
Learning Uncertainty-Aware Temporally-Extended Actions

Joongkyu Lee1*, Seung Joon Park2*, Yunhao Tang3, Min-hwan Oh1

1Seoul National University
2Samsung Research
3Google DeepMind

jklee0717@snu.ac.kr, soonjun.park@samsung.com, robintyh@deepmind.com, minoh@snu.ac.kr

Abstract

In reinforcement learning, temporal abstraction in the action
space, exemplified by action repetition, is a technique to facil-
itate policy learning through extended actions. However, a pri-
mary limitation in previous studies of action repetition is its po-
tential to degrade performance, particularly when sub-optimal
actions are repeated. This issue often negates the advantages
of action repetition. To address this, we propose a novel algo-
rithm named Uncertainty-aware Temporal Extension (UTE).
UTE employs ensemble methods to accurately measure uncer-
tainty during action extension. This feature allows policies
to strategically choose between emphasizing exploration or
adopting an uncertainty-averse approach, tailored to their spe-
cific needs. We demonstrate the effectiveness of UTE through
experiments in Gridworld and Atari 2600 environments. Our
findings show that UTE outperforms existing action repetition
algorithms, effectively mitigating their inherent limitations
and significantly enhancing policy learning efficiency.

Introduction
Temporal abstraction is a promising approach to solving
complex tasks in reinforcement learning (RL) with complex
structures and long horizons (Fikes, Hart, and Nilsson 1972;
Dayan and Hinton 1992; Parr and Russell 1997; Sutton, Pre-
cup, and Singh 1999; Precup 2000; Bacon, Harb, and Precup
2017; Barreto et al. 2019; Machado, Barreto, and Precup
2021). Hierarchical reinforcement learning (HRL) enables
the decomposition of this sequential decision-making prob-
lem into simpler lower-level actions or subtasks. Intuitively,
an agent explores the environment more effectively when
operating at a higher level of abstraction and solving smaller
subtasks (Machado, Barreto, and Precup 2021). One of the
most prominent approaches for HRL is the option frame-
work (Sutton, Precup, and Singh 1999; Precup 2000), which
describes the hierarchical structure in decision making in
terms of temporally-extended courses of action. Temporally-
extended actions have been shown to speed up learning, po-
tentially providing more effective exploration compared to
single-step explorative action and requiring a smaller num-
ber of high-level decisions when solving a problem (Stolle

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Precup 2002; Biedenkapp et al. 2021). From a cogni-
tive perspective, such observations are also coherent with
how humans learn, generalize from experiences, and perform
abstraction over tasks (Xia and Collins 2021).

There has been a line of works that propose repetition
of action for an extended period as a specialized form
of temporal abstraction (Lakshminarayanan, Sharma, and
Ravindran 2017; Sharma, Srinivas, and Ravindran 2017;
Dabney, Ostrovski, and Barreto 2020; Metelli et al. 2020;
Biedenkapp et al. 2021; Park, Kim, and Kim 2021).1 Hence,
the action-repetition methods address the problem of learning
when to perform a new action while repeating an action for
multiple time-steps (Dabney, Ostrovski, and Barreto 2020;
Biedenkapp et al. 2021). The extension length, the interac-
tion steps to repeat the same action, is learned by an agent
along with what action to execute (Sharma, Srinivas, and
Ravindran 2017; Biedenkapp et al. 2021). As shown by the
improved empirical performances (Dabney, Ostrovski, and
Barreto 2020; Biedenkapp et al. 2021), these action repetition
approaches can be well justified by the commitment to action
for deriving a deeper exploration. These approaches can help
suppress the dithering behavior of the agent that can result in
short-sighted exploration in a local neighborhood.

However, simple action repetition alone cannot guarantee
performance improvement. Repetition of a sub-optimal ac-
tion for an extended period can lead to severe deterioration
in the performance. For example, a game may terminate due
to reckless action repetition when an agent is in a dangerous
region. A more uncertainty-averse behavior would be helpful
in this scenario. On the other hand, an agent may linger in the
local neighborhood due to a lack of optimism, especially in
sparse reward settings. In that case, a more exploration-favor
behavior can be beneficial. In either case, a suitable control
of uncertainty of value estimates over longer horizons can be
a crucial element. In particular, the calibration of how much
exploration the agent can take, or how uncertainty-averse the
agent should be, can definitely depend on an environment.
Thus, the degree of uncertainty to be considered should be

1In fact, action repetition for a fixed number of steps was one
of the strategies deployed in solving Atari 2600 games (Mnih et al.
2015; Machado et al. 2018). Despite its simplicity, the action repeti-
tion provided sufficient performance gains so that almost all modern
methods of solving Atari games are still implementing such action
repetitions.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13391

adaptive depending on the environment. To this end, we pro-
pose to account for uncertainties when repeating actions.
To our best knowledge, consideration of uncertainty in the
future when instantiating action repetition has been not ad-
dressed previously. Such consideration is essential in action
repetition in both uncertainty-averse and exploration-favor
environments.

In this paper, we propose a novel method that learns to re-
peat actions while incorporating the estimated uncertainty of
the repeated action values. We can either impose aggressive
or uncertainty-averse exploration by controlling the degree
of uncertainty in order to take suitable uncertainty-aware
strategy for the environment. Through extensive experiments
and ablation studies, we demonstrate the efficacy of our pro-
posed method and how it enhances the performances of deep
reinforcement learning agents in various environments. In
comparison with the benchmarks, we show that our proposed
method outperforms baselines, consistently outperforming
the existing action repetition methods. Our contributions are:

• We present a novel framework that allows the agent to
repeat actions in a uncertainty-aware manner using an en-
semble method. Suitably controlling the amount of uncer-
tainty induced by repeated actions, our proposed method
learns to choose extension length and learns how opti-
mistic or pessimistic it should be, hence enabling efficient
exploration.

• Our method yields a salient insight that it is beneficial
to consider environment-inherent uncertainty preference.
Some environments are uncertainty-favor (Chain MDP),
and some are uncertainty-averse (Gridworlds).

• In a set of testing environments, we show UTE consistently
outperforms all of the existing action-repetition baselines,
such as DAR, ϵz-Greedy, DQN, B-DQN, in terms of final
evaluation scores, learning speed, and coverage of state-
spaces.

Related Work
Temporal Abstraction and Action Repetition. Temporal ab-
stractions can be viewed as an attempt to find a time scale that
is adequate for describing the actions of an AI system (Precup
2000). The options framework (Sutton, Precup, and Singh
1999; Precup 2000; Bacon, Harb, and Precup 2017) formal-
izes the idea of temporally-extended actions. An MDP en-
dowed with a set of options are called Semi-Markov Decision
Process (SMDP) which we define in Preliminaries. The gen-
eralization of conventional action-value functions for the
options framework is called option-value functions (Sutton,
Precup, and Singh 1999). The mapping from states to proba-
bilities of taking an option is called policy over options. In
the options framework, the agent attempts to learn a policy
over options that maximizes the option-value functions.

One simple form of an option is repeating a primitive
action for certain number of steps (Schoknecht and Ried-
miller 2002). Action repetition has been widely explored in
the literature (Lakshminarayanan, Sharma, and Ravindran
2017; Sharma, Srinivas, and Ravindran 2017; Dabney, Os-
trovski, and Barreto 2020; Metelli et al. 2020; Biedenkapp
et al. 2021; Park, Kim, and Kim 2021). Action repetition

has been empirically shown to induce deeper exploration
(Dabney, Ostrovski, and Barreto 2020) and lead to efficient
learning by reducing the granularity of control (Lakshmi-
narayanan, Sharma, and Ravindran 2017; Sharma, Srinivas,
and Ravindran 2017; Metelli et al. 2020; Biedenkapp et al.
2021). Action repetition can be implemented by deciding
the extension length of an action which is either sampled
from a distribution (Dabney, Ostrovski, and Barreto 2020)
or returned by a policy (Lakshminarayanan, Sharma, and
Ravindran 2017; Sharma, Srinivas, and Ravindran 2017).
The closest related to our work is Biedenkapp et al. (2021).
They proposed an algorithm called TempoRL that not only
selects an action in a state but also for how long to commit
to that action. TempoRL (Biedenkapp et al. 2021) proposes a
hierarchical structure in which behavior policy determines
the action a to be played given the current state s, and a skip
policy determines how long to repeat this action. However,
our main intuition is that simply repeating the chosen action
is not enough. We may encounter undesirable states while
repeating the action. This could lead to catastrophic failure
when an agent enters a “risky” area (refer Gridworlds experi-
ments). Our method has been shown to effectively manage
this issue by quantifying the uncertainty of the option in form
of repeating actions.

Uncertainty in Reinforcement Learning. Recently, many
works have made significant advances in empirical studies
by quantifying and incorporating uncertainty (Osband et al.
2016; Bellemare et al. 2016; Badia et al. 2020; Lee et al.
2022). There are two types of uncertainty: aleatoric and epis-
temic. Aleatoric uncertainty is the uncertainty caused by the
uncontrollable stochastic nature of the environment and can-
not be reduced. Epistemic uncertainty is caused by the current
imperfect training of the neural network and can be reducible.

One mainstream of estimating the uncertainty in deep RL
relies on bootstrapping. Osband et al. (2016) introduced Boot-
strapped DQN as a method for effcient exploration. This
approach is a variation of the classic DQN neural network
architecture, which has a shared torso with K ∈ Z+ heads.
Anschel, Baram, and Shimkin (2017); Peer et al. (2021) lever-
aged an ensemble of Q-functions to mitigate overestimation
in DQN. In this paper, we propose an algorithm that quan-
tifies uncertainty of Q-value estimates of the states reached
under the repeated-action. This algorithm utilizes multiple
randomly-initialized bootstrapped heads that stretch out from
a shared network, providing multiple estimates of the op-
tion-value function. The variance between these estimates is
then used as a measure of uncertainty. Notably, this approach
allows us to capture both aleatoric and epistemic uncertainty.
Then, we establish a UCB-style (Auer, Cesa-Bianchi, and
Fischer 2002; Audibert, Munos, and Szepesvári 2009) option-
selecting algorithm that simply adds the estimated uncertainty
to the averaged ensemble Q-values and chooses an action that
maximizes the quantity (Chen et al. 2017; Peer et al. 2021).

Preliminaries and Notations
In reinforcement learning, an agent interacts with an en-
vironment whose underlying dynamics is modeled by a
Markov Decision Process (MDP) (Puterman 2014). The tu-
ple ⟨S,A, P,R, γ⟩ defines an MDPM, where S is a state

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13392

space, A is an action space, P : S × A → S is a transition
dynamics function, r : S × A → R is a reward function,
and γ ∈ [0, 1] is the discount factor. We consider a Semi-
Markov Decision Process (SMDP) model to incorporate the
options framework (Sutton, Precup, and Singh 1999; Precup
2000). An SMDP is an original MDP with a set of options,
i.e.,Mo := ⟨S,Ω, Po, Ro⟩, where ω ∈ Ω is an option in the
option space, Po(s

′ | s, ω) : S ×Ω→ S is the probability of
transitioning from state s to state s′ after taking an option ω
and Ro : S × Ω→ R is the reward function for the option.

For any set X , let P(X) denote the space of prob-
ability distributions over X . Then a policy over option
πω : S → P(Ω) assigns a probability to an option con-
ditioned on a given state. Our goal is to learn a policy πω

that maximizes the expectation of discounted return start-
ing from a initial state s0; then, define the value functions
V πω (s0) = Eπω

[
∑∞

t=0 γ
tRt | s0], the action-value func-

tions Qπω (s0, a) = Eπω
[
∑∞

t=0 γ
tRt | s0, a], or the option-

value functions Q̃πω (s0, ω) = Eπω [
∑∞

t=0 γ
tRt | s0, ω].

In general, options depend on the entire history between
time step t when they were initiated and the current time
step t + k, ht:t+k := statst+1...at+k−1st+k. Let H be
the space of all possible histories h, then a semi-Markov
option ω is a tuple ω := ⟨Io, πo, βo⟩, where Io ⊂ S is
an initiation set, πo : H → P(A) is an intra-option pol-
icy, and βo : H → [0, 1] is a termination function. In
this framework, we define an action repeating option to be
ωaj := ⟨S,1a, β(h) = 1|h|=j⟩, in which h ∈ H and 1a

indicates |A|-dimensional vector where the element corre-
sponding to a is 1 and 0 otherwise. This action repeating
option takes action a for j times and then terminates.

When an agent plays a chosen action for extension length
j, total of j(̇j+1)

2 skip-transitions are observed and stored
in the replay buffer (Biedenkapp et al. 2021). Specifically,
when repeating the action for j times from state s, we
can also experience (s → s′(1)), (s → s′(2)), . . . , (s

′
(1) →

s′(2)), . . . , (s
′
(j−1) → s′(j)), in total j·(j+1)

2 transitions. We
leverage these transitions to update option-values. Conse-
quently, the observations for short extensions are updated
more frequently, leading to smaller uncertainties for short
extensions and larger uncertainties for long extensions.

Uncertainty-Aware Temporal Extension
In this section, we propose our algorithm UTE: Uncertainty-
Aware Temporal Extension, which repeats the action in con-
sideration of uncertainty in Q-values. We first demonstrate
temporally-extended Q-learning by decomposing the action
repeating option. We then describe how we estimate the un-
certainty of an option-value function Q̃πω by utilizing the
ensemble method to select an extension length j in consider-
ation of uncertainty. We additionally show that n-step targets
can be used for learning the action-value function Qπω with-
out worrying about off-policy correction.

Temporally-extended Q-Learning
In this work, we mainly depend on techniques based on the Q-
learning algorithm (Watkins and Dayan 1992), which seeks

Algorithm 1: UTE: Uncertainty-Aware Temporal Extension

1: Input: uncertainty parameter λ, the number of output
heads of option-value functions B.

2: Initialize: Qπω , {Q̃πω

(b)}
B
b=1.

3: for episode = 1, . . . ,K do
4: Obtain initial state s from environment
5: repeat
6: a← ϵ-greedy argmaxa′ Qπω (s, a)
7: Calculate µ̂πω

(s, ωaj), σ̂2
πω

(s, ωaj) by Eq. (4).
8: j ← argmaxj′ {µ̂πω

(s, ωaj′) + λσ̂πω
(s, ωaj′)}

9: while j ̸= 0 and s is not terminal do
10: Take action a and observe s′, r
11: s← s′, j ← j − 1
12: end while
13: until episode ends
14: end for

to approximate the Bellman optimality operator to learn the
optimal policy:
Definition 1. We define the optimal action-value function
Qπ∗

ω and the optimal option-value function Q̃π∗
ω respectively

as

Qπ∗
ω(s, a)=Es′

(1)
∼P

[
R(s, a)+γmax

a′
Qπ∗

ω (s′(1), a
′)
]
,

(1)

Q̃π∗
ω(s, ωaj)=Es′

(j)
∼Po

[
Ro(s, ωaj)+γjmax

ω′
Q̃π∗

ω (s′(j), ω
′)
]
,

(2)

where s′(0) and s′(j), respectively, indicate one-step and
j-step later state from the state s . In practice, it is com-
mon to use a function approximator to estimate each Q-
value, Qπω (s, a; θ) ≈ Qπ∗

ω (s, a) and Q̃πω (s, ωaj ;ϕ) ≈
Q̃π∗

ω (s, ωaj). We use two different neural network function
approximators parameterized by θ and ϕ respectively.

Option Decomposition. Learning the optimal policy over
options, instead of the optimal action policy, has the same
effect as enlarging the action space from |A| to |A| × |J |,
where J ={1, 2, ... , max repetition}. Generally, inaccuracies
in Q-function estimations can cause the learning process to
converge to a sub-optimal policy, and this phenomenon is
amplified in situations with large action spaces (Thrun and
Schwartz 1993; Zahavy et al. 2018). Therefore, we consider
decomposed policy over option (Biedenkapp et al. 2021),
πω(ωaj | s) := πa(a | s) · πe(j | s, a), in which an action
policy πa(a | s) : S → P(A) assigns some probability to
each action conditioned on a given state, and then an exten-
sion policy πe(j | s, a) : S ×A → P(J) assigns some
probability to each extension length conditioned on a given
state and action. Note that there exists a hierarchy between
decomposed policies πa and πe, thus, πa always has to be
queried before πe at every time an option initiates. The agent
first chooses an action a from action policy πa based on the
action-value function Qπω (e.g. ϵ-greedy). Then, given this
action a, it selects extension length j from πe according to
the option-value function Q̃πω .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13393

By decomposing the policy over option πω, we can de-
crease the search space from |A| × |J | to |A| + |J |. We
empirically show that decomposing option can stabilize the
Q-learning in Appendix. However, this learning process may
converge to a sub-optimal policy because it is intractable to
search all the possible combinations of actions and extension
lengths (a, j). The agent may repeat the sub-optimal action
excessively or sometimes be overly myopic. Our algorithm
can mitigate this issue by controlling the level of uncertainty
when executing the extension policy πe.
Proposition 1. In a Semi-Markov Decision Process (SMDP),
let an option ω ∈ Ω be the action repeating option defined by
action a and extension length j, i.e. ωaj := ⟨S,1a, β(h) =
1h=j⟩. For all ω ∈ Ω, a policy over option, πω, can be
decomposed by an action policy πa(a | s) : S → P(A)
and an extension policy πe(j | s, a) : S ×A → P(|J |),
i.e. πω(ωaj | s) := πa(a | s) · πe(j | s, a). Then, for the
corresponding optimal policy π∗

ω , the following holds:

V π∗
ω (s) = max

ωaj

Qπ∗
ω (s, ωaj) = max

a
Qπ∗

ω (s, a).

Proposition 1 implies that the target value for the option
selection of repeated actions can be the same as the tar-
get for a single-step action selection within the option. In
our implementation, we use max

a′
Qπ∗

ω (s′(j), a
′) instead of

max
ω′

Q̃π∗
ω (s′(j), ω

′
aj) for the target value in Eq.(2). This can

stabilize the learning process by sharing the same target.

Ensemble-based Uncertainty Quantification
In the previous action repetition methods (Lakshminarayanan,
Sharma, and Ravindran 2017; Sharma, Srinivas, and Ravin-
dran 2017; Dabney, Ostrovski, and Barreto 2020; Biedenkapp
et al. 2021), they extend the chosen action without consider-
ing uncertainty which could easily run to failure. The only
situation where these problems do not occur is when their
extension policies are optimal, which means they need to ex-
pect the j step later state precisely. However, it is improbable
in the sense that this situation rarely occurs in the learning
process. In order to solve this problem, we propose a strat-
egy of choosing a extension length j in an uncertainty-aware
manner. UTE is a uncertainty-aware version of the TempoRL
(Biedenkapp et al. 2021). Our main intuition is that it is cru-
cial to consider the uncertainty of option-value functions
Q̃πω , when selecting extension length j by extension pol-
icy πe.

We use the ensemble method, which has recently become
prevalent in RL (Osband et al. 2016; Da Silva et al. 2020;
Bai et al. 2021), to estimate uncertainty in our estimated
option-value functions. We use a network consisting of a
shared architecture with B independent. “head” branching
off from the shared network. Each head corresponds to a
option-value function, Q̃πω

(b), for b ∈ {1, 2, . . . , B}. Each
head is randomly-initialized and trained by different sam-
ples from an experience buffer. Unlike Bootstrapped DQN
(B-DQN) (Osband et al. 2016) where each one of the value
function heads is trained against its own target network, our
UTE trains each value function head against the same target.

If each head has its own target head respectively, since the ob-
jective function of neural networks is generally non-convex,
each Q-value may converge to different modes. In this case,
as training the policy, the estimated uncertainty of option
Q-value, σ̂πω

, could not converge to zero. This means that
it is unable to learn an optimal policy. Therefore, using the
same target is one of the key points of our implementation.

Given state s and action a, Q̃πω

(b)-values are aggregated by
extension length j to estimate mean and variance as follows:

µ̂πω
(s, ωaj) :=

1

B

B∑
b=1

Q̃πω

(b)(s, ωaj) (3)

σ̂2
πω

(s, ωaj) :=
1

B

B∑
b=1

(Q̃πω

(b)(s, ωaj))
2 − (µ̂πω

(s, ωaj))
2

(4)

Then, we define uncertainty-aware extension policy πe,
which takes extension length j deterministically given state
and action, by introducing the uncertainty parameter λ ∈ R:

j = argmax
j′∈J

{µ̂πω
(s, ωaj′) + λσ̂πω

(s, ωaj′)}.

where λ indicates the level of uncertainty to be considered.
The positive λ induces more aggressive exploration, and the
negative one causes uncertainty-averse exploration.

n-step Q-Learning

We make use of n-step Q-learning (Sutton 1988) to learn
both Qπω and Q̃πω , whereas TempoRL (Biedenkapp et al.
2021) used it only for updating Q̃πω . We found that n-
step targets can also be used to update Qπω -values without
any off-policy correction (Harutyunyan et al. 2016), e.g.,
importance sampling. Given the sampled n-step transition
τt = (st, at, Ro(st, oan), st+n) from replay buffer R, as
long as n is smaller than or equal to the current extension
policy πe’s output j, the transition τt trivially follows our
target policy πω . Thus, τt can be directly used to update the
action-value function Qπω . Instead of one step Q-learning in
Eq.(1), UTE uses n-step Q-Learning to update Qπω :

LQπω (θ) = Eτt∼R
[
(Qπω (st, at; θ)−

n−1∑
k=0

γkrt+k

− γn max
a′

Qπ∗
ω (st+n, a

′; θ̄))2
∣∣∣n ≤ j ∼ πe

]
where θ̄ are the delayed parameters of action-value function
Qπω and j ∼ πe(jt | st, at). In general, n-step returns can
be used to propagate rewards faster (Watkins 1989; Peng
and Williams 1994). It mitigates the overestimation problem
in Q-learning as well (Meng, Gorbet, and Kulić 2021). We
empirically illustrate that n-step learning leads to faster learn-
ing in Figure 12b. Note that we don’t need to pre-define n
because it is dynamically determined by current extension
policy πe.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13394

Adaptive Uncertainty Parameter λ

Instead of fixing λ during the learning process, we propose
the adaptive selection of λ utilizing a non-stationary multi-
arm bandit algorithm, as described in (Badia et al. 2020).
Consider Λ as the predefined set of uncertainty parameters.
At the onset of each episode k, the bandit selects an arm,
denoted by λk ∈ Λ, and subsequently receives feedback in
the form of episode returns Rk(λk). Given that the reward
signal Rk(λk) is non-stationary, we employ a sliding-window
UCB combined with ϵucb-greedy exploration to optimize the
process. Further details regarding the algorithms can be found
in Appendix.

Experiments
In this section, we present three principal experimental re-
sults: Chain MDP, Gridworlds, and Atari 2600 games, as
described in Machado et al. (2018) (Machado et al. 2018).
Initially, we confirm our hypothesis that a positive λ foster
more aggressive exploration (ChainMDP), while a negative
one results in uncertainty-averse exploration (Gridworlds).
Subsequently, we demonstrate the significant impact of a
well-tuned λ on performance in more complex environments
and illustrate that the adaptive selection of λ consistently
outperforms other baseline measures (Atari 2600 games). To
ensure a fair comparison, we explored a considerable range
of hyperparameters to identify the most optimal value for
each algorithm (Refer Table 8, 9, 11, and 12 in Appendix)

. . .<latexit sha1_base64="Mic0xWFzd6dy9/EWBxgfmcBSCaY=">AAAB6nicjVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePFYqf2ANpTNdtMu3WzC7kQooT/BiwdFvPqLvPlv3KY9qCj4YODx3gwz84JECoOu++EUVlbX1jeKm6Wt7Z3dvfL+QdvEqWa8xWIZ625ADZdC8RYKlLybaE6jQPJOMLme+517ro2I1R1OE+5HdKREKBhFKzWbA29QrnhVNwf5m1Rgicag/N4fxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs/zUGTmxypCEsbalkOTq14mMRsZMo8B2RhTH5qc3F3/zeimGl34mVJIiV2yxKEwlwZjM/yZDoTlDObWEMi3srYSNqaYMbTql/4XQPqt659Xaba1Sv1rGUYQjOIZT8OAC6nADDWgBgxE8wBM8O9J5dF6c10VrwVnOHMI3OG+f2WKNgw==</latexit>S1
<latexit sha1_base64="E8O2nPJOWmlIp5zibS2NiEWe29Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoJ4k4MVjJOYByRJmJ7PJkNnZZaZXCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSRSGHTdbye3sbm1vZPfLeztHxweFY9PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8d3cbz9xbUSsHnGScD+iQyVCwShaqdHoV/rFklt2FyDrxMtICTLU+8Wv3iBmacQVMkmN6Xpugv6UahRM8lmhlxqeUDamQ961VNGIG3+6OHVGLqwyIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMMbfypUkiJXbLkoTCXBmMz/JgOhOUM5sYQyLeythI2opgxtOgUbgrf68jppVcreVbn6UC3VbrM48nAG53AJHlxDDe6hDk1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kD1oGNgQ==</latexit>

S2

<latexit sha1_base64="LNMFR+bITZenX/Ss02D6K7EC81U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArQT1JwIsniWgekCxhdtJJhszOLjOzQljyEV48KOLV7/Hm3zhJ9qCJBQ1FVTfdXUEsuDau++3kVlbX1jfym4Wt7Z3dveL+QUNHiWJYZ5GIVCugGgWXWDfcCGzFCmkYCGwGo5up33xCpXkkH804Rj+kA8n7nFFjpeZDN7078ybdYsktuzOQZeJlpAQZat3iV6cXsSREaZigWrc9NzZ+SpXhTOCk0Ek0xpSN6ADblkoaovbT2bkTcmKVHulHypY0ZKb+nkhpqPU4DGxnSM1QL3pT8T+vnZj+lZ9yGScGJZsv6ieCmIhMfyc9rpAZMbaEMsXtrYQNqaLM2IQKNgRv8eVl0jgvexflyn2lVL3O4sjDERzDKXhwCVW4hRrUgcEInuEV3pzYeXHenY95a87JZg7hD5zPH6FLjxs=</latexit>

SN�1

<latexit sha1_base64="FPt6PB4mBLfnA5lbMrkiK37ffdw=">AAAB7HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePEkFU1baEPZbDft0s0m7E6EEvobvHhQxKs/yJv/xu3HQUXBBwOP92aYmRemUhh03Q+nsLS8srpWXC9tbG5t75R395omyTTjPktkotshNVwKxX0UKHk71ZzGoeStcHQ59Vv3XBuRqDscpzyI6UCJSDCKVvJve/n1pFeueFV3BvI3qcACjV75vdtPWBZzhUxSYzqem2KQU42CST4pdTPDU8pGdMA7lioacxPks2Mn5MgqfRIl2pZCMlO/TuQ0NmYch7Yzpjg0P72p+JvXyTA6D3Kh0gy5YvNFUSYJJmT6OekLzRnKsSWUaWFvJWxINWVo8yn9L4TmSdU7rdZuapX6xSKOIhzAIRyDB2dQhytogA8MBDzAEzw7ynl0XpzXeWvBWczswzc4b5/Jzo6s</latexit>

SN

<latexit sha1_base64="PpM0i5ftkjpeiTLCkpa2wjQZ4Os=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GjLttJ0ulIIblxXtA9qhZNJMG5rJDElGKKWf4MaFIm79Inf+jelDUNEDFw7n3Mu99wQJZ0oj9GFl1tY3Nrey27md3b39g/zhUUvFqSS0SWIey06AFeVM0KZmmtNOIimOAk7bwfhq7rfvqVQsFnd6klA/wkPBQkawNtKtvHD6+QKyUcmreWWI7FIZFYsVQ6rI9WoudGy0QAGs0Ojn33uDmKQRFZpwrFTXQYn2p1hqRjid5XqpogkmYzykXUMFjqjyp4tTZ/DMKAMYxtKU0HChfp+Y4kipSRSYzgjrkfrtzcW/vG6qQ8+fMpGkmgqyXBSmHOoYzv+GAyYp0XxiCCaSmVshGWGJiTbp5EwIX5/C/0mraDsV271xC/XLVRxZcAJOwTlwQBXUwTVogCYgYAgewBN4trj1aL1Yr8vWjLWaOQY/YL19AkikjdA=</latexit>

r = 1

<latexit sha1_base64="gvApYv1EMLDEmarqeJW6BUC/8J4=">AAAB+XicdVDLSgMxFM34rPU16tJNsAiuhqRO29koBTcuK9gHtEPJpJk2NPMgyRTK0D9x40IRt/6JO//G9CGo6IELh3Pu5d57glRwpRH6sNbWNza3tgs7xd29/YND++i4pZJMUtakiUhkJyCKCR6zpuZasE4qGYkCwdrB+GbutydMKp7E93qaMj8iw5iHnBJtpL5ty6teKAnN8SzHCKFZ3y4hp1LBnluFyKnhMr5Ehnhe2S0jiB20QAms0Ojb771BQrOIxZoKolQXo1T7OZGaU8FmxV6mWEromAxZ19CYREz5+eLyGTw3ygCGiTQVa7hQv0/kJFJqGgWmMyJ6pH57c/Evr5vp0PNzHqeZZjFdLgozAXUC5zHAAZeMajE1hFDJza2QjogJQpuwiiaEr0/h/6RVdnDVce/cUv16FUcBnIIzcAEwqIE6uAUN0AQUTMADeALPVm49Wi/W67J1zVrNnIAfsN4+AcW0kxw=</latexit>

r =
1

1000

Figure 1: Chain MDP

Chain MDP
We experimented in the Chain MDP environment as de-
scribed in Figure 1 (Osband et al. 2016). There are two
possible actions {left, right}. If the agent reaches the left
end (s1) of the chain and performs a left action, a deceptive
small reward (0.001) is given. And if the agent reaches the
right end (sn) of the chain and performs a right action, large
reward (1.0) is given. Thus, the optimal policy is to take
only right actions. Since the reward is very sparse, we need
a “deep” exploration strategy to learn the optimal policy. In
this toy environment, we will verify our intuition that posi-
tive uncertainty parameter λ induces deep exploration and
as a result, show a better performance than other baselines,
DDQN (Van Hasselt, Guez, and Silver 2016), ϵz-Greedy (Dab-
ney, Ostrovski, and Barreto 2020) and TempoRL (Biedenkapp
et al. 2021).

Setup. The agent interacts with the environment with a
fixed horizon length, N + 8, where N is the chain length.
Thus, the agent can obtain rewards from zero to 10 in each
episode. We limited the maximum extension length as 10 for
TempoRL and UTE.

Chain Length 10 30 50 70

ϵz-Greedy 0.654 0.427 0.434 0.131
TempoRL 0.904 0.740 0.246 0.052
UTE (ours) 0.919 0.758 0.560 0.191

Table 1: Normalized AUC on Chain MDP over 20 runs

Exploration-Favor. Table 1 summarizes the results on var-
ious levels of chain length in terms of normalized area under
the reward curve (AUC), comparing UTE with the best uncer-
tainty parameter (+2.0, the most optimistic λ) to ϵz-Greedy
and TempoRL. A reward AUC value closer to 1.0 indicates
that the agent was able to find the optimal policy faster. The
total training episodes for calculating AUC was set to 1,000
across all chain lengths. The results in the table show that
UTE outperforms the other two baselines notably throughout
different chain lengths. This implies that UTE has a better
exploration strategy which leads to higher reward even in the
difficult settings (longer chain length). We also point out that
UTE has a smaller variance than TempoRL after it has reached
the optimal reward of 10. This is mainly because UTE can col-
lect more diverse samples by exploratory extension policy πe,
which may lead to better generalization and more accurate
approximation to the optimal option-value function.

More importantly, we can encode the exploration-favor
strategy by adjusting the uncertainty parameter, λ. Note that
we don’t use ϵ-greedy for the extension policy πe, whereas
TempoRL do. In Appendix, Table 8 shows that more positive
λ achieves higher AUC scores. When the agent selects a
random action by the ϵ-greedy action policy, it can explore
deeper by being more optimistic, which leads to faster con-
vergence to the optimal solution. An aggressive exploration
strategy is beneficial because the environment has no risky
area where the game terminates while repeating the action.

S G

(a) Bridge

S

G

(b) ZigZag

Figure 2: 6 × 10 Gridworlds. Agents have to reach a goal
state (G) from a starting state (S) detouring the lava. Dots and
lines represent decision steps with and without temporally-
extended actions, respectively.

Gridworlds
In this section, we analyze the empirical behavior of the
various algorithms in the Gridworlds environment Lava (Fig-
ure 2). It is a 6× 10 grid with discrete states and actions. An
agent starts in the top-left corner and must reach the goal
to receive a positive reward (+1) while avoiding stepping
into the lava (-1 reward) on its way. In contrast to the chain
MDP environment, since we have a risky area “lava”, an

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13395

uncertainty-averse strategy must be preferred. We compare
our method against vanilla DDQN (Van Hasselt, Guez, and Sil-
ver 2016) ϵz-Greedy (Dabney, Ostrovski, and Barreto 2020)
and TempoRL (Biedenkapp et al. 2021).

Setup. We trained all agents for a total of 3.0 × 103

episodes using 3 different types of ϵ-greedy exploration
schedule: linearly decaying from 1.0 to 0.0 over all episodes,
logarithmically decaying, and fixed ϵ = 0.1. We limited the
maximum extension length to be 7. We use neural networks
to learn Q-value functions instead of tabular Q-learning.

Env ϵ decay DDQN TempoRL ϵz-Greedy UTE

Bridge
Linear 0.61 0.44 0.76 0.86
Log 0.54 0.32 0.92 0.92
Fixed 0.57 0.41 0.59 0.83

Zigzag
Linear 0.38 0.14 0.62 0.84
Log 0.46 0.12 0.76 0.89
Fixed 0.34 0.19 0.36 0.76

Table 2: Normalized AUC for reward across different ϵ ex-
ploration schedules over 20 random seeds.

TempoRL -0.5 -1.0 -1.5
UTE

0.0

0.2

0.4

0.6

0.8

1.0

TempoRL -0.5 -1.0 -1.5
UTE

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

Bridge ZigZag

Figure 3: Distributions of extension length in Gridworlds.

Uncertainty-Averse. We compare our UTE to the other
baselines in terms of normalized area under the reward curve
for three different ϵ-greedy schedules (see Table 2). Across
all ϵ exploration strategies, UTE outperforms other methods
while showing better performance as uncertainty parameter
λ becomes smaller (refer Table 9 in Appendix). This result
supports our argument that a pessimistic strategy is preferred
in environments with unsafe regions. Furthermore, though
exploration rate for πa is relatively large (e.g. fixed to ϵ =
0.1), UTE consistently shows good performance than others.

Interestingly, the performance of TempoRL is a lot worse
than the one described in the original paper (Biedenkapp
et al. 2021). It is because we use function approximation
to estimate Q-values, rather than tabular Q-learning. Gen-
erally, uncontrolled or undesirable overestimation bias can
be caused when using function approximation (Moskovitz
et al. 2021). Therefore, simply selecting extension length
with the highest value leads to a catastrophic result, espe-
cially in function approximation setting. Table 2 verifies the

10ଵ

10ଶ

10ଷ

10଴

10ସ

10ହ

10଺

10଻

10଼Bridge ZigZag

U
T
E

Te
m
p
oR

L

S G

S G S

G

S

G

Figure 4: Coverage plots (right) on ZigZag environments. The
blue represents states visited more often and white represents
states rarely or never seen. See Appendix for the expanded
version of the figures.

fact that pessimistic extension policies perform well in Lava
Gridworlds. Moreover, Table 9 in Appendix shows that more
negative λ achieves higher AUC scores.

Coverage. In Figure 4, we present coverage plots compar-
ing UTE and TempoRL on two types of Lava environments.
For UTE, we have set λ to -1.5, a value that has demonstrated
robust performance across tests. The results show that UTE
provides significantly better coverage over the state space.
We can induce our algorithm to repeat sub-optimal action
less by using a pessimistic extension policy. Owing to this,
our agent can survive for a longer time, leading to better
coverage.

Distribution of Extension Length. Figure 3 depicts the
extension length distributions of TempoRL and UTE on Birdge
and ZigZag with logarithmically decaying ϵ exploration
schedule. More red represents more repetitions. It shows that
UTE prefers fewer repetitions compared to TempoRL when
λ < 0. As previously articulated in the final paragraph in
Preliminaries, observations for long extensions are seldom
employed in the process of updating Q-values. Consequently,
this propels our algorithm to favor fewer repetitions when
λ < 0. In a pessimistic extension policy, the agent tends to
refrain from repeating the chosen action many times because
the value of a distant state could be much more uncertain
than that of a neighbor one.

Atari 2600: Arcade Learning Environment
In this section, we evaluate the performance of UTE on the
Atari benchmark, comparing the following six baseline algo-
rithms: i) vanilla DDQN (Van Hasselt, Guez, and Silver 2016),
ii) Fixed Repeat (j = 4), iii) ϵz-Greedy (Dabney, Ostro-
vski, and Barreto 2020), iv) DAR (Dynamic Action Repeti-
tion (Lakshminarayanan, Sharma, and Ravindran 2017)), v)
TempoRL (Biedenkapp et al. 2021) vi) B-DQN (Bootstrapped
DQN) (Osband et al. 2016). The Fixed Repeat is an algorithm
that naively repeats the action a fixed amount of times.

Setup. Each algorithm is trained for a total of 2.5 × 106

training steps, which is only 10 million frames. All algorithms
except B-DQN use a linearly decaying ϵ-greedy exploration
schedule over the first 200,000 time-steps with a final ϵ fixed
to 0.01. We evaluated all agents every 10,000 training steps

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13396

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

crazy_climber

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

2000

4000

6000

8000

10000
road_runner

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

50

100

150

200

250

300
seaquest

0.0 0.5 1.0 1.5 2.0 2.5
timesteps 1e6

0

200

400

600

800

up_n_down
DDQN ez-greedy TempoRL Bootstrapped DQN UTE-best UTE-adaptive

Figure 5: Learning curves of UTE with best λ, UTE with adaptive λ and other baseline algorithms on Atari environments. The
shaded area represents the standard deviation over 7 random seeds.

and evaluated for 3 episodes with a very small ϵ exploration
rate (0.001). We used OpenAi Gym’s Atari environment with
4 frame-skips (Bellemare et al. 2013). For maximal extension
length, we set it to 10.2

Uncertainty-Awareness. Figure 5 depicts learning curves
for UTE and other baseline algorithms (see Figure 13 for
full version). Overall, UTE achieves higher final rewards than
other agents. These results demonstrate that if λ is properly
tuned to the environment, our method shows significantly im-
proved performance than existing action repetition methods
(DAR, ϵz-Greedy and TempoRL) as well as a deep exploration
algorithm (B-DQN). On top of that, we found that the Fixed
Repeat algorithm fails at learning in most games. Hence, it is
crucial to learn a extension policy for higher performance.

Adaptive Uncertainty Parameter λ. As illustrated in
Figure 5, the learning speed of UTE with adaptively chosen
λ is somewhat slower compared to the standard UTE. This
slight decrease in speed primarily stems from the need for
additional samples to optimize λ. Nevertheless, even with
this adjustment, UTE with an adaptive λ continues to out-
perform other baseline methods by a considerable margin.
These results are particularly encouraging as they obviate the
need to predefine the value of λ, thereby reducing the burden
of hyperparameter tuning. This aspect of our approach fur-
ther underscores its practicality and effectiveness in complex
learning scenarios.

Control Problem: Pendulum-v0
In this section, we show that UTE maintains its robustness
to continuous control problems where there is a signifi-
cant chance that repeated actions will surpass the balanc-
ing point. Consequently, selecting the appropriate extension
length becomes even more crucial. We choose to evalu-
ate on OpenAI gyms (Brockman et al. 2016) Pendulum-v0.
Since the action space is continuous, we use DDPG (Lilli-
crap et al. 2015) as our action policy πa, thus label it as
UTE-DDPG, and apply the adaptive uncertainty parameter
technique. The baseline agents are DDPG (Lillicrap et al.
2015), FiGAR (Sharma, Srinivas, and Ravindran 2017), and
t-DDPG (TempoRL-DDPG) (Biedenkapp et al. 2021).

Setup. We trained all agents for a total of 3× 104 training
steps with evaluations conducted every 250 steps. For the

2This approach aligns with the settings of Biedenkapp et al.
(2021) to ensure a fair comparison.

Max J DDPG FiGAR t-DDPG UTE-DDPG

2

-156.9
(±23.2)

-172.7
(±48.6)

-163.2
(±28.6)

-152.6
(±17.2)

4 -352.8
(±181.5)

-160.1
(±50.7)

-147.4
(±17.1)

6 -831.2
(±427.0)

-163.5
(±29.0)

-159.2
(±20.8)

8 -1295.0
(±274.5)

-175.3
(±60.3)

-165.0
(±26.4)

Table 3: Average rewards and standard deviations (numbers
in parentheses) over the last 10,000 time steps in Pendulum-
v0 over various maximal extension lengths (J).

initial 103 steps, a uniform random policy was applied to
accumulate initial experiences.

Robustness to Continuous Control Environment. In
Table 3, UTE-DDPG (with adaptively chosen λ) demonstrates
superior performance, achieving either the top or second-best
performance among the benchmarks. This suggests that our
algorithm is robust to continuous control environments and
consistently outperforms other established action-repeating
algorithms, such as FiGAR and t-DDPG. This advantage can
be attributed to our uncertainty-aware extension policy that
prudently repeats actions. Additionally, UTE exhibits smaller
standard deviations than all other baselines, except when the
maximal extension length is large (i.e., J = 8), indicating
enhanced learning stability.

Conclusion

We propose a novel method that learns to repeat actions while
explicitly considering the uncertainty over the Q-value esti-
mates of the states reached under the repeated-action option.
By calibrating the level of uncertainty considered (denoted by
λ), UTE consistently and significantly outperforms other algo-
rithms, especially those focusing on action repetition, across
various environments such as Chain MDP, Gridworlds, Atari
2600, and even in control problems. To our best knowledge,
this is the first deep RL algorithm considering uncertainty in
the future when instantiating temporally extended actions.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13397

Acknowledgments
This work was supported by Creative-Pioneering Researchers
Program through Seoul National University, and by the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. 2022R1C1C100685912,
2022R1A4A103057912, and RS-2023-00222663).

References
Anschel, O.; Baram, N.; and Shimkin, N. 2017. Averaged-
dqn: Variance reduction and stabilization for deep reinforce-
ment learning. In International conference on machine learn-
ing, 176–185. PMLR.
Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2009.
Exploration–exploitation tradeoff using variance estimates in
multi-armed bandits. Theoretical Computer Science, 410(19):
1876–1902.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning,
47: 235–256.
Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-
critic architecture. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the atari human benchmark. In International
Conference on Machine Learning, 507–517. PMLR.
Bai, C.; Wang, L.; Han, L.; Hao, J.; Garg, A.; Liu, P.; and
Wang, Z. 2021. Principled exploration via optimistic boot-
strapping and backward induction. In International Confer-
ence on Machine Learning (ICML 2021), 577–587. PMLR.
Barreto, A.; Borsa, D.; Hou, S.; Comanici, G.; Aygün, E.;
Hamel, P.; Toyama, D.; Mourad, S.; Silver, D.; Precup, D.;
et al. 2019. The option keyboard: Combining skills in rein-
forcement learning. Advances in Neural Information Pro-
cessing Systems, 32.
Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.; Sax-
ton, D.; and Munos, R. 2016. Unifying count-based explo-
ration and intrinsic motivation. Advances in neural informa-
tion processing systems, 29.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253–279.
Biedenkapp, A.; Rajan, R.; Hutter, F.; and Lindauer, M. 2021.
TempoRL: Learning When to Act. In Proceedings of the
38th International Conference on Machine Learning (ICML
2021).
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Chen, R. Y.; Schulman, J.; Abbeel, P.; and Sidor, S. 2017.
UCB and infogain exploration via q-ensembles. arXiv
preprint arXiv:1706.01502, 9.
Da Silva, F. L.; Hernandez-Leal, P.; Kartal, B.; and Taylor,
M. E. 2020. Uncertainty-aware action advising for deep

reinforcement learning agents. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, 5792–5799.
Dabney, W.; Ostrovski, G.; and Barreto, A. 2020. Temporally-
Extended ε-Greedy Exploration. In 9th International Confer-
ence on Learning Representations, ICLR 2021.
Dayan, P.; and Hinton, G. E. 1992. Feudal reinforcement
learning. Advances in neural information processing systems,
5.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial intelligence,
3: 251–288.
Harutyunyan, A.; Bellemare, M. G.; Stepleton, T.; and
Munos, R. 2016. Q (λ) with Off-Policy Corrections. In
International Conference on Algorithmic Learning Theory,
305–320. Springer.
Lakshminarayanan, A.; Sharma, S.; and Ravindran, B. 2017.
Dynamic action repetition for deep reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31.
Lee, S.; Seo, Y.; Lee, K.; Abbeel, P.; and Shin, J. 2022.
Offline-to-online reinforcement learning via balanced replay
and pessimistic q-ensemble. In Conference on Robot Learn-
ing, 1702–1712. PMLR.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Machado, M. C.; Barreto, A.; and Precup, D. 2021. Temporal
Abstraction in Reinforcement Learning with the Successor
Representation. arXiv preprint arXiv:2110.05740.
Machado, M. C.; Bellemare, M. G.; Talvitie, E.; Veness,
J.; Hausknecht, M. J.; and Bowling, M. 2018. Revisiting
the Arcade Learning Environment: Evaluation Protocols and
Open Problems for General Agents. Journal of Artificial
Intelligence Research, 61: 523–562.
Meng, L.; Gorbet, R.; and Kulić, D. 2021. The effect of
multi-step methods on overestimation in deep reinforcement
learning. In 2020 25th International Conference on Pattern
Recognition (ICPR), 347–353. IEEE.
Metelli, A. M.; Mazzolini, F.; Bisi, L.; Sabbioni, L.; and
Restelli, M. 2020. Control frequency adaptation via action
persistence in batch reinforcement learning. In International
Conference on Machine Learning (ICML 2020), 6862–6873.
PMLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540): 529–533.
Moskovitz, T.; Parker-Holder, J.; Pacchiano, A.; Arbel, M.;
and Jordan, M. 2021. Tactical optimism and pessimism for
deep reinforcement learning. Advances in Neural Information
Processing Systems, 34.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016.
Deep exploration via bootstrapped DQN. In Advances In
Neural Information Processing Systems 29, 4026–4034.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13398

Park, S.; Kim, J.; and Kim, G. 2021. Time Discretization-
Invariant Safe Action Repetition for Policy Gradient Methods.
Advances in Neural Information Processing Systems, 34.
Parr, R.; and Russell, S. 1997. Reinforcement learning with
hierarchies of machines. Advances in neural information
processing systems, 10.
Peer, O.; Tessler, C.; Merlis, N.; and Meir, R. 2021. Ensemble
bootstrapping for Q-Learning. In International Conference
on Machine Learning, 8454–8463. PMLR.
Peng, J.; and Williams, R. J. 1994. Incremental multi-step Q-
learning. In Machine Learning Proceedings 1994, 226–232.
Elsevier.
Precup, D. 2000. Temporal abstraction in reinforcement
learning. University of Massachusetts Amherst.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Schoknecht, R.; and Riedmiller, M. 2002. Speeding-up re-
inforcement learning with multi-step actions. In Interna-
tional Conference on Artificial Neural Networks, 813–818.
Springer.
Sharma, S.; Srinivas, A.; and Ravindran, B. 2017. Learning
to repeat: Fine grained action repetition for deep reinforce-
ment learning. In 5th International Conference on Learning
Representations, ICLR 2017.
Stolle, M.; and Precup, D. 2002. Learning options in rein-
forcement learning. In International Symposium on abstrac-
tion, reformulation, and approximation, 212–223. Springer.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning, 3(1): 9–44.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2): 181–
211.
Thrun, S.; and Schwartz, A. 1993. Issues in using function
approximation for reinforcement learning. In Proceedings
of the 1993 Connectionist Models Summer School Hillsdale,
NJ. Lawrence Erlbaum, volume 6.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3): 279–292.
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
Xia, L.; and Collins, A. G. 2021. Temporal and state ab-
stractions for efficient learning, transfer, and composition in
humans. Psychological review.
Zahavy, T.; Haroush, M.; Merlis, N.; Mankowitz, D. J.; and
Mannor, S. 2018. Learn what not to learn: Action elimina-
tion with deep reinforcement learning. Advances in Neural
Information Processing Systems, 31.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13399

