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Abstract

We aim to solve the problem of spatially localizing composite
instructions referring to space: space grounding. Compared
to current instance grounding, space grounding is challeng-
ing due to the ill-posedness of identifying locations referred
to by discrete expressions and the compositional ambigu-
ity of referring expressions. Therefore, we propose a novel
probabilistic space-grounding methodology (LINGO-Space)
that accurately identifies a probabilistic distribution of space
being referred to and incrementally updates it, given sub-
sequent referring expressions leveraging configurable polar
distributions. Our evaluations show that the estimation using
polar distributions enables a robot to ground locations suc-
cessfully through 20 table-top manipulation benchmark tests.
We also show that updating the distribution helps the ground-
ing method accurately narrow the referring space. We finally
demonstrate the robustness of the space grounding with simu-
lated manipulation and real quadruped robot navigation tasks.
Code and videos are available at https://lingo-space.github.io.

Introduction

Robotic natural-language grounding methods have primar-
ily focused on identifying objects, actions, or events (Brohan
et al. 2023; Mees, Borja-Diaz, and Burgard 2023). However,
to robustly carry out tasks following human instructions in
physical space, robots need to identify the space of opera-
tions and interpret spatial relations within the instructions.
For example, given a directional expression (e.g., “place a
cup on the table and close to the plate”), a robot should de-
termine the most suitable location for placement based on
the description and environmental observations.

We aim to solve the problem of localizing spatial refer-
ences within instructions. Referred to as “space grounding,”
this problem involves identifying potential locations for
reaching or placing objects. Unlike conventional instance
grounding problems, such as visual object grounding (Shrid-
har, Mittal, and Hsu 2020) and scene-graph grounding (Kim
et al. 2023), space grounding presents complexities due to
inherent ambiguity in identifying referred locations (as il-
lustrated in Fig. 1). Given the ambiguity and the composi-
tional nature of referring expressions, a grounding solution
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Figure 1: An illustration of incremental space grounding in
the navigation task. Our method, LINGO-Space, identifies
the distribution of the target location indicated by a natural
language instruction with referring expressions.

should be capable of reasoning about potential space candi-
dates with uncertainty and adapting to new references.

Conventional space grounding approaches often map spa-
tially relational expressions (e.g., “to the right side of a box™)
to specific directional and distance-based coordinates, learn-
ing patterns from training dataset (Jain et al. 2023; Nama-
sivayam et al. 2023). However, positional ambiguity (e.g.,
missing distance information) in spatial expressions and ref-
erential ambiguity (e.g., a plurality of similar objects) in
the scene often lower effective space grounding (Zhao, Lee,
and Hsu 2023). Furthermore, representational ambiguity re-
stricts the scalability of space grounding when dealing with
complex expressions and scenes.

On the other hand, understanding composite expressions
is crucial for accurate grounding in space. Most instructions
entail sequences of spatiotemporal descriptions (e.g., “En-
ter the room, then place the cup on the table”). However,
most approaches often encode multiple expressions simul-
taneously without explicit separation (Roy et al. 2019). Re-
cently, PARAGON (Zhao, Lee, and Hsu 2023) decomposes



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

a composite instruction into object-centric relation expres-
sions and jointly encodes them using graph neural networks.
Given the variability in results due to the expression order
and incoming expressions, we need an incremental ground-
ing method with composite expressions.

Therefore, we propose LINGO-Space, a language-
conditioned incremental grounding method for space.! This
method identifies a probabilistic distribution of the refer-
enced space by leveraging configurable polar distributions.
Our method incrementally updates the distribution given
subsequent referring expressions, resolving compositional
ambiguity via a large language model (LLM)-guided seman-
tic parser. We also mitigate referential ambiguity by leverag-
ing scene-graph-based representations in grounding.

Our evaluation shows that estimating polar distributions
effectively grounds space as described by referring expres-
sions, while conventional methods have difficulty capturing
uncertainty. We also show the capability to refine the distri-
bution accurately and narrow down the referenced space as
humans encounter space navigation in complex domains.

Our contributions are as follows:

* We propose a novel space representation using a mixture
of configurable polar distributions, offering a probability
distribution of referred locations.

We introduce an incremental grounding network inte-
grated with an LLM-based semantic parser, enabling ro-
bust and precise grounding of incoming expressions.

We conduct 20 benchmark evaluations, comparing with
state-of-the-art baselines, and demonstrate the real-world
applicability of our method through space-reaching ex-
periments involving a quadruped robot, Spot.

Related Work

Language grounding: The problem of language instruction
delivery has received increasing attention in robotics. Early
works have focused on understanding entities or supplemen-
tary visual concepts (Matuszek et al. 2012). Recent works
have incorporated spatial relations to enhance the identifica-
tion of instances referred to in expressions (Howard, Tellex,
and Roy 2014; Paul et al. 2018; Hatori et al. 2018; Shridhar,
Mittal, and Hsu 2020).

Space grounding: There are efforts mapping spatial rela-
tions to the region of actions using various representations:
potential fields (Stopp et al. 1994), discrete regions with
fuzzy memberships (Tan, Ju, and Liu 2014), and points from
a multi-class logistic classifier (Guadarrama et al. 2013).
Early approaches have employed predetermined distances
or directions, or randomly sampled locations to represent
spatial relations. Neural representations have emerged pre-
dicting pixel positions (Venkatesh et al. 2021) or pixel-wise
probabilities (Mees et al. 2020) for placement tasks. To over-
come limitations associated with pixel-based distributions,
researchers have used parametric probability distributions,
such as a polar distribution (Kartmann et al. 2020), a mix-
ture of Gaussian distributions (Zhao, Lee, and Hsu 2023),

'"LINGO-Space is an abbreviation of Language-conditioned
INcremental GrOunding method for Space
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and a Boltzmann distribution (Gkanatsios et al. 2023). Our
proposed method adopts the polar distribution as a basis for
modeling spatial concepts, avoiding the need to predefine
the number of components as required by Gaussian mixture
models (Kartmann et al. 2020; Paxton et al. 2022). Further,
our method considers the order of expressions and the se-
mantic and geometric relations among objects, allowing for
handling semantically identical objects.

Composite instructions: Composite linguistic instructions
often introduce structural ambiguity. Researchers often use
parsing as a solution, breaking down composite expressions
using hand-crafted or grammatical rules (Tellex et al. 2011;
Howard et al. 2022). Recently, Zhao, Lee, and Hsu (2023)
have introduced the grounding method, PARAGON, in which
its neural parsing module extracts object-centric relations.
Similarly, Gkanatsios et al. (2023) decompose expressions
into spatial predicates using a neural semantic parser, i.e.,
a sequence-to-tree model (Dong and Lapata 2016). While
these works often deal with one or two referring expressions,
our method incrementally manages an arbitrary number of
referring expressions by introducing an LLM-based parser.
Large language models: LLMs have brought increasing at-
tention offering benefits in the areas of understanding high-
level commands (Brohan et al. 2023), extracting common
manipulation-related knowledge (Ren et al. 2023), planning
with natural language commands (Huang et al. 2023; Song
et al. 2023; Driess et al. 2023; Mees, Borja-Diaz, and Bur-
gard 2023), and programming (Singh et al. 2023; Liang
et al. 2023). While these approaches generally focus on the
LLM’s capability to leverage semantic knowledge for un-
derstanding natural language instructions, we focus on an-
other capability: decomposing linguistically complex com-
mands into sub-commands or problems. Shah et al. (2022)
employ an LLM to generate a list of landmarks within com-
posite commands. Similarly, Liu et al. (2022) use an LLM to
identify referring expressions and translate natural language
commands into linear temporal logics. Our method also uses
an LLM to parse composite referring instructions and trans-
form them into a structured format, enhancing the grounding
process.

Problem Formulation

Consider the problem of determining a desired location x* €
R? based on a natural language instruction A, while taking
into account a set of objects O = {01, ...on } in the environ-
ment, where IV denotes the number of objects. To enhance
the accuracy of indicating the location x*, the instruction A
might include object references that leverage their geomet-
ric relationships with the intended location. To robustly rep-
resent potential locations, referred to as “space,” we model
the target location as a probability distribution parameter-
ized by 0. Therefore, we formulate an optimization problem
in which we marginalize out @ and a scene graph Y, that
encodes O with their relationships (i.e., edge features):

x* = argmax P(x|A, O), (1

= argmax // P(x|0)P(6|A, Y)P(Y|O), (2)
x 0,7
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Figure 2: The overall architecture of LINGO-Space on a tabletop manipulation task. Given a composite instruction, a graph
generator provides a scene graph. A semantic parser decomposes the instruction into a structured form of relation-embedding
tuples 7(*), where i € {1,..., M}. Finally, a spatial-distribution estimator incrementally updates a probabilistic distribution of
locations satisfying spatial constraints encoded in the embedding tuples.

where we assume conditional independence between the
current distribution model 8, given the scene graph T, and
the object set O. This work assumes a scene-graph generator
produces an optimal graph Y.

Another problem is the use of composite instructions
with multiple relations (i.e., referring expressions) in se-
quence. We assume a plurality of similar reference objects
to be present in the environment, potentially leading to in-
stances where semantically identical labels appear on the
graph T¢,. To mitigate compositional ambiguity in com-
posite instructions, we decompose A into multiple phrases,
A =AW, .., AM)] where M is the number of constituent
phrases. Each phrase A() includes a single spatial relation
about a referenced object (e.g., “left of the block™). We then
reformulate the objective function in Eq. (2) using an itera-
tive update form with Y

P(x|0wm)
——

Location
selector

M
H[P(ei‘eifla A(Z)a T:g) P(A(’L) |A7 T:g)]a (3)
=1

Spatial-distribution
estimator

where P(61]00, AV, T,) = P(6:1|AW), Yy,). We describe
each process and the graph generator below.

Semantic parser

Methodology: LINGO-Space

We present LINGO-Space, an incremental probabilistic
grounding approach that predicts the spatial distribution of
the target space referenced in a composite instruction. The
architecture of our method, as depicted in Fig. 2, consists
of 1) a scene-graph generator, 2) a semantic parser, and 3) a
spatial-distribution estimator. Below, we describe each mod-
ule and the incremental process of estimating the spatial dis-
tribution to ground the desired location effectively.

A Scene-Graph Generator
A scene graph Yy, = (V, &) is a graphical representation
of a scene consisting of detected objects as nodes V and
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their pairwise relationships as directed edges £. Each node
u € V entails node features f* including its Cartesian co-
ordinate £, € R?, bounding box £ € R*, and visual

! box
feature f* & RDw; fu (£ oeas frov  £2,), where Dy, is a

VI1Z VI1Z
fixed size. In detail, a bounding box detector (e.g., Ground-
ing DINO (Liu et al. 2023) for manipulation) finds £ ; and
f: .- Then, we encode its cropped object image as £}, using
the CLIP image encoder (Radford et al. 2021). Each edge
eun € & represents a spatial relationship, as a textual predi-
cate, from u to v € V. We determine predicates (i.e., “near”,
“in”) using the box coordinate and size, (f.o0rq, foox)- We en-
code each predicate as an edge feature f;ﬁ’ée € RPx using
the CLIP text encoder (Radford et al. 2021), where D,y is a
fixed size.

We design a scene-graph generator that returns a graph
T, in a dictionary form; V is a dictionary with node iden-
tification numbers (ID) as keys and node features as values,
e.g., {23: [£23 ,, £23 £23]}, where 23 is an ID number. Note
that we use node IDs as an interchangeable concept with
nodes. We also represent an edge set £ as a list of relation-
ship triplets, (upp, fe’fge”m,vm), where up and vp are the
subject and object node IDs. This work assumes that each
edge contains only one relation in a pre-defined set.

A Semantic Parser

We introduce an LLM-based semantic parser, using Chat-
GPT (OpenAl 2023), which 1) breaks down a composite
instruction A with M referring expressions into its con-
stituent phrases [A™M3™M A AG)] and 2) transforms
these phrases into a structured format, leveraging the LLM’s
proficiency in in-context learning through prompts. We de-
sign the prompt to consist of a task description and pars-
ing demonstrations. The task description explains our pars-
ing task as well as its reasoning steps: 1) identification of
an action from the instruction, 2) identification of a source
instance associated with the action, and 3) identification of
target information from the referring expressions, character-
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Figure 3: Architecture of the spatial-distribution estimator.

Given the graph representation of the problem description,
the network predicts instance-wise polar distributions, up-
dating the internal model with the previous state.

ized by a relational predicate and a referenced object. Then,
the demonstrations provide three input-output examples to
regularize the output format.

In detail, our parser represents the main phrase A (™)
as an action with an associated source object and the
other referring phrases, [A("), ..., A(™)], as relational pred-
icates with referenced objects. To incrementally ground the
phrases, our parser converts the referenced object-predicate
pairs as a list of relation tuples, [r("), ..., 7(*)]. For instance,

Input: put the cyan bowl above the chocolate and left of
the silver spoon.

Output: {action: “move”, source: “cyan bowl”, target:
[(“chocolate”, “above”), (“silver spoon”, “left”)] }.

We then post-process the output form to have better rep-
resentations for grounding. For it, we replace the action into
a robot skill with the highest word similarity in a skill set.
We also replace the text-based r(*) into an embedding-based

tuple () = (£, fp(fe)d), where £ € RP« and f;fgd € RDw
are encoded from the CLIP text encoder (Radford et al.

2021).

A Spatial-Distribution Estimator

Our spatial distribution estimator predicts a probability dis-
tribution of destinations given a referring phrase and a scene
graph. Given a sequence of phrases, the estimator incremen-
tally updates the distribution using a graph-based incremen-
tal grounding network.

Spatial distribution We represent the probability distri-
bution as a mixture of instance-wise polar distributions,
where a polar distribution is a joint probability density func-
tion of two random variables, distance d € R>( and angle
¢ € [—m, 7], in the polar coordinate system. As Kartmann
et al. (2020), we assume that d and ¢ follow a Gaussian dis-
tribution A and a Von Mises (i.e., circular) distribution M,
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respectively;
(d> ¢) ~ (N(Mdaag),M(MdJaH(ﬁ))v (4)

where (14, 02, t¢, and kg indicate mean, variance, loca-
tion, and concentration, respectively. Then, the mixture of
instance-wise polar distribution given a tuple (%) is,

N
P(X|7a(i)aTSg) = ij - P(d; de703j) < P(¢; po, s Ko, )-
j=1

(&)

where w; is a weight that represents the relevance between

the j-th instance and the relation tuple (*). We represent the
entire distribution as the mixture model parameters 6: 6 =

[(wlaﬂdwaglaﬂ%?ﬂ%)v XY (wNaﬂdNa 0—121N’,L"¢N»’<5¢N)]'

Pre-processing Given a node feature f7 and a relation tu-
ple (9, we pre-process them to have better representations
by projecting into another space via positional encoding and
matrix projection processes. The positional encoding em-

beds the Cartesian coordinate fcj ord using sinusoidal posi-

O
tional encoding v(-): £/ = ~(f._,) € R*K+1) where

coord coord

K is a predefined maximum frequency K € N (Mildenhall
et al. 2021). The matrix projection process projects each fea-

ture (i.e., fvjiz, fr(;‘)’ and fl)(:gd) into a new feature space with

dimension Dy by multiplying a learnable projection matrix:

f\ziz ’ fp(rze)d ’

f.(l) = Mreffr(;) ;

ref

f(l) = Mpred

pred —

f‘j = Mviz

viz
where My, € RP#*Pviz M,y € RP#*Der and Meq €
RP#>Dew In addition, to use the last estimation model
state £V € RNDw| we also compress £\ into
f?ﬁ;;” € RD " by applying a max-pooling operation and a
linear projection, where Dy = 4Dg + 2(2K + 1). There-
fore, we obtain a new feature vector ng ) € RP# thatis a

concatenation of the projected feature vectors,
g f) g pli-1)

(i,5) _
XQ = concat( coord? “viz? “ref 7 “pred’ “state

).

For 7 = 1, we use a zero vector as the last model state.

(6)

Estimation network We design the estimation network to
predict instant-wise polar distributions given a relation tuple
r(9), taking new node features X = (X\"", ..., X{"")) and
edge features Eg = (..., figg,. --.). Fig. 3 shows the network
architecture, which is a stack of GPS layers (Rampasek et al.
2022), where each GPS layer is a hybrid layer of a message-
passing neural network (MPNN) and a global attention net-
work. This work uses GINE (Hu et al. 2020) as the MPNN
layer and Transformer (Vaswani et al. 2017) as the global
attention layer. The GPS layer allows the network to update
node and edge features,

X1, B = GPSH (X, E, A), (7)

where A € RY*Y is the adjacency matrix of the scene
graph T, [ € {1, ..., L}, and L is the number of layers.
In the estimation network, the [-th GPS layer returns

instant-wise hidden states Xl(i’j ) € Dp to predict the
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Figure 4: Qualitative evaluation with LINGO-Space, CLIPORT, and PARAGON. Grey boxes represent the object each i-th
phrase refers to, while red dots and blue dots represent the ground-truth and the prediction, respectively. We plot 100 particles
for the PARAGON’s prediction result. The results demonstrate that LINGO-Space is capable of accurately identifying the space
referred to by a composite instruction by narrowing down the space.

distribution parameters 0[j] for the j-th node as well as

the current prediction state fs(t?te € RN'"Pu' In detail, on

the last L-th layer, the network outputs instant-wise hid-
den state X(LM’] ) € RPw and predicts instant-wise po-
lar distribution parameters 0[j] applying a two-layer multi-
layer perceptron (MLP) per parameter. When the distribu-
tion parameters are non-negatives (e.g., w;, aﬁj, and K/d)j)’
we use softplus activation functions. In addition, for the
concentration K> WE enable the MLP to produce ;Tl(p in-

stead of k¢ since the inverse of concentration is analogous
to the variance. For the parameter p4,, to avoid the dis-
continuity on angles (e.g., 0° and 360°), we map Xé/l’]
to [zg,,Ys,] € R? via a two-layer MLP and then apply
an atan2 activation function pg, = atan2(ye,,ze;) € R.
Through iterations, the estimation network returns spatial
distributions conditioned on all the possible subsequences of
the given relations (), ..., r(™) in sequence. We then gen-
erate a final spatial distribution using Eq. (3) and Eq. (5):
PO r®, oo r D T2y =TT pi(6:10;—1, 7D, TL).

Objective function To train the estimation network, we
introduce a composite loss function £ that is a linear combi-
nation of two loss functions, £1 and Lo. £ is the negative
log-likelihood of the spatial distribution given the ground-

truth locations x%** and ground-truth weight w{**:

N
Ly = —log Z w;les : P(Xdes; Hd; 5 03], yHjo K’¢j) - (®)
j=1

Lo is the cross-entropy loss between the predicted weight

w; and the ground-truth weight w;ies:

N
1 ()
Lo N JEZI wg -log(wy). 9)

Then, the combined loss is £ = ALy 4 (1— ) Lo, where A is
a hyperparameter. Given a composite instruction, we com-
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pute the combined loss and incrementally update the net-
work given each relation r(*) in sequence.

Experimental Setup

Our experiments aim to answer the following questions:
Does the proposed method improve the performance of
space grounding given 1) an instruction with a single refer-
ring expression and 2) a composite instruction with multiple
referring expressions? Further, can the proposed method ap-
ply to real-world tasks?

Grounding with a Referring Expression

We evaluate the grounding capability of inferring a location
for successfully placing objects within a tabletop domain,
guided by instructions containing a referring expression. We
use three baseline methods with their benchmarks within the
PyBullet simulator (Coumans and Bai 2016). Each bench-
mark provides a top-down view of RGB-D images with syn-
thesized structured instructions. Below are the training and
test procedures per benchmark.

e CLIPORT’s benchmark (Shridhar, Manuelli, and Fox
2022): We use three tasks designed to pack an object
“inside” a referenced object. Task scenes contain be-
tween four to ten objects from the Google Scanned Ob-
jects (Downs et al. 2022) or primitive shapes, denoted as
google and shape, respectively. Task instructions include
objects seen during training or not, denoted as seen and
unseen, respectively. We use instructions with referential
expressions such as “pack the bull figure in the brown
box.” The assessment metric is a success score (€ [0, 1])
reflecting the extent of relationship satisfaction between
the located object volume and the desired container.

PARAGON’s benchmark (Zhao, Lee, and Hsu 2023):
This benchmark generates a dataset for the task of plac-
ing an object in the presence of semantically identical
objects following one of nine directional relations: “cen-
ter,” “left,” “right,” “above,” “below,” “left above,” “left
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below,” “right above,” and “right below.” The evalua-
tion metric is a binary success score (€ {0,1}), denot-
ing whether all predicates have been satisfied after place-
ments.

SREM'’s benchmark (Gkanatsios et al. 2023): We use
eight tasks designed to rearrange a colored object inside
a referenced object following spatial instructions featur-
ing one of four directional relations: “left,” “right,” “be-
hind,” and “front.” Each scene contains between four to
seven objects, as in CLIPORT benchmark. The evalua-
tion metric uses a success score as CLIPORT with the
most conservative threshold.

LINGO-Space’s benchmark: We introduce close-seen-
colors, close-unseen-colors, far-seen-colors, far-unseen-
colors tasks with new predicates, “close” and “far.” Other
setups are similar to the SREM benchmark.

For PARAGON benchmark, for each task, training and
testing employ 400 and 200 scenes, respectively. Otherwise,
we train models on 100 samples, with subsequent testing
performed on 200 randomized samples.

Grounding with Multiple Referring Expressions

We also assess the performance of incremental grounding
in the presence of multiple relations in sequence. However,
benchmarks such as CLIPORT and PARAGON focus on in-
structions with simple relations or structures. Instead, we in-
troduce a new task labeled as composite to illustrate better
the challenge of grounding subsequent relations in environ-
ments with multiple semantically identical objects. This task
assumes tabletop grounding scenarios akin to CLIPORT.
Each sample consists of 640 x 320 RGB-D images and syn-
thesized referring instructions with 10-direction relations:
“left,” “right,” “above,” “below,” “left above,” “right above,”
“left below,” “right below,” “close,” and “far”. For example,
we use “put the green ring to the left of the gray cube, the
above of the gray cube, and the right of the red bowl.” In
the dataset, we randomly place two-to-seven objects, con-
sidering one-to-three independent relation phrases for train-
ing and one-to-six phrases for testing. Our benchmarks use
SREM’s scoring criteria below.

In this task, only one region strictly satisfies all the rela-
tions. To verify it, we use manually programmed bounding-
based relation checkers. Across all tasks, we train models
on 200 samples without having semantically identical ob-
jects and repeated directional predicates. We then test on 300
samples.

In addition, we perform evaluations with SREM’s tasks
designed for multiple referential instructions (i.e., “comp-
one-step-(un)seen-colors”). After grounding a target loca-
tion, we compute a score reflecting the extent of relationship
satisfaction; score = #satis faction/|relations|.

Baseline Methods

e CLIPORT is a language-conditioned imitation learning
model that predicts pixel locations using CLIP (Radford
et al. 2021) and Transporter Networks (Zeng et al. 2021).
Note that we disabled its rotational augmentation except
for the CLIPORT benchmark.
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* PARAGON is a parsing-based visual grounding model
for object placement. This model generates particles as
location candidates (i.e., pixels). We use the pixel point
with maximum probability as a placement position. For
visual feature extraction, we use the provided Mask R-
CNN (He et al. 2017) for PARAGON benchmark and
Grounding Dino (Liu et al. 2023) for the other bench-
marks.

SREM is an instruction-guided rearrangement frame-
work. Parsing an instruction into multiple spatial pred-
icates, SREM’s open-vocabulary visual detector (Jain
et al. 2022) grounds them to objects in input images. For
LINGO-Space benchmark, we train energy-based mod-
els for new predicates. We then train the grounder with
each task dataset while training the parser with each
benchmark dataset following the paper. We exclude the
Transporter Networks (Zeng et al. 2021) since we pro-
vide the ground-truth location given a bounding box.
We also disable the closed-loop execution for fairness in
comparison.

Evaluation

Grounding with a referring expression. We analyze the
grounding performance of our proposed method and base-
lines via 12 benchmarks. Table 1 shows our method outper-
forms three baseline methods, demonstrating superior per-
formance in 11 out of 12 tasks. Our method consistently ex-
hibits the highest success scores even when faced with un-
seen objects, owing to its ability to incorporate embedded
visual and linguistic features. However, our method exhibits
a 1.0 lower performance in the behind-seen-colors task since
our method does not account for volumes causing placement
failures. In addition, SREM fails to attain scores in the sim-
ple task due to its dependence on a pre-defined instruction
structure, in contrast to our LLM-based parser.

We extend the evaluation using novel predicates (see Ta-
ble 2). Our method achieves consistently high scores due
to its ability to represent diverse distributions corresponding
to not only “close” but also “far,” while the performance of
the other methods degraded significantly. Although SREM
is able to accommodate “close” with energy-based represen-
tation, the “far” predicates cannot be seamlessly accommo-
dated by conventional rules or location representations.

Grounding with multiple referring expressions. Our
method significantly improves the performance of ground-
ing given a composite instruction. Table 3 shows our method
results in superior success scores in all four tasks. Our
method is a maximum of 62 higher than the second-best ap-
proach in each benchmark since our LLM-based parser ex-
tracts relation tuples from diverse structures of instructions
resolving compositional ambiguity. PARAGON shows a per-
formance degradation in their benchmark since we trained
PARAGON with the compositional task data only, unlike the
paper setup. Although PARAGON’s performance record in
the paper is 67.9, the record is still 22.6 lower than our
method result. SREM shows good performance in its bench-
mark, training its grounder and parser with the task and
benchmark datasets, respectively, following the literature.
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Benchmark CLIPORT SREM PARAGON
packing packing packing left left right right  behind behind  front front
Task -seen  -unseen -unseen -seen  -Unseen  -seen  -unseen  -seen  -unseen  -seen  -unseen simple
-google -google -shapes -colors -colors -colors -colors -colors -colors -colors -colors
CLIPORT 98.0 97.7 95.5 88.0 86.5 90.5 98.5 99.5 96.0 98.5 99.0 385
PARAGON 98.1 98.0 99.5 75.5 61.5 87.5 86.0 99.0 97.5 99.0 96.5 (g;'?)
SREM 98.7 97.3 100 93.0 94.5 82.0 81.5 99.0 98.0 99.0 100 425
LINGO-Space  99.2 98.0 100 99.5 97.5 99.5 100 98.5 98.5 100 100 80.0

Table 1: Evaluation (success score) on 12 benchmark tasks with a single referring expression. The 12 tasks are from CLIPORT,
PARAGON, and SREM, where methods are trained and tested within each task’s dataset. The score indicates how successfully
each method identified a location satisfying relations in [0, 100]. The number in the parentheses is the result of the literature.

close-seen close-unseen far-seen far-unseen

100

Task o
-colors -colors -colors  -colors S ‘\\/,\‘_.
CLIPORT 385 185 59.5 60.0 a7 £ "
PARAGON 38.5 41.5 31.5 42.0 g . 2 5o M
SREM 91.0 90.5 45.0 44.5 2 <
LINGO-Space 86.0 81.0 95.5 95.0 Z 5 2
':Sn CLIPort -e-ParaGon

Table 2: Evaluation (success score) on our 4 benchmark
tasks with new predicates: close and far.

SREM -0-LINGO-Space

0
1

0
4 5 6 1 2 3
The number of referring expressions

2 3 4 5 6

Benchmark  PARAGON SREM LINGO Figure 5: Grounding performance on the increasing num-
-Space ber of expressions. Each graph uses a distinct score metric:
comp-one comp-one (left) the binary success score as PARAGON benchmark and
composi -step -step compo (right) the success score.
Task . .
tional -seen -unseen site
-colors -colors
CLIPORT 26.0 87.5 84.8 4.4 Spot, from Boston Dynamics. Fig. 1 illustrates the language-
PARAGON égg 76.4 773 56.0 guided navigation experiment. A human operator delivers a
SREM ( 1 '5) 034 0.1 422 command, such as “move to the front of the red box and
LINGO-Space 905 975 96.5 791 close to the tree.” Our robot generates a scene graph using

Table 3: Evaluation (success score) on 4 benchmark tasks
with multiple referring expressions. The number in the
parentheses is the result of the literature.

However, SREM often fails to parse the composite instruc-
tions in other datasets since it requires a specific format of
composite instructions containing clause instead of phrase
as a referring expression.

Further, as shown in Fig. 5, our method shows the capa-
bility of handling multiple expressions with the consistently
highest scores given an increasing number of referring ex-
pressions, while other approaches are going to fail to ground
four to six referring expressions. This is because 1) the
“composite” task includes multiple similar objects causing
referential ambiguity and 2) the instruction includes more
predicates without using clauses. However, our method re-
solves them by leveraging the semantic and geometric rela-
tionships encoded in the scene graph.

Real-world demonstrations. We finally demonstrated
the space-grounding capability of our LINGO-Space, inte-
grating it on a navigation framework for a quadruped robot,

10320

a LiDAR-based bounding box detector and parses the in-
struction using a ChatGPT (OpenAl 2023). The robot then
successfully identified the goal distribution, and it reached
the best location we wanted.?

Conclusion

We introduced LINGO-Space, a language-conditioned in-
cremental space-grounding method for composite instruc-
tions with multiple referring expressions. LINGO-space is
a probabilistic grounding network leveraging a mixture of
learnable polar distributions to predict probable location dis-
tributions. Our evaluation shows the effectiveness of the pro-
posed probabilistic approach in representing desired space.
Further, we demonstrate that, when coupled with the pro-
posed LLM-guided semantic parser, our network enhances
reasoning complex composite instructions with diverse re-
ferring expressions. Compared with state-of-the-art base-
lines, our model outperforms in grounding success score,
generalizability, and scalability. We finally validate its prac-
tical usability by deploying LINGO-Space to a real-world
navigation task running a quadruped robot.

?See details on our website: https://lingo-space.github.io
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