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Abstract

Deep equilibrium (DEQ) models have emerged as a promis-
ing class of implicit layer models, which abandon traditional
depth by solving for the fixed points of a single nonlinear
layer. Despite their success, the stability of the fixed points
for these models remains poorly understood. By considering
DEQ models as nonlinear dynamic systems, we propose a
robust DEQ model named LyaDEQ with guaranteed prov-
able stability via Lyapunov theory. The crux of our method
is ensuring the Lyapunov stability of the DEQ model’s fixed
points, which enables the proposed model to resist minor ini-
tial perturbations. To avoid poor adversarial defense due to
Lyapunov-stable fixed points being located near each other,
we orthogonalize the layers after the Lyapunov stability mod-
ule to separate different fixed points. We evaluate LyaDEQ
models under well-known adversarial attacks, and experi-
mental results demonstrate significant improvement in ro-
bustness. Furthermore, we show that the LyaDEQ model can
be combined with other defense methods, such as adversarial
training, to achieve even better adversarial robustness.

Introduction
Deep equilibrium models have demonstrated remarkable
progress in various deep learning tasks, such as lan-
guage modeling, image classification, semantic segmenta-
tion, compressive imaging, and optical flow estimation (Bai,
Koltun, and Kolter 2020; Winston and Kolter 2020; Zhao,
Zheng, and Yuan 2023; Bai et al. 2022). Unlike conventional
neural networks that rely on stacking layers, DEQ models
define their outputs as solutions to an input-dependent fixed
points equation and use arbitrary black-box solvers to reach
the fixed points without storing intermediate activations. As
a result, DEQ models are categorized as implicit networks,
presenting a unique approach to deep learning.

However, the robustness of DEQ models remains largely
unexplored. As widely known, deep neural networks
(DNNs) are susceptible to adversarial examples, which are
crafted with minor perturbations to input images. Given the
pervasive use of deep learning in various aspects of daily
life, the emergence of adversarial examples poses a severe
threat to the security of deep learning systems (Szegedy et al.
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2013; Lu et al. 2023; Zhang et al. 2023). Hence, it is impera-
tive to investigate the robustness of DEQ models. An intrigu-
ing question arises: can adversarial examples easily deceive
DEQ models as well? If so, can we fundamentally mitigate
this issue?

Wei and Kolter (2021) showed that DEQ models are
also vulnerable to adversarial examples and considered ℓ∞
certified robustness for DEQ models. They presented IBP-
MonDEQ, a modification of monotone deep equilibrium
layers that allows for the computation of lower and up-
per bounds on its output via interval bound propagation.
Nevertheless, our experimental analysis revealed that IBP-
MonDEQ does not provide significant improvement in ad-
versarial robustness for some complex image recognition
tasks. Likewise, Li, Wang, and Lin (2022) proposed a de-
fense method for DEQ models based on certified training.

The deep learning community has shown a great interest
in improving the adversarial robustness of neural networks.
For another kind of implicit network, neural ordinary differ-
ential equations (Neural ODEs) (Chen et al. 2018), defense
methods based on the Lyapunov method have emerged ow-
ing to their connection with dynamical systems. Kang et al.
(2021) proposed a stable Neural ODE with Lyapunov-stable
equilibrium points for defending against adversarial attacks.
Rodriguez, Ames, and Yue (2022) proposed a method for
training ODEs by using a control-theoretic Lyapunov con-
dition for stability, leading to improvement on adversarial
robustness.

Typically, a stable dynamical system implies that all so-
lutions in some region around an equilibrium point (i.e., in
a neighborhood of an equilibrium point) flow to that point.
Lyapunov’s direct method generalizes this concept by rea-
soning about convergence to states that minimize a potential
Lyapunov function. Because Lyapunov theory deals with the
effect of the initial perturbations on dynamic systems, inte-
grating Lyapunov theory into implicit layers can automati-
cally confer many benefits, such as adversarial robustness.

In this paper, we present a novel approach for improv-
ing the robustness of DEQ models through provable sta-
bility guaranteed by the Lyapunov theory. Unlike existing
methods that rely on certified training or adversarial train-
ing (Wei and Kolter 2021; Li, Wang, and Lin 2022; Yang,
Pang, and Liu 2022; Yang et al. 2023), our approach treats
the DEQ model as a nonlinear dynamic system and ensures
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Figure 1: The scratch of the architecture of the LyaDEQ model. The blue arrow represents a state that locally satisfies the
Lyapunov exponential stability condition.

that its fixed points are Lyapunov-stable, thereby keeping
the perturbed fixed point within the same stable neighbor-
hood as the unperturbed point and preventing successful
adversarial attacks. Specially, we ensure the robustness of
the DEQ model by jointly learning a convex positive def-
inite Lyapunov function along with dynamics constrained
to be stable according to these dynamics everywhere in the
state space. Consequently, the minor adversarial perturba-
tions added to the input image will hardly change the out-
put of the DEQ model. Besides, for classification problems,
Lyapunov-stable fixed points for different classes may be lo-
cated near each other, leading to each stable neighborhood
being very small, resulting in poor robustness against adver-
sarial examples. To address this issue, we propose to use or-
thogonalization techniques to increase the distance between
Lyapunov stable equilibrium points. The architecture of the
LyaDEQ model is shown in Figure 1.

We name our proposed model LyaDEQ. Our main contri-
butions are summarized as follows:

(1) We introduce Lyapunov stability theory into the DEQ
model by considering it as a nonlinear system, which en-
ables us to certify the stability of the fixed points. To the
best of our knowledge, this is the first attempt to utilize the
Lyapunov stability framework in the DEQ model.

(2) To address the poor adversarial defense caused by
the small stable neighborhood of the fixed points, we in-
troduce an orthogonal parametrized fully connected (FC)
layer after the Lyapunov stability module to separate differ-
ent Lyapunov-stable fixed points.

(3) The experimental results on MNIST, Street View
House Numbers (SVHN), and CIFAR10/100 datasets
demonstrate that the proposed LyaDEQ model consistently
outperforms the baseline model in terms of robustness
against adversarial attacks. These results validate the appli-
cability of the Lyapunov theory to match the DEQ model
and support the correctness of our theoretical analysis.

(4) We show that the LyaDEQ model can be com-
bined with other adversarial training methods such as
TRADES (Zhang et al. 2019), robust dataset (Ilyas et al.
2019), and PGD-AT (Madry et al. 2017), to achieve even
better adversarial robustness.

Related Works
This section reviews works related to deep equilibrium mod-
els and Lyapunov theory in deep learning.

Deep Equilibrium Models
Motivated by an observation that the hidden layers of many
existing deep sequence models converge towards some fixed
points, DEQ models (Bai, Kolter, and Koltun 2019) find
these fixed points via the root-finding method. Due to DEQ
models suffering from unstable convergence to a solution
and lacking guarantees that a solution exists, Winston and
Kolter (2020) proposed a monotone operator equilibrium
network, which guarantees stable convergence to a unique
fixed point. Bai, Koltun, and Kolter (2020) proposed the
multi-scale deep equilibrium model for handling large-scale
vision tasks, such as ImageNet classification and seman-
tic segmentation on high-resolution images. Later, they pre-
sented a regularization scheme for DEQ models that explic-
itly regularizes the Jacobian of the fixed-point update equa-
tions to stabilize the learning of equilibrium models (Bai,
Koltun, and Kolter 2021b). Furthermore, Bai, Koltun, and
Kolter (2021a) introduced neural deep equilibrium solvers
for DEQ models to improve the speed/accuracy trade-off
across diverse large-scale tasks. Li et al. (2021) proposed
the multi-branch optimization-induced equilibrium models
based on modeling the hidden objective function for the
multi-resolution recognition task. Tsuchida et al. (2021)
showed that solving a kernelized regularised maximum like-
lihood estimate as an inner problem in a deep declarative
network yields a large class of DEQ architectures. Tsuchida
and Ong (2023) presented a DEQ model that solves the prob-
lem of joint maximum a-posteriori estimation in a graphi-
cal model representing nonlinearly parameterized exponen-
tial family principal component analysis. Gilton, Ongie, and
Willett (2021) presented an approach based on DEQ models
for solving the linear inverse problems in imaging.

Lyapunov Theory in Deep Learning
Lyapunov functions are convenient tools for the stability cer-
tification of dynamical systems. Recently, many researchers
have leveraged the Lyapunov stability theory to construct
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provable, neural network-based safety certificates. Kolter
and Manek (2019) used a learnable (i.e., defined by neu-
ral network architectures) Lyapunov function to modify a
base dynamics model to ensure the stability of equilibrium.
Richards, Berkenkamp, and Krause (2018) constructed a
neural network Lyapunov function and a training algorithm
to adapt them to the shape of the largest safe region for
a closed-loop dynamical system. Chang et al. (2019) pro-
posed to use anti-symmetric weight matrices to parametrize
an RNN from the Lyapunov stability perspective, which en-
hances its long-term dependency.

Since the appearance of Neural ODEs, integrating Lya-
punov methods into Neural ODEs has become a new trend.
Inspired by LaSalle’s theorem (an extension of Lyapunov’s
direct method), Takeishi and Kawahara (2021) proposed a
deep dynamics model that can handle the stability of general
types of invariant sets such as limit cycles and line attractors.
They used augmented Neural ODEs (Dupont, Doucet, and
Teh 2019) as the invertible feature transform for the provable
existence of a stable invariant set. Massaroli et al. (2020)
introduced stable neural flows whose trajectories evolve on
monotonically non-increasing level sets of an energy func-
tional parametrized by a neural network. Based on classi-
cal time-delay stability theory, Schlaginhaufen et al. (2021)
proposed a new regularization term based on a neural net-
work Lyapunov–Razumikhin function to stabilize neural de-
lay differential equations.

Preliminaries
For a nonlinear system d

dtu = F (u), a state u⋆ is a fixed
point (or an equilibrium point) of a nonlinear system if u⋆

satisfies F (u⋆) = 0. A nonlinear system can have several
(or infinitely many) isolated fixed points. One of the com-
mon interests in analyzing dynamical systems is the Lya-
punov stability of the fixed points. A fixed point is stable
means that the trajectories starting near u⋆ remain around it
all the time. More formally;
Definition 1 (Lyapunov stability). An equilibrium u⋆ is said
to be stable in the sense of Lyapunov, if for every ε > 0,
there exists δ > 0 such that, if ∥u(0) − u⋆∥ < δ, then
∥u(t) − u⋆∥ < ε for all t ≥ 0. If u⋆ is stable, and
limt→∞ ∥u(t) − u⋆∥ = 0, u⋆ is said to be asymptotically
stable. If u⋆ is stable and for ν > 0, if limt→∞ ∥u(t) −
u⋆∥eνt = 0, u⋆ is said to be exponentially stable.
Theorem 2 (Lyapunov stability theorem). (Giesl and Haf-
stein 2015) Let u⋆ be a fixed point. Let V : U → R be a
continuously differentiable function, defined on a neighbor-
hood U of u⋆, which satisfies

(1) V has a minimum at u⋆. A sufficient condition is
V (u) ≥ 0 for all u ∈ U and V (u) = 0 ⇔ u = u⋆.

(2) V is strictly decreasing along solution trajectories in
U except for the fixed point. A sufficient condition is
V̇ (u) < 0 for all u ∈ U\{u⋆}, where

V̇ (u) =
dV

dt
= ∇V (u)TF (u) < 0. (1)

If such a function V exists, then it is called a Lyapunov func-
tion, and u⋆ is asymptotically stable. Moreover, u⋆ is expo-

nentially stable if there exists positive definite V and some
K(α) > 0 such that

(3) ∥u∥22 ≤ V (u) ≤ K(α)∥u∥22, for all u that ∥u∥ ≤ α;
(4) V̇ (u) ≤ −cV (u), c > 0.

Methodology
In this section, we first provide a dynamic system per-
spective for the DEQ model. Then, we introduce the Lya-
punov stability framework, which is essential to our pro-
posed model. Finally, we present the LyaDEQ model as a
novel framework for enhancing the robustness of the DEQ
model.

Considering a DEQ Model as a Nonlinear System
Given an input x, a DEQ model (Bai, Kolter, and Koltun
2019) aims to specify a layer fθ that finds the fixed points of
the following iterative procedure

zi+1 = fθ(zi,x), (2)

where i = 0, . . . , L− 1. Usually, we set z0 = 0 and choose
the layer fθ as a shallow block, such as a fully connected
layer or convolutional layer.

Unlike a conventional neural network where the outputs
are the activations from the Lth layer, the outputs of a DEQ
model are the fixed points. One can alternatively find the
fixed points z⋆ = fθ(z

⋆,x) directly via root-finding algo-
rithms rather than fixed points iteration alone:

fθ(z
⋆,x)− z⋆ = 0. (3)

Efficient root-finding algorithms, such as Broyden’s
method (Broyden 1965) and Anderson acceleration (Ander-
son 1965), can be applied to find this solution.

By defining F (z⋆) = fθ(z
⋆,x)− z⋆ = 0, we consider a

DEQ model as a nonlinear dynamical system, i.e., a nonlin-
ear system parameterized by a DEQ model. By doing so, we
can use Lyapunov’s theory to stabilize the fixed points and
enable the DEQ model to resist minor initial perturbations
on the inputs.

Lyapunov Stability Framework
Lyapunov’s direct method is a powerful tool for studying the
stability of dynamical systems. It aims to determine whether
a system’s final state, influenced by initial perturbations, can
return to its original equilibrium state. Asymptotic stability,
as defined in Definition 1, means that any initial state near
the equilibrium state will eventually approach the equilib-
rium state. Exponential stability, on the other hand, ensures
that the system’s trajectory decays at a minimum attenuation
rate.

In this paper, we consider the fixed points of the DEQ
model as the equilibrium state and mainly focus on the ad-
versarial perturbations added to the input images. We aim to
ensure the stability of the deep equilibrium models by jointly
learning a convex Lyapunov function along with dynamics
constrained to be stable according to these dynamics every-
where in the state space. As a result, our proposed LyaDEQ
model is anticipated to exhibit robustness against adversarial
examples.
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We use neural networks to learn a positive definite Lya-
punov function V that satisfies conditions (1) and (3) in The-
orem 2 and project outputs of a base dynamics model onto
a space where condition (4) also holds (Kolter and Manek
2019).

Let F (z⋆) : Rn → Rn be a basic dynamic system
parametrized by a DEQ model, let V : Rn → R be a pos-
itive definite function, and c be a nonnegative constant, the
Lyapunov-stable nonlinear dynamic model is defined as

F̂ (z⋆) = Proj(F (z⋆), {F : ∇V (z⋆)TF ≤ −cV (z⋆)})

=

{
F (z⋆) if ϕ(z⋆) ≤ 0,

F (z⋆)−∇V (z⋆) ϕ(z⋆)
∥∇V (z⋆)∥2

2
otherwise ,

(4)
where ϕ(z⋆) = ∇V (z⋆)TF (z⋆) + cV (z⋆).

The Lyapunov function V is defined as positive definite
and continuously differentiable, and has no local minima:

V (z⋆) = σk+1(g(z
⋆)− g(0)) + ∥z⋆∥22, (5)

where σk is a positive convex non-decreasing function with
σk(0) = 0, and g is represent as an input-convex neural
network (ICNN) (Amos, Xu, and Kolter 2017):

q1 = σ0

(
W I

0 z
⋆ + b0

)
,

qi+1 = σi

(
Uiqi +W I

i z
⋆ + bi

)
, i = 1, . . . , k − 1,

g(z⋆) ≡ qk,

(6)

where W I
i are real-valued weights, bi are real-valued biases,

and Ui are positive weights.
Proposition 1 The function V is convex in z⋆ provided that
all Ui are non-negative, and all functions σi are convex and
non-decreasing.

Proof. The proof follows from the fact that non-negative
sums of convex functions are convex and that the compo-
sition of a convex and convex non-decreasing function is
also convex. For more detailed proof, please refer to (Boyd,
Boyd, and Vandenberghe 2004).

Through the procedures described above, we can there-
fore ensure that the DEQ model satisfies the conditions of
the Lyapunov stability theorem. As a result, the fixed points
of the modified DEQ model become exponentially stable.

LyaDEQ Model
As shown in Figure 1, our proposed model, LyaDEQ, con-
sists of a feature extractor, a DEQ model, a Lyapunov stabil-
ity module, and an orthogonal FC layer.

Feature extractor The feature extractor plays the role of
dimensionality reduction. In our experiment, we choose a
fully connected network (FCN) or ResNet (He et al. 2016)
as the backbone of LyaDEQ.

DEQ A DEQ model ultimately finds the fixed points of a
single function z⋆ = fθ(z

⋆,x). We define the implicit layer
fθ as a feed-forward neural network, which can be written
formally as

y = WD
2 BN(ReLU(WD

1 z0 + b) + b

fθ(z,x) = BN(ReLU(x+ y)),
(7)
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Figure 2: The architecture of our used ICNN.

where WD are real-valued weights and BN represents the
batch normalization operator.

We use Anderson acceleration (Anderson 1965) to find
the fixed points of the DEQ model.

Lyapunov stability module We define ICNN as a 2-layer
fully connected neural network. The network architecture is
shown in Figure 2. The activation function σ is chosen as a
smooth ReLU function:

σ(x) =


0 if x ≤ 0,

x2/2d if 0 < x < d,

x− d/2 otherwise.
(8)

Orthogonal FC layer As one can see from Definition
1, Lyapunov stability is established within a smaller sta-
ble neighborhood. For classification problems, Lyapunov-
stable fixed points for different classes may be very close
to each other, leading to each stable neighborhood may be
very small, resulting in poor robustness against adversarial
examples (see the experimental results on MNIST in Table
1).

We add an orthogonal FC layer after the Lyapunov stabil-
ity module to increase the distance between Lyapunov sta-
ble equilibrium points. Given the output of the Lyapunov
stability module Z, the orthogonal FC layer will return the
parametrized version Z so that ZTZ = I . The t-SNE vi-
sualization of the features after the orthogonal FC layer is
shown in Figure 3.

Experiments
In this section, we first present the experimental setup. We
then proceed to evaluate the performance of the LyaDEQ
model against two white-box adversarial attacks. Subse-
quently, we demonstrate the effectiveness of the LyaDEQ
model trained with adversarial training, comparing it to con-
ventional convolutional neural networks (CNNs) in terms of
robustness. Lastly, we conduct an ablation study to investi-
gate the role of the orthogonal FC layer.

Setup
We conduct a set of experiments on three standard datasets
MNIST (LeCun et al. 1998), CIFAR10/100 (Krizhevsky,
Hinton et al. 2009), and SVHN (Netzer et al. 2011)
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Benchmark Model Clean Attack ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255

MNIST

DEQ (baseline) 96.99 I-FGSM 50.24 49.89 49.67 49.34
PGD 45.98 45.80 45.47 45.23

DEQ w/ orthog. FC(ablation) 96.56 I-FGSM 29.98 29.91 29.60 29.44
PGD 29.94 29.94 29.71 29.53

IBP-MonDEQ 99.29 I-FGSM 96.52 96.38 96.32 96.27
PGD 94.87 94.80 94.69 94.57

LyaDEQ w/o orthog. FC (ours) 97.10 I-FGSM 23.18 23.28 23.21 23.25
PGD 23.17 23.26 23.24 23.23

LyaDEQ w/ orthog. FC (ours) 96.59 I-FGSM 50.78 (+0.54) 50.60 (+0.71) 50.55 (+0.88) 50.43 (+1.09)
PGD 50.72 (+4.74) 50.54 (+4.74) 50.52 (+5.05) 50.35 (+5.12)

SVHN

DEQ (baseline) 95.37 I-FGSM 68.09 61.78 56.77 51.65
PGD 67.06 60.89 56.38 51.22

DEQ w/ orthog. FC (ablation) 95.63 I-FGSM 67.30 59.96 54.27 48.79
PGD 66.74 60.31 55.59 50.02

IBP-MonDEQ 91.06 I-FGSM 57.71 55.71 53.78 51.58
PGD 57.75 55.74 54.15 52.04

LyaDEQ w/o orthog. FC (ours) 95.28 I-FGSM 72.16 (+4.07) 72.08 (+10.30) 71.84 (+15.07) 71.42 (+19.77)
PGD 68.95 67.88 67.11 65.60

LyaDEQ w/ orthog. FC (ours) 95.21 I-FGSM 69.41 69.01 68.55 67.81
PGD 71.35 (+4.29) 71.23 (+10.34) 70.95 (+14.57) 70.47 (+19.25)

CIFAR10

DEQ (baseline) 87.71 I-FGSM 34.25 23.00 16.65 12.36
PGD 33.37 22.87 16.81 11.12

DEQ w/ orthog. FC (ablation) 87.62 I-FGSM 35.46 23.48 16.91 11.61
PGD 32.67 22.07 15.92 10.89

IBP-MonDEQ 80.25 I-FGSM 25.87 24.54 23.59 22.24
PGD 27.59 26.21 25.04 23.58

LyaDEQ w/o orthog. FC (ours) 87.80 I-FGSM 43.80 43.99 43.75 43.45
PGD 47.09 (+13.72) 46.94 (+24.07) 46.70 (+29.89) 46.12 (+35.00)

LyaDEQ w/ orthog. FC (ours) 87.87 I-FGSM 47.38 (+13.13) 47.31 (+24.31) 46.71 (+30.06) 45.80 (+33.44)
PGD 45.04 44.81 44.50 43.96

CIFAR100

DEQ (baseline) 61.23 I-FGSM 15.62 8.59 5.94 4.15
PGD 11.85 6.71 4.47 3.10

DEQ w/ orthog. FC (ablation) 61.41 I-FGSM 14.75 8.13 5.59 3.85
PGD 13.81 7.70 5.16 3.39

IBP-MonDEQ 44.78 I-FGSM 9.15 8.32 7.68 7.04
PGD 8.88 8.21 7.56 7.04

LyaDEQ w/o orthog. FC (ours) 60.52 I-FGSM 22.20 22.16 21.77 21.07
PGD 20.25 19.78 19.10 18.18

LyaDEQ w/ orthog. FC (ours) 61.30 I-FGSM 23.82 (+8.20) 23.76 (+15.17) 23.73 (+17.79) 23.35 (+19.20)
PGD 21.86 (+10.01) 21.53 (+14.82) 20.65 (+16.18) 19.55 (+16.45)

Table 1: Classification accuracy on MNIST, SVHN, and CIFAR. Results that surpass all competing methods are bold. The
second best result is with the underline. The performance gain in parentheses is compared with the baseline model. The input
is the test set of CIFAR10. We abbreviate the LyaDEQ model without the orthogonal FC layer as LyaDEQ w/o orthog. FC.

Training configurations We use PyTorch (Paszke et al.
2017) framework for the implementation. For MNIST, we
use 1-layer FCN as the feature extractor to reduce the di-
mension from 28×28 to 64. For SVHN and CIFAR10, we
use ResNet20 (He et al. 2016) to reduce the dimension from
32×32×3 to 64 (128 for CIFAR100).

For optimization, we use Adam algorithm (Kingma and
Ba 2014) with betas=(0.9, 0.999). We set the initial learn-
ing rate to 0.001 and set the learning rate of each param-
eter group using a cosine annealing schedule. The training
epochs for MNIST, SVHN, and CIFAR are set to 10, 40,
and 50.

The configurations of adversarial attacks We test the
performance of the original DEQ model and our proposed
LyaDEQ model on two white-box adversarial attacks: itera-
tive fast gradient sign method (I-FGSM) (Kurakin, Goodfel-

low, and Bengio 2018) and project gradient descent (PGD)
(Madry et al. 2017).
I-FGSM As an iterative version based FGSM (Goodfellow,
Shlens, and Szegedy 2014), I-FGSM computes an adversar-
ial example by multiple gradients:

xadv
i+1 = Clipx,ϵ{xadv

i + α sign(∇xL(xadv
i ,y))}, (9)

where α is the step size, Clipx,ϵ means clipping perturbed
images within [x− ϵ, x+ ϵ], and xadv

0 = x.
PGD attack is a universal attack utilizing the local first order
information about the network:

xadv
i+1 = Πx+S(x

adv
i + α sign(∇xL(xadv

i ,y))), (10)

where Πx+S represents the projection on ϵ-ball, S ⊆ Rd.
A uniform random noise is first added to the clean image x,
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that is xadv
0 = x+ U [−ϵ, ϵ]. We set the size of perturbation

ϵ of PGD in the infinite norm sense.
For both PGD and I-FGSM, the step size α is set to 1/255,

and the number of steps n is calculated as n = ⌊min(ϵ·255+
4, ϵ · 255 · 1.25)⌋.

The Robustness of LyaDEQ Model Against
Adversarial Examples
Table 1 displays the results of our experiments regarding
classification accuracy and robustness against adversarial
examples. Regarding classification accuracy on clean data,
our proposed model achieves comparable performance with
the baseline model.

Regarding robustness against adversarial examples, we
evaluate the effectiveness of our proposed LyaDEQ model in
defending against white-box attacks with attack radii rang-
ing from ϵ = 2/255 to ϵ = 8/255. Our experimental results
demonstrate that the LyaDEQ model outperforms the base-
line model on each dataset. For instance, compared with the
DEQ model under PGD attack with ϵ = 8/255, the LyaDEQ
model exhibits a 5.12%, 19.25%, 32.48%, and 16.45% im-
provement on MNIST, SVHN, CIFAR10, and CIFAR100
datasets, respectively. These findings confirm that the Lya-
punov stability module can significantly enhance the robust-
ness of the DEQ model.

The results presented in Table 1 demonstrate that the
magnitude of the accuracy boost under adversarial attack
increases with increasing attack radii for all datasets. For
instance, LyaDEQ model under I-FGSM with attack radii
ϵ = 2/255, ϵ = 4/255, ϵ = 6/255 and ϵ = 8/255 has
a 13.13%, 24.31%, 30.06%, 33.44% boost respectively on
CIFAR10. This further corroborates the effectiveness of our
proposed approach.

In addition, while the experimental results of the IBP-
MonDEQ model on MNIST are much better than our
method, it performs poorly on SVHN, CIFAR10, and CI-
FAR100 datasets. We consider that the reason for conflict
lies in the complexity of image datasets. For MNIST, the
scene of the image is quite simple. In contrast, for SVHN
and CIFAR, the scene of the image is more complex. Thus,
our proposed LyaDEQ model is better suited for handling
complex image recognition tasks and can be widely utilized
in commonly used datasets.
Explanations on performance improvement: The core
concept of our proposed method revolves around utilizing
the Lyapunov direct method to ensure the stability of the
fixed points of the DEQ models. According to the Lya-
punov stability theory, if the magnitude of perturbations on
z exceeds the stable neighborhood, the impact on the final
outcome becomes unpredictable, resulting in potential mis-
classification by the model. Conversely, if the magnitude of
perturbations remains within the stable neighborhood, the
final outcome remains unaffected, enabling our model to
effectively resist adversarial noise and maintain robustness
against adversarial attacks.

LyaDEQ Model With Adversarial Training
Our method is orthogonal to other adversarial defense meth-
ods, such as adversarial training, which means we can com-

Radius Attack +TRADES +RD +PAT

ϵ = 2/255
I-FGSM 72.81 51.96 60.46

PGD 48.48 52.00 60.43

ϵ = 4/255
I-FGSM 72.68 51.78 60.34

PGD 48.39 51.85 60.42

ϵ = 6/255
I-FGSM 72.66 51.62 60.18

PGD 48.35 51.54 60.41

ϵ = 8/255
I-FGSM 72.42 51.51 60.08

PGD 48.33 51.63 60.23

Table 2: Classification accuracy of the LyaDEQ model com-
bined with adversarial training method on CIFAR10 under
adversarial attacks.

Radius Attack ResNet56 VGG16 WResNet

ϵ = 2/255
I-FGSM 56.79 58.63 54.41

PGD 52.70 55.90 51.58

ϵ = 4/255
I-FGSM 49.35 51.50 46.05

PGD 45.07 49.24 43.74

ϵ = 6/255
I-FGSM 44.88 45.60 41.43

PGD 41.35 43.70 39.68

ϵ = 8/255
I-FGSM 40.51 37.94 37.08

PGD 36.58 36.46 35.11

Table 3: Classification accuracy of the conventional CNNs
on CIFAR10 under adversarial attacks.

bine the LyaDEQ model with adversarial training to achieve
further defense performance. We choose three commonly
used adversarial training methods, TRADES (Zhang et al.
2019), robust dataset (RD) (Ilyas et al. 2019) and PGD-AT
(PAT) (Madry et al. 2017).
TRADES is a defense method to trade adversarial robust-
ness off against accuracy via combining tricks of warmup,
early stopping, weight decay, batch size, and other hyper-
parameter settings. In our experiments, we set perturbation
epsilon = 0.031, perturbation step size = 0.007, number of
iterations = 10, beta = 6.0 on the training dataset.
RD is created by removing non-robust features from the
dataset, which yields good robust accuracy on the unmod-
ified test set.
PAT is a defense method to inject adversarial examples that
generated by the PGD attack into training data. It is worth
mentioning that Yang, Pang, and Liu (2022) also used PAT
to train DEQ models. In our experiments, we set perturba-
tion epsilon = 0.031, perturbation step size = 0.00784, and
number of iterations = 7 on the training dataset.

From Table 2, we see that training the LyaDEQ model
with adversarial training methods can further improve ro-
bustness against adversarial examples. For example, training
the LyaDEQ model with TRADES, the robust dataset and
PAT show a 25.43%, 4.58%, and 13.08% boost respectively
on CIFAR10 under I-FGSM attack with ϵ = 2/255.

Comparison With the Conventional CNNs
We perform experiments to compare the robustness of our
proposed LyaDEQ model with three conventional CNNs,
ResNet56 (He et al. 2016), VGG16 (Simonyan and Zisser-
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(a) LyaDEQ (clean) (b) LyaDEQ w/o orthog. FC (clean) (c) LyaDEQ (adv) (d) LyaDEQ w/o orthog. FC (adv)

Figure 3: t-SNE visualization results on the features after the orthogonal FC layer. ‘adv’ means test on the adversarial dataset.
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Figure 4: Comparison between the DEQ model, the LyaDEQ model, and conventional CNNs on CIFAR10.

man 2014), and WideResNet (WResNet) (Zagoruyko and
Komodakis 2016) (with depth = 28, widen factor = 10). Ta-
ble 3 summarizes the experimental results. While the ro-
bustness of the LyaDEQ model is inferior to that of con-
ventional CNNs when the value of ϵ is small (e.g., when
ϵ = 2/255, 4/255), the robustness of the LyaDEQ model is
significantly better when the value of ϵ is getting larger (e.g.,
when ϵ = 6/255, 8/255) than these neural networks. For in-
stance, under the PGD attack with ϵ = 8/255, the accuracy
of the LyaDEQ model is 7.38%, 7.50%, and 8.85% higher
than that of ResNet56, VGG16, and WResNet, respectively.

This is because the conventional CNNs are very sensitive
to the radius of the adversarial attacks. Increasing the ra-
dius has a significant impact on these networks, when the
magnitude is increased from ϵ = 2/255 to ϵ = 8/255, the
accuracy of ResNet56, VGG16, and WideResNet under I-
FGSM attacks decreases by 16.28%, 20.69%, and 17.33%,
respectively. Whereas, the accuracy of the LyaDEQ model
only decreases by 1.58% in the same case, which shows that
the LyaDEQ model is insensitive to the radius of the ad-
versarial attack. Its insensitivity to the radius of adversarial
attack becomes more evident when the value of ϵ is much
larger. Figure 4 provides a detailed comparison between
DEQ, LyaDEQ, LyaDEQ trained by TRADES, ResNet56,
and ResNet trained by TRADES under adversarial attacks
ranging from ϵ = 2/255 to ϵ = 20/255, further validating
the robustness of the LyaDEQ model.

An Ablation Study

As an ablation study, we test the LyaDEQ model without the
orthogonal FC layer and the DEQ model with the orthog-
onal FC Layer. As we expected, adding the orthogonal FC
layer to the DEQ model does not have a significant impact.
From Table 1, we find that in most cases, the orthogonal FC
layer indeed plays a part in improving the accuracy of the
LyaDEQ model under adversarial attack. Especially, on the
MNIST dataset, the absence of the orthogonal FC layer in-
curred a substantial 20% loss in accuracy, underscoring its
crucial contribution to robustness.

In addition, we notice the orthogonal FC layer occasion-
ally incurs a minor deleterious effect. Nevertheless, this neg-
ative impact is acceptable when juxtaposed against the over-
all robustness improvement brought by the LyaDEQ model.

Conclusions
Inspired by Lyapunov stability theory, we introduced a prov-
ably stable variant of DEQ models. Our proposed model
consists of a feature extractor, a DEQ model, a Lyapunov
stability module, and an orthogonal FC layer. The Lyapunov
stability module ensures the fixed points of the DEQ model
are Lyapunov stable, and the orthogonal FC layer separates
different Lyapunov-stable fixed points. Our findings high-
lighted the proposed method in improving the robustness of
the DEQ model.
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