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Abstract

Limited-supervised multi-label learning (LML) leverages
weak or noisy supervision for multi-label classification model
training over data with label noise, which contains miss-
ing labels and/or redundant labels. Existing studies usually
solve LML problems by assuming that label noise is inde-
pendent of the input features and class labels while ignor-
ing the fact that noisy labels may depend on the input fea-
tures (instance-dependent) and the classes (label-dependent)
in many real-world applications. In this paper, we pro-
pose limited-supervised Multi-label Learning with Depen-
dency Noise (MLDN) to simultaneously identify the instance-
dependent and label-dependent label noise by factorizing the
noise matrix as the outputs of a mapping from the feature and
label representations. Meanwhile, we regularize the problem
with the manifold constraint on noise matrix to preserve local
relationships and uncover the manifold structure. Theoreti-
cally, we bound noise recover error for the resulting problem.
We solve the problem by using a first-order scheme based
on proximal operator, and the convergence rate of it is at
least sublinear. Extensive experiments conducted on various
datasets demonstrate the superiority of our proposed method.

Introduction
Multi-label learning (MLL) framework has been widely
studied because of its success in fitting multiple seman-
tic meaning problems. In MLL, each instance is associated
with multiple labels simultaneously. Due to its wide suitabil-
ity, multi-label learning techniques have been adopted for
many applications, and a number of multi-label learning al-
gorithms have been developed (Xu et al. 2023; Dahiya et al.
2021; Lin 2023; Zhao et al. 2022, 2021).

Typically, multi-label learning methods require the train-
ing data with complete and accurate label information. How-
ever, in the real-world environment, the labels or annotations
are often noisy and imperfect, where labels are usually miss-
ing or/and noisy in the training set. To model this problem,
a new setting called limited-supervised multi-label learning
(LML) has attracted enormous attention. LML assumes that
there might be incompletely-labeled data and redundantly-
labeled data in the dataset. The former implies that only
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Figure 1: Examples of label Bear (first row) and Bird (sec-
ond row) in data corel-5k. It is problematic to assume a same
probability of mislabeling for diverse samples and labels.

a subset of ground-truth labels can be obtained in training
step, which is called multi-label learning with missing labels
(MLML) (Wu et al. 2014; Kumar and Rastogi 2022); The lat-
ter assumes that the labels assigned to the training samples
may have redundantly irrelevant labels, which named par-
tial multi-label learning (PML) (Xie and Huang 2018; Gong,
Yuan, and Bao 2022). The missing labels and redundant la-
bels can be treated as label noise in limited-supervised multi-
label learning setting.

There are two main types of methods for dealing with the
label noise in limited-supervised multi-label learning. 1) Im-
plicit noise elimination: These works implicitly correct the
noisy labels before learning. For example, (Xu et al. 2014;
Sun et al. 2019) employ the low-rank assumption of the label
matrix to recover the true label from the assigned label ma-
trix; 2) Explicit noise elimination: Another type of method
decomposed explicitly the assigned label matrix into a true
label matrix and noise matrix. For example, (Xie and Huang
2021; Li, Lyu, and Feng 2020) maintains a small set of clean
data to reduce the noise in the training dataset.

Existing algorithms all assume that the label noise is not
dependent on specific features and labels (Xie and Huang
2021; Schultheis et al. 2022; Ma and Chen 2021). How-
ever, in real-world applications, this assumption may not
hold. First, there are a large number of instances with the
same label and the instances may have very different feature
representations. Thus, the probability of being mislabeled is
highly dependent on the specific instance, which is referred
as instance-dependent label noise. For example, although all
the images in the first row of Fig.1 include bear, the second
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left image has a higher chance to be mislabeled (e.g., into a
horse) than the first left one. And, the bear label of rightmost
one has a higher probability of being missed as well due to
ambiguity. Second, some labels may have higher noise prob-
ability than others. The probability of noisy labeling may de-
pend on the specific class label, which is referred as label-
dependent label noise. As shown in the first and second row
of Fig.1, the bird label may have more noise than the bear
label, as the birds are more difficult to identify. Note that
the term “dependent” refers to noise that is only associated
with a few instances or labels. This does not imply that any
noise that occurs with an instance/label is dependent noise.
The key is whether the noise is limited to a specific minority.
Therefore, the instance-dependent and label-dependent la-
bel noise actually exist in real-world, but have been ignored
from existing studies.

To tackle the above issues, in this paper, we propose
limited-supervised Multi-label Learning with Dependency
Noise (MLDN) for handling dependent noise. Specifically, it
first decomposes assigned label matrix into ground-truth la-
bel matrix and dependent noise matrix, which factorizes the
noise matrix as the outputs of a mapping from the feature
and label representations and sets group sparsity constraints
on them to model instance and label-dependent noise. Sec-
ond, to preserve local relationships within the feature data
and uncover its essential manifold structure, we regularize
the minimization problem with the manifold constraint on
noise matrix, i.e., neighboring instances should also share
a similar set of noises. Thus, based on this manifold con-
strain, the proposed framework can provide a natural way of
exploiting the intrinsic relationship among the data. Finally,
a noise recovery error bound is given and the unified predic-
tion model is optimized by first-order proximal strategies,
where the convergence rate is at least sublinear. The main
contributions in this paper are summarized as follows.

• We propose a novel limited-supervised Multi-label
Learning with Dependency Noise (MLDN), which simul-
taneously identify the instance- and label-dependent la-
bel noise, where existing limited-supervised MLL solu-
tions ignore the usage of label and feature information to
identify the noise label.

• We regularize the problem with the manifold constraint
on noise matrix to preserve local relationships within the
features and uncover its manifold structure. We bound
the noise recovery error and develop efficient proximal
descent algorithms to solve the proposed formulations.

• Extensive experiments have demonstrated that MLDN
significantly outperforms the state-of-the-art MLML and
PML approaches on various benchmark data sets.

Related Work
Label noise is frequently observed in real-world data (Lin
et al. 2023; Li et al. 2023; Wang et al. 2023a,b). Recently,
to mitigate this problem, plenty of works have studied dif-
ferent settings of multi-label learning with limited supervi-
sion. These algorithms can be roughly categorized into two
groups based on the different assumptions about the noise
label (Gibaja and Ventura 2014; Liu et al. 2021).

The first line of methods focuses on learning with missing
labels (MLML) (Cheng, Qian, and Min 2022; Huang et al.
2021; Schultheis et al. 2022). Most of the MLML methods
attempt to complete the missing labels first, and then train
the classifiers with the complete labels. For example, in (Xu,
Jin, and Zhou 2013), the MLML problem is regarded as a
low-rank matrix completion problem with the existence of
side features information.

The second line of multi-label learning methods con-
centrates on addressing the extra redundant labels, which
is called partial multi-label learning (PML) (Liu, Jia, and
Zhang 2023; Gong, Yuan, and Bao 2022). To identify the ex-
tra labels, (Xie and Huang 2018) first utilizes the label con-
fidence to measure the probability of being the ground-truth
label for each candidate label, and obtains the ground-truth
labels according to label ranking. However, existing meth-
ods assume that the label noise is not dependent on specific
features and labels, and do not consider the dependent label
noise that exists in real-world datasets.

The Proposed Method
Preliminaries
In this paper, we regard both missing and redundant label
as noise label. Let X ∈ Rn×d be the given training fea-
ture matrix for n instances xi in the d-dimensional feature
space. The corresponding unknown ground-truth label of X
is denoted as matrix Y ∈ {−1,+1}n×q , where each row yi

corresponds to an instance and each column corresponds to
a label. Here, the element Yic = +1 indicates the c-th la-
bel is relevant to the instance xi; Yic = −1, otherwise. And
let Υ ∈ Yn×q denote the corrupted label matrix with label
noises. Generally, Y := R due to the existence of noise. The
learning problem we are interested in is to identify noisy la-
bels of corrupted label matrix and find a decision mapping
F : Rn×d → {−1,+1}n×q from the training set {X,Υ},
which should reproduces well the outputs of the instances
(i.e., F(Xi:) ≈ Yi:).

Algorithm
To simultaneously identify the label- and instance- depen-
dent label noise, in this paper, we propose a MLDN method
that decomposes the assigned label matrix to ground-truth
label matrix and noise matrix, and explicitly model the noise
matrix as the outputs of linear mapping from the feature and
label representations simultaneously to capture the depen-
dent structure noise. In addition, a manifold constrain is ap-
plied on noise matrix to preserve local relationships within
the features and uncover its essential manifold structure. To
solve the optimization objective effectively, we develop an
first-order optimization scheme which minimizes the loss
based on proximal operator and the convergence rate of it
is at least sublinear.
Predictor Inducing. Our goal is to use the instance matrix
X and the assigned label matrix Υ for training a new LML
model and to predict the ground-truth labels for unseen data.
To solve this problem, we assume the linear regression pre-
diction model. Therefore, we can optimize the weight matrix
W ∈ Rd×q by minimizing the square loss with the ℓ1-norm
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regularization to learn sparse representation for each label

min
W

1

2
∥Υ−XW∥2F + α∥W∥1

where α is the trade-off parameter and ∥ · ∥F and ∥ · ∥1 are
Frobenius-norm and ℓ1-norm, respectively.

However, the assigned label matrix Υ includes noisy la-
bels in real application, and thus it can be decomposed

Υ = Y +E

where Y ∈ Rn×q denotes the ground-truth label matrix and
E ∈ Rn×q denotes the noise matrix. Most existing LML
methods assumed that the noise label is independent of both
features and label. However, in real-world applications, the
probability of mislabeling/missing label is highly dependent
on the specific instance and labels. For depicting noise ac-
curately, we model the noise matrix as the output of a linear
map from feature and label representations simultaneously

E = XP+YQ

where P ∈ Rd×q and Q ∈ Rq×q are the instance- and label-
specific coefficient matrices. Since the noise labels are usu-
ally caused by a few of ambiguous content, the specific co-
efficient matrices P and Q are sparse which indicates that
the noise is dependent on only key instances and labels. Mo-
tivated by previous research (Simon et al. 2013; Huang and
Zhang 2010), to handle the conditional sparse noise labels,
we consider the following problem

min
W,P,Q

1

2
∥Υ−XW − (XP+XWQ)∥2F

+ α∥W∥1 + β∥P∥2,1 + γ∥Q∥2,1
where α, β and γ are the trade-off parameters, ∥ · ∥2,1 de-
notes the ℓ2,1-norm, defined as ∥A∥2,1 =

∑
i(
∑

j Aij)
1/2,

encouraging group sparsity. The ℓ2,1-norm is performed to
select instances (labels) across all data with group sparsity
structure, i.e. the particular instances (labels) tend to have
noisy labels. Our approach to identifying dependent noise
involves the use of ℓ2,1-norm to constrain the noise matri-
ces P and Q (i.e., Fig.2b). This constraint ensures that the
learned matrix is row-sparse, which corresponds precisely to
the form of dependent noise. In contrast, recent studies (Xie
and Huang 2021; Sun et al. 2021) impose ℓ1-norm penalty
on the matrix P (or E) (i.e., Fig.2a), which allow for the
learned matrix to be globally sparse and not dependent on
specific instances. We also provide theoretical analysis to
guarantee that the noise recovery error can be small with
high probability if the sample size n is large enough in the
case of using the ℓ2,1-norm.

To preserve local relationships within the feature data and
uncover its essential manifold structure, we regularize the
minimization problem with the manifold constraint on noise
matrix E, i.e., neighboring instances should also share a sim-
ilar set of noises. Specifically, we define S ∈ Rn×n as a pair-
wise similarity matrix, where Sij = exp(−∥xi − xj∥22/ϱ)
if instance i and instance j are the mutually k-nearest neigh-
bors. Otherwise, Sij = 0, where ϱ adjust the degree of prox-
imity. Then, we can get the following regularization term

n∑
i=1

n∑
j=1

Sij(
Ei:√
Dii

− Ej:√
Djj

)2 = tr(E⊤LE)

Figure 2: Comparison of ℓ1- and ℓ2,1-norm on noise.

where (·)⊤ denotes the transpose and L = I −D− 1
2SD− 1

2

is the graph laplacian matrix, D is a diagonal matrix with
Dii =

∑n
j=1 Sij and I is an identity matrix. tr(·) denotes

the trace operator. Based on above assumptions, we formu-
late the MLDN problem as follows

min
W,P,Q

1

2
∥Υ−XW − (XP+XWQ)∥2F

+ λtr
(
(XP+XWQ)⊤L(XP+XWQ)

)
+ α∥W∥1 + β∥P∥2,1 + γ∥Q∥2,1

(L)

where α, β, γ and λ are the trade-off parameters.
We also provide theoretical analysis as follow to demon-

strate that the recovery error can be reduced to arbitrarily
small values if the sample size n is sufficiently large.

Theorem 1. Assume that the real noise E♮ are instance-
and label-dependent (i.e., both P♮ and Q♮ are group sparse,
and we use sx and sy to denote the degree of sparsity, gx
and gy to denote the number of groups for them, respec-
tively). Fix W in Eq.(L), and E◦ := Υ−XW can be seen
as an observation of the real noise E♮. we assume that
the observation error E◦−E♮ obeys the subGaussian dis-
tribution. Our goal is to recover the true matrices P♮ and
Q♮ from E◦. This is similar to a group lasso problem. If
β ≥ 2σ

(√
n+
√
6n log n

)
and γ ≥ 2σ

(√
n+
√
6n log q

)
,

where σ > 0 is a constant associated with the observation
error, let g = min{gx, gy}, px = n and py = q, then with
probability at least 1− 2/g2 the recovery error bound with

∥∥E∗ −E♮
∥∥
2
≤ σ

∑
i∈{x,y}

√
si

(√
1

n
+

√
log pi
n

)
(B)

where P∗ is the optimal recovery matrix for Eq.(L).

This implies that our algorithm asymptotically converges
to the optimal solution. The above result indicates that the
parameters β and γ do not depend on the noise rate (i.e.,
the degree of sparsity). If they satisfy the condition and the
number of samples n is large enough, the recovery error can
be arbitrarily small with high probability. This is contrary to
the intuition that the parameters β and γ determine the noise
rate! Therefore this theorem ensures that we do not need to
manually adjust the parameters in a complicated way.

Optimization
To solve the problem in Eq.(L), we iteratively update W, Q,
P. We summarize the key steps of MLDN in Algorithm 1.
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Update W. When Q and P are fixed, the optimization prob-
lem in Eq.(L) w.r.t W can be reformulated as follows

min
W,P,Q

1

2
∥Υ−XP−XW(I+Q)∥2F + α∥W∥1

+ λtr
(
(XP+XWQ)⊤L(XP+XWQ)

) (W)

The minimization of Eq.(W) is convex, but non-smooth
due to the ℓ1-norm terms. We use the accelerated proximal
gradient (APG) method to solve it (Beck and Teboulle 2009).
Let g(W) = α∥W∥1 and f(W) = ∥Υ−XP−XW(I+
Q)∥2F /2 + λtr

(
(XP+XWQ)⊤L(XP+XWQ)

)
. The

derivation of f is denoted as

∇Wf =X⊤(XW(I+Q)−Υ+XP)(I+Q⊤)

+ 2X⊤LXPQ⊤ + 2X⊤LXWQQ⊤

We approximate f(W) by its first order taylor expansion at
the solution Ẇ of previous iteration

f(W) ≤ f(Ẇ)+⟨W−Ẇ,∇Wf(Ẇ)⟩+
LW
f

2
∥W−Ẇ∥22

where LW
f is the Lipschitz constant of ∇Wf . We therefore

turn to optimize the following quadratic programming (QP)
problem

min
W

1

2
LW
f

∥∥∥W − (Ẇ −∇Wf(Ẇ)/LW
f )
∥∥∥2
F
+ g(W)

An extrapolation step is included in the APG method, then
the optimizing rules are given

Z∗ = Ẇ +
ω̈ − 1

ω̇
(Ẇ − Ẅ) (Z†)

W∗ = Sα/LW
f
(Z∗ −∇Wf(Z∗)/LW

f ) (W†)

where Ẅ denotes the optimal solution at the iteration be-
fore last. ω̇, ω̈ ∈ [0, 1) are extrapolation parameter at previ-
ous iteration and before last iteration, respectively. In prac-
tice, we update ω = 1/2 +

√
4ω̇2 + 1/2. S denotes the el-

ementwise soft-thresholding operator defined by Sτ (v) =
(v − τ)+ − (−v − τ)+, where (x)+ replaces x with zero if
x < 0, otherwise unchanged.
Update Q. Fix W and P, the problem in Eq.(L) w.r.t Q is

min
Q

1

2
∥Υ−Y − (XP+YQ)∥2F + γ∥Q∥2,1

+ λtr
(
(XP+YQ)⊤L(XP+YQ)

) (Q)

where we use Y = XW for compactness. Defining an ob-
jective function for Eq.(Q), we have

L(Q) =
1

2
∥R1 −YQ∥2F + γ∥Q∥2,1

+ λtr
(
Q⊤R2 +R3Q+Q⊤R4Q

)
=
1

2
tr
(
(R1 −YQ)⊤(R1 −YQ)

)
+ γtr(Q⊤R5Q)

+ λtr
(
Q⊤R2 +R3Q+Q⊤R4Q

)
=tr

(
1

2
R⊤

1 R1 +Q⊤(λR2 −
1

2
Y⊤R1) + (λR3

−1

2
R⊤

1 Y)Q+Q⊤(
1

2
Y⊤Y + γR5 + λR4)Q

)

Algorithm 1: MLDN

Input: train data X, assigned label matrix Υ
Output: weight matrix W

1: ω̇ ← 1 and initialize Ẇ,Q,P
2: while not converged
3: Update W using Eq.(Z†) and Eq.(W†);
4: ω ← 1/2 +

√
4ω̇2 + 1/2;

5: Ẅ← Ẇ, Ẇ←W and ω̇ ← ω;
6: Update Q using Eq.(Q†);
7: Update P using Eq.(P†);
8: return W

where R1 = Υ − Y − XP, R2 = Y⊤LXP, R3 =
P⊤X⊤LY, R4 = Y⊤LY and (R5)ii =

1
2∥Qi:∥2

is the di-
agonal elements of the diagonal matrix R5 ∈ Rq×q . Taking
derivative of L(Q) and set it to 0, we have

∇Q = λ(R2+R⊤
3 )−Y⊤R1+(Y⊤Y+2γR5+2λR4)Q

namely the solution to the label coefficient matrix is given

Q∗ =
Y⊤Y + 2γR5 + 2λR4

Y⊤R1 − λ(R2 +R⊤
3 )

(Q†)

Update P. Similar to Q, when W and Q are fixed, the prob-
lem in Eq.(L) w.r.t P is

min
P

1

2
∥S1 −XP∥2F + β∥P⊤∥2,1

+ λtr
(
P⊤S2 + S3P+P⊤S4P

) (P)

where S1=Υ−Y−YQ, S2=X⊤LYQ, S3 = Q⊤Y⊤LX,
S4 = X⊤LX. We define an objective function for Eq.(P),

L(P) = tr

(
1

2
S⊤
1 S1 +P⊤(λS2 −

1

2
X⊤S1) + (λS3

−1

2
S⊤
1 X)P+P⊤(

1

2
X⊤X+ βS5 + λS4)P

)
where (S5)ii =

1
2∥Pi:∥2

is diagonal elements of the diagonal
matrix S5 ∈ Rd×d. Taking the derivative of L(P) we have

∇P = λ(S2+S⊤
3 )−X⊤S1+(X⊤X+2βS5+2λS4)P = 0

the solution to the instance coefficient matrix is given by

P∗ =
X⊤X+ 2βS5 + 2λS4

X⊤S1 − λ(S2 + S⊤
3 )

(P†)

Experiments
Experimental Setting
Datasets. We conduct the experiments on 10 datasets
including slashdot, medical, enron, scene, yeast, 20ng,
corel5k, mirflickr, eurlex_dc and m_emotion (abbr. of mu-
sic_emotion) (Zhang and Zhou 2013; Trohidis et al. 2008).
Motivated by a similar setup in single-label learning (Xia
et al. 2020; Yao et al. 2021), we constructed synthetic
noisy datasets to generate instance- and label-dependent
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Datasets MLDN fPML PML-NI PART-VLS PART-MAP PML-LC PML-FP LMNNE

RankingLoss (↓)
slashdot .124±.012 .179±.011 .175±.008 .137±.005 .133±.006 .177±.007 .181±.001 .132±.017
medical .008±.003 .069±.003 .011±.004 .081±.009 .078±.013 .055±.006 .052±.013 .016±.012
enron .010±.004 .172±.009 .205±.011 .017±.006 .013±.011 .018±.005 .017±.011 .015±.009
scene .078±.005 .115±.003 .124±.011 .175±.002 .179±.004 .200±.008 .193±.013 .097±.009
yeast .179±.006 .185±.003 .180±.015 .189±.006 .189±.013 .194±.004 .196±.011 .187±.005
20ng .073±.005 .094±.013 .095±.015 .078±.001 .072±.013 .103±.007 .103±.003 .078±.017
corel5k .273±.008 .298±.018 .314±.001 .286±.005 .281±.002 .395±.011 .393±.015 .298±.008
mirflickr .126±.005 .133±.005 .128±.008 .133±.015 .134±.011 .155±.011 .154±.004 .137±.012
eurlex_dc .051±.011 .077±.013 .054±.003 .058±.005 .053±.001 .069±.004 .064±.012 .060±.010
m_emotion .246±.003 .250±.007 .251±.001 .274±.011 .266±.004 .281±.005 .277±.009 .253±.009

OneError (↓)
slashdot .439±.012 .581±.021 .516±.029 .451±.027 .441±.026 .597±.021 .536±.021 .445±.018
medical .201±.002 .233±.013 .346±.003 .252±.031 .248±.016 .361±.021 .345±.014 .220±.008
enron .207±.003 .466±.021 .619±.011 .498±.005 .463±.005 .569±.005 .544±.003 .412±.006
scene .218±.001 .285±.015 .323±.004 .356±.011 .351±.009 .369±.021 .369±.023 .229±.011
yeast .224±.015 .207±.013 .233±.005 .277±.034 .286±.006 .281±.004 .288±.003 .226±.010
20ng .314±.005 .353±.016 .345±.004 .314±.021 .319±.021 .413±.011 .414±.002 .320±.008
corel5k .703±.018 .719±.025 .818±.034 .773±.004 .774±.003 .823±.012 .819±.017 .713±.013
mirflickr .311±.001 .312±.003 .311±.004 .921±.016 .943±.021 .793±.021 .805±.002 .319±.009
eurlex_dc .284±.002 .308±.011 .315±.003 .325±.005 .323±.003 .333±.012 .331±.011 .296±.020
m_emotion .466±.007 .483±.003 .469±.011 .526±.004 .513±.020 .586±.011 .579±.005 .471±.011

AveragePrecision (↑)
slashdot .656±.013 .530±.013 .571±.022 .631±.025 .639±.028 .553±.018 .585±.013 .641±.014
medical .821±.036 .793±.012 .713±.016 .753±.021 .771±.011 .703±.012 .708±.001 .797±.010
enron .676±.004 .661±.009 .457±.016 .591±.010 .660±.015 .555±.014 .561±.013 .668±.008
scene .869±.012 .822±.012 .794±.014 .753±.014 .755±.005 .711±.016 .712±.002 .835±.006
yeast .764±.003 .765±.015 .751±.011 .710±.004 .713±.005 .705±.012 .710±.014 .767±.008
20ng .777±.017 .745±.009 .744±.002 .777±.012 .780±.007 .671±.009 .680±.015 .769±.003
corel5k .196±.001 .192±.004 .133±.014 .170±.012 .176±.006 .133±.001 .128±.011 .183±.016
mirflickr .790±.010 .775±.015 .782±.034 .722±.015 .723±.014 .576±.011 .581±.023 .779±.011
eurlex_dc .722±.015 .622±.014 .720±.009 .633±.031 .631±.045 .591±.007 .591±.007 .711±.001
m_emotion .611±.010 .602±.005 .604±.007 .587±.005 .601±.017 .567±.003 .566±.004 .600±.007

Table 1: Experimental results on partial multi-label data. ↑ indicates the larger, the better; ↓ indicates the smaller, the better.

label noise. Given a noise rate τ , we sample instance
flip rates r ∈ Rn from the truncated normal distribu-
tion N

(
τ, 0.12, [0, 1]

)
, and independently sample w1 ∈

Rd×q,w2 ∈ Rq×q from the standard normal distribution
N
(
0, 12

)
. For each i ∈ [n], we generate instance- and label-

dependent flip rates pi = ri × softmax(xiw1 + yiw2).
Lastly, we get the set of noise label Ei by randomly choos-
ing label q times from the label space according to the pos-
sibilities pi. 1.) For partial multi-label learning comparison
purpose, there are two datasets (m_emotion and mirflickr)
contain real redundant label noise, and we generate synthetic
datasets for other data by adding the set of noise labels Ei to
the original labels set as the redundant noise. 2.) For multi-
label learning with missing label comparison, we generate
synthetic datasets by removing the labels that appear in Ei.
In our work, both the excess and missing rate of label noise
are set to 20%.
Baselines. To evaluate the performance of our proposed
method, we compare MLDN with 14 state-of-the-art LML
methods. 1) For the partial multi-label learning, we select
7 PML state-of-the-art approaches: fPML (Yu et al. 2018),

PML-NI (Xie and Huang 2021), PART-VLS, PART-MAP
(Zhang and Fang 2021), PML-LC, PML-FP (Xie and Huang
2018) and LMNNE (Gong, Yuan, and Bao 2022). 2) For
multi-label learning with missing labels, we select 7 state-of-
the-art MLML methods: D2ML-L, D2ML-NL (Ma and Chen
2021), LEML (Yu et al. 2014), MLMLFS (Zhu et al. 2018),
GLOCAL (Zhu, Kwok, and Zhou 2017), MLMLV1 (Wu et al.
2014) and MAXIDE (Xu, Jin, and Zhou 2013).
Experimental Setup We use ten-fold cross-validation with
a training/test set ratio of 8:2. The convergence condition is
determined when the loss difference between the two itera-
tions is less than 10−3.

Comparison Results
we conduct a thorough experimental study on 10 different
datasets and compare the proposed MLDN with 14 existing
methods that are considered as state-of-the-art in this field.
We use 3 widely adopted evaluation metrics for multi-label
learning, namely Ranking Loss, One Error, and Average Pre-
cision, as defined in (Zhang and Zhou 2013).
Comparison on Partial Mutli-Label Learning. We first
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Datasets MLDN D2ML-L D2ML-NL LEML MLMLFS GLOCAL MLML MAXIDE

RankingLoss (↓)
slashdot .100±.003 .223±.003 .191±.007 .164±.001 .209±.005 .189±.010 .179±.003 .226±.002
medical .045±.002 .201±.004 .181±.006 .067±.010 .210±.005 .119±.011 .058±.002 .267±.011
enron .082±.004 .238±.016 .229±.010 .270±.012 .178±.003 .128±.003 .083±.005 .262±.010
scene .117±.004 .176±.011 .151±.003 .199±.011 .183±.002 .145±.001 .098±.002 .356±.006
yeast .174±.023 .238±.007 .230±.007 .186±.006 .393±.023 .230±.005 .193±.002 .313±.005
20ng .075±.006 .349±.014 .348±.013 .199±.003 .355±.001 .286±.003 .198±.002 .475±.004
corel5k .167±.010 .213±.002 .205±.007 .272±.007 .208±.012 .159±.003 .145±.006 .225±.001
mirflickr .064±.006 .071±.003 .076±.013 .088±.003 .134±.007 .080±.003 .077±.002 .224±.011
eurlex_dc .041±.014 .078±.010 .045±.003 .046±.003 .059±.015 .068±.008 .049±.005 .063±.003
m_emotion .211±.004 .277±.001 .228±.009 .209±.006 .324±.009 .224±.008 .222±.011 .367±.007

OneError (↓)
slashdot .408±.001 .845±.007 .635±.009 .497±.029 .750±.006 .695±.021 .683±.016 .828±.002
medical .166±.007 .878±.003 .718±.006 .272±.006 .731±.014 .553±.023 .361±.023 .733±.024
enron .195±.012 .656±.024 .623±.022 .407±.005 .511±.022 .309±.002 .324±.021 .501±.012
scene .342±.005 .422±.013 .419±.014 .561±.025 .440±.015 .368±.013 .334±.013 .666±.003
yeast .233±.012 .356±.008 .352±.009 .240±.020 .235±.007 .303±.012 .299±.004 .340±.003
20ng .331±.010 .858±.032 .856±.011 .588±.009 .909±.006 .701±.010 .458±.012 .906±.026
corel5k .686±.005 .926±.038 .923±.006 .689±.037 .758±.017 .745±.008 .754±.005 .749±.004
mirflickr .116±.007 .154±.048 .147±.033 .126±.004 .235±.032 .155±.010 .145±.006 .303±.043
eurlex_dc .235±.002 .432±.003 .245±.010 .299±.006 .339±.016 .439±.015 .328±.005 .438±.009
m_emotion .383±.006 .497±.027 .477±.005 .376±.021 .614±.024 .424±.021 .406±.025 .623±.034

AveragePrecision (↑)
slashdot .680±.003 .353±.026 .461±.020 .606±.004 .429±.014 .469±.022 .474±.003 .463±.013
medical .831±.025 .436±.024 .520±.011 .773±.006 .370±.006 .512±.009 .717±.007 .340±.008
enron .687±.009 .327±.014 .350±.013 .500±.025 .503±.018 .612±.014 .626±.012 .449±.004
scene .792±.036 .733±.009 .745±.009 .663±.012 .710±.024 .772±.005 .802±.013 .658±.024
yeast .750±.008 .672±.018 .684±.013 .750±.011 .691±.010 .683±.016 .715±.036 .719±.004
20ng .770±.006 .317±.012 .313±.013 .537±.019 .469±.020 .429±.012 .633±.006 .458±.012
corel5k .277±.014 .156±.005 .200±.020 .238±.018 .196±.017 .232±.016 .237±.012 .219±.017
mirflickr .899±.031 .874±.010 .880±.012 .867±.009 .804±.007 .867±.012 .864±.013 .723±.021
eurlex_dc .742±.007 .694±.032 .733±.014 .700±.031 .654±.018 .629±.005 .685±.016 .635±.017
m_emotion .671±.022 .592±.005 .616±.016 .663±.021 .535±.012 .644±.002 .660±.005 .588±.011

Table 2: Experimental results on missing multi-label data. ↑ indicates the larger, the better; ↓ indicates the smaller, the better.

study the performance difference between MLDN and other
baseline algorithms in PML setting for label prediction. Ta-
ble 1 provides the experimental result of 8 methods on 10
different datasets. As shown in Table 1, we can observe the
following: i) For the real-word PML datasets m_emotion and
mirflickr, MLDN achieves the best performance in all cases.
ii) For the synthetic datasets, out of 24 (8 data sets × 3 eval-
uation metrics) statistical tests MLDN ranks in 1st place at
83.3% cases and in 2nd place at 16.6% cases, which prove
the necessity of accounting for dependent noise.
Comparison on Missing Mutli-Label Learning. Further-
more, we study the performance difference in MLML setting
for missing labels. Under 20% missing labels, the inherent
label structure and correlations are damaged to some ex-
tent, and MLDN outperforms other algorithms in most cases.
For example, MLDN significantly outperforms MLMLFS,
D2ML-L, D2ML-NL, MAXIDE and GLOCAL in terms of all
the evaluation metrics on all data, which proves the necessity
to model the manifold structure from feature space.
Parameter Sensitivity Analysis. In this experiment, we
conduct the sensitivity analysis for our method on the yeast

data set over the parameters including α, β, γ and λ. We
choose them from {10−3, · · · , 102, 103}. The 4 sub-figures
of Fig.3 show the performance of MLDN changes as each
parameter increases with other parameter fixed. From the re-
sults, we see that the parameters β, γ and λ are not sensitive
to the proposed method, which is consistent with theoretical
analysis: if β and γ meet the conditions in Theorem 1, they
have little impact on the results.

Running Time Analysis. It is crucial to study the efficiency
of the compared LML approaches. The running time costs
of each method on synthetic and real-world PML (MLML)
data sets are recorded in Table 3. In the PML setting, obvi-
ously, our approach is the most efficient one on all the data
sets. The superiority of our approach is more distinguished
on larger datasets. The time costs of existing methods in-
crease dramatically as the data size increases. In contrast,
MLDN takes only 107 seconds even for the largest size for
eurlex_dc. In the MLML setting, MLDN significantly out-
performs most MLML methods on all datasets. For example,
for the largest data eurlex_dc, MLDN is more than 30 times
faster than LEML, which is the most efficient existing multi-
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Datasets MLDN fPML PML-NI PART-VLS PART-MAP PML-LC PML-FP LMNNE

slashdot 1.65s 75.42s 7.12s 99.32s 92.64s 1931.70s 1968.43s 28.48s
medical 1.56s 68.51s 13.18s 25.26s 14.91s 1453.55s 1342.25s 108.07s
enron 2.48s 64.56s 8.19s 22.48s 11.67s 1064.18s 1133.54s 131.73s
scene 0.28s 1.80s 1.16s 6.87s 4.82s 245.36s 284.69s 8.41s
yeast 0.84s 0.95s 1.56s 2.80s 1.29s 108.11s 210.25s 1.21s
20ng 12.57s 229.72s 21.15s 2873.17s 2623.56s >1d >1d 497.11s
corel5k 1.92s 201.26s 132.71s 397.30s 392.75s 1391.39s 1422.35s 338.17s
mirflickr 0.86s 2.37s 4.16s 11.45s 7.59s 317.29s 312.65s 6.28s
eurlex_dc 107.50s 42945.16s 3218.15s >1d >1d >1d >1d 5413.43s
m_emotion 0.70s 3.13s 3.87s 32.16s 20.56s 194.27s 184.68s 4.38s

Datasets MLDN D2ML-L D2ML-NL LEML MLMLFS GLOCAL MLML MAXIDE

slashdot 5.62s 7.77s 138.74s 7.13s 15.32s 9.27s 1.79s 2.22s
medical 3.47s 1.23s 22.13s 7.43s 1.15s 16.21s 0.37s 2.41s
enron 2.17s 18.71s 96.25s 9.76s 2.58s 14.43s 0.26s 2.34s
scene 0.17s 6.43s 143.24s 0.38s 1.36s 3.99s 0.22s 0.76s
yeast 0.09s 11.57s 214.18s 0.28s 0.97s 1.43s 0.39s 0.18s
20ng 12.14s 1042.15s 8714.12s 31.93s 462.19s 43.02s 54.15s 8.99s
corel5k 7.37s 14.36s 3715.39s 103.48s 12.98s 21.91s 1.89s 17.56s
mirflickr 0.47s 151.21s 5919.94s 1.16s 17.37s 2.66s 10.26s 0.88s
eurlex_dc 431.13s 16666.75s >1d 14531.04s 72122.44s 8830.92s 439.17s 1221.50s
m_emotion 0.43s 84.61s 11622.05s 2.33s 6.79s 3.64s 3.80s 0.68s

Table 3: The comparison of time cost for MLDN and PML (MLML) baselines on all the datasets with varying data size.
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Figure 3: The performance of MLDN changes as each parameter increases with other parameters fixed at data yeast.

AP (↑) MLDN MLDN-X MLDN-Y
medical .821±.036 .793±.020 .805±.016
scene .869±.012 .828±.016 .845±.009

Table 4: Ablation experiment in partial multi-label data.

label learning with missing label algorithm.

Ablation Analysis
Ablation Analysis on Dependent Penalty. In this section
we conduct an ablation experiment with dependent noise on
data medical and scene with redundant noise. In the ablation
experiment, we remove the instance-dependent penalty (re-
fer to MLDN-Y) and label-dependent penalty (MLDN-X),
respectively. The evaluation result Average Precision (AP)
is given in Table 4. As shown in Table 4, both penalty terms
contribute to the performance of MLDN and removing either

one of them (instance- or label-dependent penalty) leads to
a worse result, which also confirms the rationality of using
both constraints together in our model.

Conclusion

In this paper, we proposed a novel LML framework named
MLDN, which trains a robust model by considering instance-
dependent and label-dependent label noise simultaneously.
Specially, we factorized the noise matrix as the outputs of a
mapping from the feature and label representations. Mean-
while, we regularized the problem with the manifold con-
straint on noise matrix to preserve local relationships and a
noise recovery error bound is given. Finally, extensive exper-
iments on 10 datasets demonstrate that our proposed method
MLDN outperforms the state-of-the-art algorithms.
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