practical interest is attracted by gener-
ating shorter pivot paths rather than theoretically finite ter-
mination.

The most widely used pivot rule in modern simplex
solvers is the steepest-edge rule (Goldfarb and Reid 1977;
Forrest and Goldfarb 1992). It has been observed to generate
relatively short pivot paths. The steepest-edge rule chooses
the candidate with the most negative ——S4i_____ which

VIAL A2 +1

can be explained as moving in the descending direction most
parallel to c.

Another pivot rule called the greatest improvement rule
(Jeroslow 1973) can also generate short pivot paths. Like
strong branching (Achterberg, Koch, and Martin 2005) in
MIP, this pivot rule prefers a candidate that brings the great-
est improvement in objective value to enter the basis. How-
ever, sometimes too much greed is not the best option (as
will be seen in Section 5). Besides, to calculate the im-
provement, a ratio test for each candidate variable is needed,
which is often too expensive for the simplex method.

As the increasing scale of LP has hit the limits of com-
puter power, rules for more efficient computation are pro-
posed including Devex rule (Harris 1973) and the largest
distance rule (Roos 1986; Pan 2008). Devex rule inexactly
approximates the score in steepest-edge and thus can up-
date faster. The largest distance rule selects the candidate
for which the corresponding dual hyperplane is the farthest
from the present vertex, i.e., with the most negative score
m. Notice that the denominator stays the same and only

requires to be calculated once.

Worst cases of pivot rules With so many rules accumu-
lated and a wide variety of manifestations observed in prac-
tice, researchers are puzzled by the complexity of the sim-
plex methods. In other words, what is the worst possible path
for the simplex methods? Or generally, can LP be solved
with strongly polynomial algorithms?

These problems are surprisingly difficult to give a gen-
eral satisfying answer even though we have already known
that LP has weakly polynomial bounds guaranteed by IPMs.
For some special LP classes, certain pivot rules are proved
to be strongly polynomial (Ye 2011; Kitahara and Mizuno
2013). Unfortunately, worst cases with exponential pivot
numbers have been discovered for most deterministic pivot
rules (Klee and Minty 1972; Avis and Chvatal 1978; Gold-
farb and Sit 1979; Roos 1990). After introducing randomiza-
tion and parameterized LP, several sub-exponential bounds
(Matousek, Sharir, and Welzl 1992; Kalai 1992) or weakly
polynomial bounds (Kelner and Spielman 2006) have been
derived for general LP. In short, analyzing the complexity of
simplex is still a long way to go.

2.2 Machine Learning for Mathematical
Optimization

Machine learning methods can help accelerate or improve
optimization methods. This field of research is called ma-
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chine learning for mathematical optimization (ML4MO).
Many studies in MLAMO help solve MIP since it is a harder
and more common problem. Although there have not been
many fusions of machine learning and LP, some preliminary
attempts are made and deserve mention.

GCNN model-based ML4MO Early studies extract fea-
ture vectors from problems and use classical models for pre-
diction (Di Liberto et al. 2016; Alvarez, Louveaux, and We-
henkel 2017; He, Daume III, and Eisner 2014; Khalil et al.
2016). Afterwards, a new way to encode problems proposed
by Gasse et al. (2019) is to imitate strong branching. They
creatively encode MIP to be a bipartite graph. The bipartite
graph contains almost all information of the original prob-
lem and thus avoids loss of information which the classical
methods often suffer from. With a graph as input, GCNN
models are naturally adopted to perform more comprehen-
sive feature extraction and are ready for subsequent models
to make final decisions. Gasse’s work inspires a new stream
of ML4MO (Gupta et al. 2020; Ding et al. 2020; Nair et al.
2020; Sonnerat et al. 2021; Paulus and Krause 2023) and the
GCNN approach, together with the bipartite graph encoding,
has become one of the preferred methods in practice.

Machine learning for LP and simplex Several attempts
have been made to accelerate LP utilizing machine learning
methods. Most of them study pivot in the primal simplex
method. Adham et al. (2021) use boosted trees and neural
networks to predict the best pivot rule for each LP instance
but the approach is a one-shot decision and lacks flexibil-
ity. Suriyanarayana et al. (2022) use reinforcement learning
to dynamically switch between Dantzig’s rule and steepest-
edge rule for solving LP relaxation of non-Euclidean TSPs
with five cities. However, it is only proof of concept that is
not suitable for larger problems or problems with different
scales. Li et al. (2022) use Monte Carlo tree search (MCTS)
to directly decide which candidate will enter the basis. For
each new LP instance, MCTS explores slowly at every sin-
gle pivot.

The state in both Suriyanarayana’s and Li’s reinforcement
learning approaches is based on simplex tableau directly,
which is not scalable for large-scale LP. The bipartite graph
and GCNN can be a more reasonable tool to encode LP for
its permutation invariance and scalability. In theory, Chen
et al. (2022) reveal the potential power of GCNN in distin-
guishing LP with different characteristics. In practice, Fan et
al. (2023) use GCNN to predict a better initial basis, which
is the preparatory work for the primal simplex method.

3 Smart Pivot Experts
3.1 Primal Simplex Method
We consider a general LP formulation

T

minc ' X
s.t.Ax=Db )
I1<x <,

where x € R” and A € R™*" b € R™,c € R",1 €
R™ u € R™. (2) is more user-friendly than (1), so we will
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derive our pivot experts and conduct experiments based on
this formulation. We implement the following two-phase re-
vised simplex in our own primal simplex solver prototype.

Phase I: find a basic feasible solution Phase I aims to
find a basic feasible solution for Phase II in the primal sim-
plex method. In fact, multiple ways including the big-M
method and heuristics are designed to achieve the purpose.
However, those methods form an independent topic that is
beyond our discussion.

Phase II: solve the LP Phase II starts to solve (2) after
a basic feasible solution is obtained from Phase 1. At each
pivot, we check the reduced cost ¢ of those non-basic vari-
ables and pick those candidates which have negative (pos-
itive) ¢ and are equal to its lower (upper) bound. If there
occurs a tie, we will choose the one with minimum (maxi-
mum) index to enter (leave) the basis.

3.2 Designing Smart Pivot Experts

The existing pivot rules all consider only local information.
Here the term “local” refers to the information that describes
the landscape around the current basic feasible solution. If a
pivot rule makes a myopic decision, the basic feasible solu-
tion may lead to being stuck in a rugged area in the future.

The main idea for designing a smart pivot expert is to
provide global information for it. Some trials proposed by
others include tree search for future information (Li et al.
2022), using interior point information (Todd 1990; Roos
1986; Tamura et al. 1988), or choosing more than one vari-
able at one time to enter the basis (Yang 2020). However,
there is something the most global but easily overlooked —-
the optimal basis.

With the optimal basis at each iteration, the smart pivot
rule can be guided by the following two goals:

1. When selecting a candidate to enter the basis, a smart
pivot rule should let the basic variable in the optimal ba-
sis enter first.

. To select a variable to leave the basis when a tie occurs in
the ratio test, a smart pivot rule should let the non-basic
in the optimal basis leave first.

The smart pivot rule will greedily bring the current basis as
close to the optimal basis (in terms of the difference in the
basic indices) as possible from a global perspective. Theo-
rem 1 guarantees that such a variable can always be found
as long as the objective value is not optimal.

Theorem 1. Given the optimal basis, if the current objec-
tive value is not optimal, there must exist a variable mis-
matching the optimal basis that can enter the current basis
immediately.

Yang (2020) provides similar observation and proof based
on the formulation (1), but does not continue to make full use
of it. We modify his remark for a more practical LP formu-
lation (2) and design smart pivot experts based on it.

Designing smart pivot experts We design two pivot ex-
perts based on two goals and Theorem 1. Before present-
ing details, we have to point out that local information still
matters. During the development of simplex, much valuable
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local information has been proposed such as reduced cost
and steepest-edge score. Given the optimal basis, our pivot
experts combine global information and local information
together.

The first pivot expert (Expert I) satisfies the first goal and
then tries to satisfy the second. More precisely, it chooses
the candidate among the optimal basis with the best steepest-
edge score. After the ratio test, it removes the non-basic vari-
able in the optimal basis as far as possible.

The second pivot expert (Expert II) considers the two
goals at the same time. It will conduct a ratio test for each
candidate in the optimal basis and give preference to those
that can remove non-basic variables in the optimal basis if
there are any. After candidates are filtered by the two goals,
it will choose the one with the best steepest-edge score.

The two experts run at different speeds. Expert I can be
calculated efficiently while Expert II runs more slowly due
to multiple ratio tests. Besides paths with monotone objec-
tive value, the two pivot experts share Property 1 of gener-
ating paths with monotone # DiffOpt defined in Definition
1. Experiments in Section 5 will show the superiority of our
pivot experts for overall generating shorter paths compared
with other classical pivot rules.

Definition 1 (# DiffOpt). Let the status vector sta of the ver-
0, ifnon-basic x; =1;
tex X be sta; = < 1, ifx; is basic
2, ifnon-basic x; = u;
timal basis, # DiffOpt is defined as 1-norm of the difference
between the status vectors of X and the optimal basis.

. Given the op-

Property 1. Given the optimal basis, before the current ob-
Jjective is optimal, # DiffOpt is monotonically decreasing.

At the end of this subsection, we emphasize that the term
“expert” refers to overall better performance rather than to-
tal transcendence. Recalling the existence of worst cases, it
is almost impossible for a pivot rule to completely beat an-
other rule in every single LP instance. Maros (2012) sug-
gests combining different pivot rules if there are signs of
benefit, which is a parallel technical route to ours.

3.3 Pivot Experts on Klee-Minty Cube Variants

To further illustrate the value of global information, a linear
upper bound is provided for the length of our pivot experts’
pivot path on Klee-Minty (KM) cube variants which are usu-
ally the worst cases for classical pivot rules.

KM cube variants KM cube variants are a well-known
class of squashed cubes that usually lead to poor perfor-
mance of some pivot rules, encompassing KM variants (Ki-
tahara and Mizuno 2011; Vanderbei 2020) for Dantzig’s rule
and the Avis-Chvétal polytope (Avis and Chvétal 1978) for
Bland’s rule.

These KM cubes share some similar properties. First, the
feasibility set is combinatorially equivalent to the standard
n-dimensional cube C,, = {(x,y) e R" xR" : x+y =
1, x,y > 0}, which means there exists a one-to-one cor-
respondence between their faces. Second, each vertex is
non-degenerate. The standard cube C,, here is obtained via
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adding slacks y in the cube [0, 1]™. C,, has 2" vertices whose
first n elements are x € {0,1}" andy =1 — x.

The experts’ linear upper bound on KM cubes The
main idea for deriving a linear upper bound for the pivot
experts on KM cubes is to analyze the length of paths with
monotone # DiffOpt. The proof is divided into three steps. In
essence, we start by bounding path lengths on the basic cube
C,, in Theorem 2, extend that to polytopes combinatorially
equivalent to C,, in Theorem 3, and then apply it to the pivot
experts in the KM setting under certain mild assumptions in
Theorem 4. This allows us to derive an overall linear upper
bound on KM cubes.

Theorem 2. For C,, with initial point (x°, y°) and any opti-

mal basis B*, the length of the path with monotone # DiffOpt

g #DiffOptof (x°,y°)
2

i , which is bounded by n from above.

Theorem 3. For any polytope combinatorially equivalent

to C,, with non-degenerate vertices, initial point (x°,y?),

and any optimal basis B*, the length of path with monotone
. 0 .0

#bDiﬁ‘Opt is %M, which is bounded by n from

above.

Theorem 4. For any polytope combinatorially equivalent to
C,, with non-degenerate vertices, initial point (x°,y°), and
the single optimal basis B*, the length of a path generated

. . # Diffopt of (x°,y°
by our pivot experts is upper bounded by W
which is bounded by n from above.

>

Theorem 4 illustrates the value of global information.
With the guidance of the given optimal basis, our experts
will avoid being led to the worst by misleading local infor-
mation on various KM variants. Notice that the upper bound
holds with arbitrary or even no local information. In this as-
pect, the monotone # DiffOpt is more like a combinatorial
rather than algebraic property. The strong performance of
our experts on KM variants will not be negatively impacted
by scaling, which differs from most classical pivot rules.

4 Learning as a Pivot Expert

While our pivot experts offer an advantage, their dependency
on the optimal basis may seem prohibitive for direct applica-
tions. Thus, we employ machine learning to bypass this re-
quirement. Specifically, we cast the LP as a bipartite graph,
using a GCNN model to emulate the choices of pivot ex-
perts, which is similar to Gasse’s GCNN (Gasse et al. 2019).

State encoding and input features The primal simplex
method can be viewed as a Markov decision process, as
shown in Figure 1. At the kth iteration, the state s; contains
the LP instance and the current basic feasible solution x*.
The action space A(sy) encapsulates all possible edges that
can improve the objective value. An action aj is selected
according to a certain pivot rule and x* will move along ay,
until reaching the next vertex x*+1.

We encode the state of LP and current solution into a bi-
partite graph, see Figure 2. Variables and constraints form
two classes of nodes which will be linked by an edge if the
corresponding coefficient A; ; is non-zero. Each node and
edge carry some features that are picked for pivot decision
and thus slightly differ from those defined by Gasse.
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Sk+1

A(sk) = {81, 82} ASk+1) = {03, €4}

Figure 1: The primal simplex method can be viewed as a
Markov decision process. The LP is depicted as a poly-
hedron with directions that can improve objective value
marked on edges. x* denotes the optimal solution.

CT) CT) Variables
min  cyxy +---+ CpXnp)
s.t. Al,lxl +-- 4 Al,n,xn, = by élj > Aij

Am,,lxl +---+ Am,,nxn, =bmn ﬁlj

I<x<u Constraints

Figure 2: Bipartite graph encoding for LP.

Policy for imitating experts We feed the bipartite graph
into our GCNN model and then use a filter and a softmax
function. This filter identifies suitable candidates, while the
softmax estimates their chance of entering the basis. Our
GCNN model shares a similar structure with Gasse’s but has
slightly wider and deeper networks.

It is essential to distinguish between learning to pivot in
LP and learning to branch in MIP. While both involve vari-
able selection, branching explores multiple paths on a tree,
requiring crucial early smart choices, whereas pivoting fol-
lows a single path, less dependent on initial decisions but
needing consistent smart moves.

Summary The pivot expert designing and learning frame-
work can be summarized in Figure 3. For a class of LP in-
stances, which are expected to share common features in
polyhedra, we have designed two pivot experts that can gen-
erate shorter paths. To replicate the expertise using imita-
tion learning, we gather paired data of encoded LP instances,
along with labels that detail bipartite graphs and the experts’
pivot decisions. Using this data, we train the policy network
to accurately mirror the experts’ actions.

S Experiments

Our experiments are twofold. In Section 5.1, we contrast our
advanced pivot experts against others, demonstrating their
ability to produce shorter pivot paths. Section 5.2 showcases
the commendable performance of the learned rule, affirming
the feasibility of training our expert rules via imitation learn-
ing without sacrificing overall enhancement. All tests are
conducted on an AMD Ryzen 7 5700X CPU and NVIDIA
RTX 3060 12GB GPU.
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Pivot rules to be compared Table 1 enumerates the pivot
rules under comparison. We adopt five classical pivot rules
(Bland’s, Dantzig’s, SE, GI, and LD) as our benchmarks.
Our primary focus is on two expert rules (EXP and EXP-
II), alongside our learned rule (EXP-LEARN). In all exper-
iments, every pivot rule receives a consistent initial basis
from Phase I, resolved by SE. Notably, EXP and EXP-II,
requiring an additional optimal basis, are provided in Phase
I by SE. EXP-LEARN operates without the extra informa-
tion that the expert rules need. NO-LOCAL, a derivative of
the EXP rule, omits local information and serves for ablation
analysis.

Type | Notation | Pivot rule
Bland Bland’s rule
Dantzig Dantzig’s rule
Classical rules SE Steepest-edge rule
GI Greatest improvement rule
LD Largest distance rule
EXP Expert I
Our experts EXP-II Expert II
EXP-LEARN Rule imitating Expert I
Ablation study | NO-LOCAL | EXP w/o local information

Table 1: Pivot rules to be compared.

Benchmarks We have chosen a diverse set of LP problem
tests, including a NETLIB subset (Gay 1985) and LP relax-
ations from four combinatorial optimization (CO) classes.
NETLIB, a standard LP benchmark, offers varied LP in-
stances in both scale and structure. Our CO classes cover
set covering (SC), combinatorial auction (CA), capacitated
facility location (FL), and maximum independent set (IS).
These CO problems, inspired by Gasse et al. (2019), may
differ in scale. We presolve NETLIB instances with Gurobi
10.0.2 and CO instances with SCIP 8.0.3.

Evaluation We evaluate pivot rule performance primar-
ily with the geometric mean of pivot numbers serving as
our benchmark metric. Two reasons drive this choice. First,
while our Python-implemented pivot rules might not mir-
ror modern solvers’ speed, they are generally comparable in
pivot numbers with Gurobi’s primal simplex for many LP
instances. Second, pivot path length better captures the sim-
plex method’s complexity. Additionally, for thoroughness,
we will also report each rule’s execution time.

5.1 Testing Pivot Experts

We evaluate our experts against classical methods on the
NETLIB subset. Section 5.2 details the outcomes on the CO
benchmarks, along with our learning analysis.

Setup We utilize 77 selected NETLIB instances, opti-
mized for time and to bypass numerical issues. Each in-
stance adheres to a 300-second time limit. The number of

constraints m and variables n for these instances are pro-
vided in Table 2.

!Standard deviations are provided in parentheses. This conven-
tion is maintained for subsequent tables.
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S

x* (Unknown)

x* (Given)

(a) A class of LP instances.

(b) Given the optimal ba-

sis, pivot experts can generate

shorter paths.

(c) Collect expert choices for
imitation.

3 x* (Unknown)

x* (Given) x*r (Given)

(d) Learned pivot rule gains
improvement on new LP in-
stances.

Figure 3: Pivot expert designing and learning framework in the order of (a) —(b) —(c) —(d). Bold green lines are expert

choices while bold red (dash-dot) lines are bad choices.

# instance

Tl

m

356.6 (£364.4)

n

1439.6 (£2975.5)

Table 2: Average scales of presolved NETLIB instances.!

Numerical results The results in Table 3 and 4 emphasize
the efficacy of EXP and EXP-II over classical pivot rules.
EXP and EXP-II evidently obtain fewer pivot numbers and
more wins, while Bland’s rule has the worst performance
and is thus excluded in future comparisons.

Bland Dantzig SE GI LD | EXP
2 7 16 15 6 ‘ 52
Bland Dantzig SE GI LD | EXP-II
2 6 17 12 6 ‘ 54

Table 3: Number of wins on the NETLIB subset with a total
of 77 instances.?

Bland Dantzig SE GI
851 198 121 131
LD EXP EXP-II NO-LOCAL
177 112 118 139

Table 4: Geometric mean of pivot numbers on the NETLIB
subset.

Ablation study: the role of local information in expert
rules Classical pivot rules, like the SE, GI, Bland’s, and

?Bolded results indicate the best among the evaluated pivot
rules. This convention is maintained for subsequent tables.
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Dantzig’s rules, largely utilize local information, such as re-
duced costs. In contrast, our expert rules merge both global
(the optimal basis) and local information (the steepest-edge
score) to set the pivot direction. Here, we emphasize the piv-
otal role local information plays in optimizing expert rules.

We introduce a variant of the EXP rule, called NO-
LOCAL, that omits local information. In this rule, the en-
tering variable is randomly chosen from candidates in the
optimal basis. Its efficacy is tested on the NETLIB subset.

Table 4 reveals that NO-LOCAL underperforms EXP or
EXP-II rules, and even lags behind the classical SE rule. The
results underscore the diminished efficacy of the EXP rule
when local insights are absent, leading to increased pivot
numbers and fewer wins. Local information is evidently in-
strumental in optimizing pivot decisions.

5.2 Testing Learned Pivot Rule

We conduct experiments with EXP-LEARN on CO bench-
marks, employing the imitation learning approach to emu-
late the EXP rule.

Setup Based on the guidelines from Gasse et al. (2019),
we generate random instances for each CO benchmark. For
the set covering problems, instances have 400 columns and
200 rows. Combinatorial auction problems have 100 items
and 500 bids. For capacitated facility location problems, in-
stances contain 20 facilities and 15 customers. Finally, max-
imum independent set problems have 150 nodes with an
affinity value set to 2. Table 5 details the scales of these pre-
solved CO instances.

Training procedure In the training process, we utilize 5
unique seeds for both data generation and model training.
We apply identical hyperparameters for each CO bench-
mark, drawing upon 50,000 pivot samples from 1,000 in-
stances for training, and 10,000 samples from 200 instances
for validation. To assess the model’s applicability in real-
world scenarios, we test it on 200 new instances, underlining
its ability to generalize on each benchmark.
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# train m n # valid m n # test m n
| | |
SC 1000 200.0 (£0.0)  400.0 (£0.0) 200 200.0 (£0.0)  400.0 (£0.0) 200  200.0 (£0.0) 400.00 (£0.0)
CA | 1000 181.9(+5.0) 427.4(£17.0) | 200  182.0(£5.5) 4282(£18.7) | 200  182.5(£5.5) 427.8 (+18.6)
FL 1000  336.0 (£0.0)  315.0 (£0.0) 200 336.0 (£0.0)  315.0 (£0.0) 200  336.0(£0.0) 315.0 (£0.0)
IS | 1000 2902 (+2.4) 150.0(£0.0) | 200  290.2 (£2.3) 150.0 (£0.0) | 200  290.2 (£2.1)  150.0 (£0.0)
Table 5: Average scales of presolved CO instances for EXP-LEARN to imitate EXP.
Performance metrics Performance is assessed using the | SE GI LD | EXP-LEARN
GCNN model’s validation accuracy, detailed in Table 6. We SC 8 (13) 0 (£0) 0 (£0) 192 (13)
rely on Top 1, Top 3, and Top 5 accuracies. CA [ 7(%2 0(£0) 7 (E2) 192 (13)
FL | 81(12) 17(¥2) 17(%2) 103 (£3)
| ToplAcc | Top3Acc | TopsAcc IS [[71(FD)  0(F0) I7I(ED) | 186 (£2)
SC | 0.533 (£0.004) | 0.847 (£0.005) | 0.927 (£0.003) . : .
CA 0362 (£0.004) | 0.636 (£0.002) | 0784 (£0.002) ;gglfnist.alr\ltl;lber of wins on the CO test sets with a total of
FL | 0.499 (£0.007) | 0.776 (£0.007) | 0.870 (£0.005) ’
IS | 0.257 (£0.002) | 0.420 (£0.002) | 0.511 (£0.001)

Table 6: Accuracy on the CO validation sets.

Numerical results As displayed in Table 6, our model
achieves a Top 1 accuracy over 25% for all problems. This
suggests a greater than 25% chance of copying the expert
action. Notably, while Top 3 and Top 5 accuracies are signif-
icant, they cannot be directly applied in the simplex method,
marking a limitation. It also needs to be emphasized that
comparing validation accuracy across different benchmarks
is not meaningful. Moreover, we choose not to include test
accuracy, as our primary focus is not on direct accuracy com-
parison but on pivot numbers.

| SE GI LD | EXP-LEARN | EXP EXP-II
SC | 419 990 468 336 (+6) 268 280
CA | 266 1340 276 223 (£3) 115 112
FL | 242 304 377 239 (+2) 224 227
IS | 114 302 114 113 (£0) 113 113

Table 7: Geometric mean of pivot numbers on the CO test
sets.?

Table 7 shows that EXP-LEARN consistently outshines
its competitors, highlighting its smart choices. While EXP-
LEARN displays great performance among most bench-
marks, it exhibits only a slight lead over the SE rule in
certain benchmarks, primarily due to the foundational effi-
ciency of the EXP rule it is built upon. This demonstrates
that while imitation learning brings benefits, it does not fully
bridge the performance gap between SE and EXP.

Table 8 underscores the consistency of the EXP-LEARN
rule. Its dominant performance is not due to a few outliers
but is maintained across numerous instances in each bench-
mark. This indicates a robust and generalizable model, prov-
ing EXP-LEARN’s reliability in varied scenarios and high-
lighting its potential for broader applications in LP tasks.

3The results for EXP and EXP-II are for reference only as they
cannot be directly used in practical applications.
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| SE GI LD | EXP-LEARN | EXP EXP-II
SC | 054 6.85 032 | 1.36(£0.02) | 0.32 0.83
CA | 021 844 0.20 | 0.81(4+0.01) | 0.08 0.18
FL | 043 128 0.60 | 0.82(£0.03) | 0.39 0.72
IS | 0.15 098 0.14 | 0.33(£0.00) | 0.16 0.37

Table 9: Geometric mean of solving time (in seconds) on the
CO test sets.

Table 9 quantifies the pivot efficiency across different
benchmarks. EXP-LEARN tends to solve in longer time,
which is a byproduct of its GCNN forward pass. With a more
meticulous design of the graph architecture, the time can be
further optimized.

6 Conclusion

The simplex methods are time-honored with rich practical
design and mystery complexity. Generating a short path is
the key task for pivot rules. In this paper, we design two
innovative and smart pivot experts for primal simplex that
leverage both global and local information, i.e. optimal ba-
sis and steepest-edge score respectively. Experiments illus-
trate that these two experts overall outperform classical pivot
rules significantly. To bridge theory to practical application,
we integrate a GCNN model to mimic these experts. This
imitation learning facilitates the circumvention of global in-
formation dependencies while preserving the performance
in path generation. Empirical evidence confirms the learn-
ability of our experts. The learned rule commendably sur-
passes classical pivot rules in generating shorter pivot paths,
although not quite caught up with the experts.

The value of our pivot experts extends beyond their stan-
dalone significance, serving both as benchmarks and gener-
ators of expert pivot labels. The pivot experts outpace prede-
cessors like MCTS in swiftly constructing superior paths, es-
pecially Expert I. Modifying our method for dual or primal-
dual simplex methods, we anticipate, will be seamless with
minimal adjustments.
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