The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Machine Learning-Powered Combinatorial Clock Auction

Ermis Nikiforos Soumalias'>", Jakob Weissteiner'*", Jakob Heiss>>, Sven Seuken'?

'University of Zurich
2ETH Zurich
3ETH AI Center
ermis @ifi.uzh.ch, weissteiner @ifi.uzh.ch, jakob.heiss @math.ethz.ch, seuken @ifi.uzh.ch

Abstract

We study the design of iterative combinatorial auctions
(ICAs). The main challenge in this domain is that the bun-
dle space grows exponentially in the number of items. To
address this, several papers have recently proposed machine
learning (ML)-based preference elicitation algorithms that
aim to elicit only the most important information from bid-
ders. However, from a practical point of view, the main short-
coming of this prior work is that those designs elicit bid-
ders’ preferences via value queries (i.e., “What is your value
for the bundle {4, B}?”). In most real-world ICA domains,
value queries are considered impractical, since they impose
an unrealistically high cognitive burden on bidders, which is
why they are not used in practice. In this paper, we address
this shortcoming by designing an ML-powered combinatorial
clock auction that elicits information from the bidders only
via demand queries (i.e., “At prices p, what is your most pre-
ferred bundle of items?”). We make two key technical con-
tributions: First, we present a novel method for training an
ML model on demand queries. Second, based on those trained
ML models, we introduce an efficient method for determin-
ing the demand query with the highest clearing potential, for
which we also provide a theoretical foundation. We experi-
mentally evaluate our ML-based demand query mechanism
in several spectrum auction domains and compare it against
the most established real-world ICA: the combinatorial clock
auction (CCA). Our mechanism significantly outperforms the
CCA in terms of efficiency in all domains, it achieves higher
efficiency in a significantly reduced number of rounds, and,
using linear prices, it exhibits vastly higher clearing potential.
Thus, with this paper we bridge the gap between research and
practice and propose the first practical ML-powered ICA.

1 Introduction

Combinatorial auctions (CAs) are used to allocate multi-
ple items among several bidders who may view those items
as complements or substitutes. In a CA, bidders are al-
lowed to submit bids over bundles of items. CAs have en-
joyed widespread adoption in practice, with their applica-
tions ranging from allocating spectrum licences (Cramton
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2013) to TV ad slots (Goetzendorff et al. 2015) and airport
landing/take-off slots (Rassenti, Smith, and Bulfin 1982).

One of the key challenges in CAs is that the bundle space
grows exponentially in the number of items, making it in-
feasible for bidders to report their full value function in all
but the smallest domains. Moreover, Nisan and Segal (2006)
showed that for general value functions, CAs require an ex-
ponential number of bids in order to achieve full efficiency
in the worst case. Thus, practical CA designs cannot pro-
vide efficiency guarantees in real world settings with more
than a modest number of items. Instead, the focus has shifted
towards iterative combinatorial auctions (ICAs), where bid-
ders interact with the auctioneer over a series of rounds, pro-
viding a limited amount of information, and the aim of the
auctioneer is to find a highly efficient allocation.

The most established mechanism following this interac-
tion paradigm is the combinatorial clock auction (CCA)
(Ausubel, Cramton, and Milgrom 2006). The CCA has
been used extensively for spectrum allocation, generating
over $20 Billion in revenue between 2012 and 2014 alone
(Ausubel and Baranov 2017). Speed of convergence is a crit-
ical consideration for any ICA since each round can entail
costly computations and business modelling for the bidders
(Kwasnica et al. 2005; Milgrom and Segal 2017; Bichler,
Hao, and Adomavicius 2017). Large spectrum auctions fol-
lowing the CCA format can take more than 100 bidding
rounds. In order to decrease the number of rounds, many
CAs in practice use aggressive price update rules (e.g., in-
creasing prices by up to 10% each round), which can harm
efficiency (Ausubel and Baranov 2017). Thus, it remains a
challenging problem to design a practical ICA that elicits in-
formation via demand queries, is efficient, and converges in
a small number of rounds. Specifically, given the value of re-
sources allocated in such real-world ICAs, increasing their
efficiency by even one percentage point already translates
into monetary gains of hundreds of millions of dollars.

1.1 ML-Powered Preference Elicitation

To address this challenge, researchers have proposed vari-
ous ways of using machine learning (ML) to improve the
efficiency of CAs. The seminal works by Blum et al. (2004)
and Lahaie and Parkes (2004) were the first to frame pref-
erence elicitation in CAs as a learning problem. In the
same strand of research, Brero, Lubin, and Seuken (2018,
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2021), Weissteiner and Seuken (2020) and Weissteiner et al.
(2022b) proposed ML-powered ICAs. At the heart of those
approaches lies an ML-powered preference elicitation algo-
rithm that uses an ML model to approximate each bidder’s
value function and to generate the next value query, which
in turn refines that bidder’s model. Weissteiner et al. (2022a)
designed a special network architecture for this framework
while Weissteiner et al. (2023) incorporated a notion of un-
certainty (Heiss et al. 2022) into the framework, further in-
creasing its efficiency. Despite their great efficiency gains
compared to traditional CA designs, those approaches suf-
fer from one common limitation: they fundamentally rely
on value queries of the form “What is your value for bundle
{A, B}”. Prior research in auction design has identified de-
mand queries (DQs) as the best way to run an auction (Cram-
ton 2013). Their advantages compared to value queries in-
clude elimination of tacit collusion and bid signaling, as well
as simplified bidder decision-making that keeps the bidders
focused on what is most relevant: the relationship between
prices and aggregate demand. Additionally, value queries are
cognitively more complex, and thus typically impractical for
real-world ICAs. For these reasons, DQs are the most promi-
nent interaction paradigm for auctions in practice.

Despite the prominence of DQs in real-world applica-
tions, the only prior work on ML-based DQs that we are
aware of is that of Brero and Lahaie (2018) and Brero, La-
haie, and Seuken (2019), who proposed integrating ML in
a price-based ICA to generate the next price vector in or-
der to achieve faster convergence. Similar to our design,
in these works the auctioneer maintains a model of each
agent’s value function, which are updated as the agents bid
in the auction and reveal more information about their val-
ues. Then, those models are used in each round to com-
pute new prices and drive the bidding process. Unlike our
approach, the design of this prior work focuses solely on
clearing potential, as the authors do not report efficiency re-
sults. Additionally, their design suffers from some signifi-
cant limitations: (i) it does not exploit any notion of simi-
larity between bundles that contain overlapping items, (ii) it
only incorporates a fraction of the information revealed by
the agents’ bidding. Specifically, it only makes use of the
fact that for the bundle an agent bids on, her value for that
bundle must be larger than its price, and (iii) their approach
is computationally intractable already in medium-sized auc-
tion domains, as their price update rule requires a large num-
ber [ of posterior samples for expectation maximization and
then solving a linear program whose number of constraints
for each bidder is proportional to [ times the number of bids
by that agent. These limitations are significant, as they can
lead to large efficiency decreases in complex combinatorial
domains. Moreover, their design cannot be easily modified
to alleviate these limitations. In contrast, our approach effec-
tively addresses all of these limitations.

1.2 Our Contributions

In this paper, we address the main shortcomings of prior
work by designing an ML-powered combinatorial clock auc-
tion. Our auction elicits information from bidders via de-
mand queries (DQs) instead of value queries, while simulta-
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neously, unlike prior work on ML-based DQs, being com-
putationally feasible for large domains and incorporating
the complete information the demand query observations
provide into the training of our ML models. Concretely,
we use Monotone-Value Neural Networks (MVNNs) (Weis-
steiner et al. 2022a) as ML models, which are tailored to
model monotone and non-linear combinatorial value func-
tions in CAs.

The main two technical challenges are (i) training those
MVNNSs only on demand query observations and (ii) ef-
ficiently determining the next demand query that is most
likely to clear the market based on the trained MVNNS. In
detail, we make the following contributions:

1. We first propose an adjusted MVNN architecture, which

we call multiset MVNNs (mMVNNs). mMVNNs can be

used more generally in multiset domains (i.e., if mul-
tiple indistinguishable copies of the same good exist)

(Section 3.1) and we prove the universality property of

mMVNNSs in such multiset domains (Theorem 1).

We introduce a novel method for training any MIP-

formalizable and gradient descent (GD)-compatible ML

model (e.g., mMVNNSs) on demand query observations

(Section 3.2).! Unlike prior work, our training method

provably makes use of the complete information provided

by the demand query observations.

3. We introduce an efficient method for determining the
price vector that is most likely to clear the market based
on the trained ML models (Section 4). For this, we de-
rive a simple and intuitive price update rule that results
from performing GD on an objective function which is
minimized exactly at clearing prices (Theorem 3).

. Based on Items 2 and 3, we propose a practical ML-
powered clock auction (Section 5).

5. We experimentally show that compared to the CCA,
our ML-powered clock auction can achieve substantially
higher efficiency on the order of 9% points. Furthermore,
using linear prices, our ML-powered clock auction ex-
hibits significantly higher clearing potential compared to
the CCA (Section 6).

GitHub Our source code is publicly available on GitHub
at https://github.com/marketdesignresearch/ML-CCA.

1.3 Further Related Work

In the field of automated mechanism design, Diitting et al.
(2015, 2019), Golowich, Narasimhan, and Parkes (2018)
and Narasimhan, Agarwal, and Parkes (2016) used ML to
learn new mechanisms from data, while Cole and Rough-
garden (2014); Morgenstern and Roughgarden (2015) and
Balcan, Sandholm, and Vitercik (2023) bounded the sample
complexity of learning approximately optimal mechanisms.
In contrast to this prior work, our design incorporates an ML
algorithm into the mechanism itself, i.e., the ML algorithm
is part of the mechanism. Lahaie and Lubin (2019) suggest
an adaptive price update rule that increases price expressiv-
ity as the rounds progress in order to improve efficiency and

"Namely, this includes neural networks with any piecewise lin-
ear activation function.
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speed of convergence. Unlike that work, we aim to improve
preference elicitation while still using linear prices. Prefer-
ence elicitation is a key market design challenge outside of
CAs too. Soumalias et al. (2023) introduce an ML-powered
mechanism for course allocation that improves preference
elicitation by asking students comparison queries.

1.4 Practical Considerations and Incentives

Our ML-powered clock phase can be viewed as an alterna-
tive to the clock phase of the CCA. In a real-world appli-
cation, many other considerations (beyond the price update
rule) are also important. For example, the careful design of
activity rules is vital to induce truthful bidding in the clock
phase of the CCA (Ausubel and Baranov 2017). The pay-
ment rule used in the supplementary round is also important,
and it has been argued that the use of the VCG-nearest pay-
ment rule, while not strategy-proof, induces good incentives
in practice (Cramton 2013). Similar to the clock phase of the
CCA, our ML-powered clock phase is not strategyproof. If
our design were to be fielded in a real-world environment,
we envision that one would combine it with carefully de-
signed activity and payment rules in order to induce good
incentives. Thus, we consider the incentive problem orthog-
onal to the price update problem and in the rest of the pa-
per, we follow prior work (Brero, Lahaie, and Seuken 2019;
Parkes and Ungar 2000) and assume that bidders follow my-
opic best-response (truthful) bidding throughout all auction
mechanisms tested.

2 Preliminaries
2.1 Formal Model for ICAs

We consider multiset CA domains with a set N
{1,...,n} of bidders and a set M = {1,...,m} of distinct
items with corresponding capacities, i.e., number of avail-
able copies, ¢ = (c1,...,¢n) € N™. We denote by z €
X ={0,...,¢e1}x...x{0,..., ¢} abundle of items repre-
sented as a positive integer vector, where z; = kiffitem j €
M is contained k-times in z. The bidders’ true preferences
over bundles are represented by their (private) value func-
tions v; : X — Rx>g, i € N, i.e., v;(x) represents bidder i’s
true value for bundle = € &A’. We collect the value functions
v; in the vector v = (v;)ien. By a = (a1,...,a,) € X"
we denote an allocation of bundles to bidders, where a; is
the bundle bidder 7 obtains. We denote the set of feasible
allocations by F = {a € X" : 3, v a;; <¢;, Vj € M}.
We assume that bidders have quasilinear utility functions u;
of the form w;(a;) = v;(a;) —m; where v; can be highly non-
linear and 7; € R>( denotes the bidder’s payment. This im-
plies that the (true) social welfare V' (a) of an allocation a is
equal to the sum of all bidders’ values  _;_ v;(a;). We let
a* € argmax,cz V'(a) denote a social-welfare maximiz-
ing, i.e., efficient, allocation. The efficiency of any allocation
a € F is determined as V' (a)/V (a*).

An ICA mechanism defines how the bidders interact with
the auctioneer and how the allocation and payments are de-
termined. In this paper, we consider ICAs that iteratively ask
bidders linear demand queries. In such a query, the auction-
eer presents a vector of item prices p € RY,, and each bidder
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1 responds with her utility-maximizing bundle, i.e.,

i (p) € argmax {v;(z) — (p,x)} i € N, e9)
TEX
where (-, -) denotes the Euclidean scalar product in R™.
Even though our approach could conceptually incorpo-
rate any kind of (non-linear) price function p : X — Ry,
our concrete implementation will only use linear prices (i.e.,
prices over items). Linear prices are most established in
practice since they are intuitive and simple for the bidders to
understand (e.g., (Ausubel, Cramton, and Milgrom 2006)).
For bidder 7« € N, we denote a set of K € N such
elicited utility-maximizing bundles and price pairs as R; =
{(zx(p"),p" )}, Let R = (Ry,...,R,) be the tuple of
elicited demand query data from all bidders. The ICA’s (in-
ferred) optimal feasible allocation a*(R) € F and payments
m; = m(R) € R’} are computed based on the elicited re-
ports I only. Concretely, ay, € F is defined as

> wrare).

i€EN

a*(R) € argmax (2)
Fo (@ (p™))],

irie{l,....,K}VieN
In words, a bidder’s response to a demand query provides a
lower bound on that bidder’s value for the bundle she re-
quested. That lower bound is equal to the bundle’s price
in the round the bundle was requested. The ICA’s optimal
(inferred) feasible allocation a*(R) € F is the one that
maximizes the corresponding lower bound on social wel-
fare, based on all elicited demand query data R from the
bidders. As payment rule m;(R) one could use any reason-
able choice (e.g., VCG payments, see Appendix A). As the
auctioneer can only ask a limited number of demand queries
|R;] < Q™ (e.g., @™ = 100), an ICA needs a practically
feasible and smart preference elicitation algorithm.

2.2 The Combinatorial Clock Auction (CCA)

We consider the CCA (Ausubel, Cramton, and Milgrom
2006) as the main benchmark auction. The CCA consists
of two phases. The initial clock phase proceeds in rounds. In
each round, the auctioneer presents anonymous item prices
p € RY,, and each bidder is asked to respond to a demand
query, declaring her utility-maximizing bundle at p. The
clock phase of the CCA is parametrized by the reserve prices
employed in its first round, and the way prices are updated.
An item j is over-demanded at prices p, if, for those prices,
its total demand based on the bidders’ responses to the de-
mand query exceeds its capacity, i.e., > ..y (2] (p)); > ¢;.
The most common price update rule is to increase the price
of all over-demanded items by a fixed percentage, which we
set to 5% for our experiments, as in many real-world appli-
cations (e.g., (Industry Canada 2013)).

The second phase of the CCA is the supplementary round.
In this phase, each bidder can submit a finite number of addi-
tional bids for bundles of items, which are called push bids.
Then, the final allocation is determined based on the com-
bined set of all inferred bids of the clock phase, plus all sub-
mitted push bids of the supplementary round. This design
aims to combine good price discovery in the clock phase
with good expressiveness in the supplementary round. In
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Algorithm 1: TRAINONDQS

Input : Demand query data R; = {(z; (p"),p")}
Epochs T' € N, Learning Rate v > 0.
1 00 < init mMMVNN pweissteiner et al. (2023,
2 fort =0t0T — 1do
forr =11 K do >Demand responses for prices
Solve 2} (p") € argmax, ., M (z) — (p", z)
if 27 (p") # = (p") then >mMMVNN is wrong
L(0:) + (M (27 () — (07, 25 (")) —
(M7 (27 (P")) — (07,21 (P7)) > Add
predicted utility difference to loss
7 l9t+1 «— 0y — ’y(VgL(@))g:@t >SGD step
8 return Trained parameters O of the mMVNN /\/lfT

K
r=1°

5.3.2)

A A W

simulations, the supplementary round is parametrized by the

assumed bidder behaviour in this phase, i.e., which bundle-

value pairs they choose to report. As in (Brero, Lubin, and

Seuken 2021), we consider the following heuristics when

simulating bidder behaviour:

* Clock Bids: Corresponds to having no supplementary
round. Thus, the final allocation is determined based only
on the inferred bids of the clock phase (Equation (2)).

* Raised Clock Bids: The bidders also provide their true
value for all bundles they bid on during the clock phase.

* Profit Max: Bidders provide their true value for all bun-
dles that they bid on in the clock phase, and additionally
submit their true value for the Q*™* bundles earning them
the highest utility at the prices of the final clock phase.

3 Training on Demand Query Observations

In this section, we first propose a new version of MVNNs
that are applicable to multiset domains X and extend the
universality proof of classical MVNNS. Finally, we present
our demand-query training algorithm.

3.1 Multiset MVNNs

MVNNSs (Weissteiner et al. 2022a) are a recently introduced
class of NNs specifically designed to represent monotone
combinatorial valuations. We introduce an adapted version
of MVNNSs, which we call multiset MVNNs (mMVNNs).
Compared to MVNNs, mMVNNs have an added linear nor-
malization layer D after the input layer. We add this nor-
malization since the input (i.e., abundle) x € X is a positive
integer vector instead of a binary vector as in the classic case
of indivisible items with capacities ¢; = 1 for all j € M.
This normalization ensures that Dz € [0, 1] and thus we can
use the weight initialization scheme from (Weissteiner et al.
2023). Unlike MVNNs, mMVNNs incorporate at a struc-
tural level the prior information that some items are identi-
cal and consequently significantly reduce the dimensional-
ity of the input space. This improves the sample efficiency
of mMVNNSs, which is especially important in applications
with a limited number of samples such as auctions. For more
details on mMVNNs and their advantages, please see Ap-
pendix B.
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Definition 1 (Multiset MVNN). An mMVNN M? : X —
R for bidder i € N is defined as

M (@) = Wi e, ( - Popia (WO (D) + b1 . )
3)
* K, + 2 € Nis the number of layers (K; hidden layers),
* {po,ik }f:fl are the MVNN-specific activation functions
with cutoff t** > 0, called bounded ReL.U (bReLU):

“4)

o W= (WHRYE with Wik > 0 and b = (bPF) 1501
with b"* < 0 are the non-negative weights and non-
positive biases of dimensions d* x d*=1 and d“*, whose
parameters are stored in 0 = (W, b?).

D = diag (Ye1,...,Yem) is the linear normalization
layer that ensures Dx € [0, 1] and is not trainable.

Po,ti-k () = min(ti,ka maX(Ov ))

In Theorem 1, we extend the proof from Weissteiner et al.
(2022a) and show that mMVNNSs are also universal in the
set of monotone value functions defined on a multiset do-
main &'. For this, we first define the following properties:
(M) Monotonicity (“more items weakly increase value”):

For a,b € X:ifa < b,i.e. Vk € M : a; < b;, it holds

that v;(a) < v;(b),

(N) Normalization (’no value for empty bundle”):

Ui((b) = Ui((07 s 70)) =0,

These properties are common assumptions and are satisfied
in many market domains. We can now present the following
universality result:

Theorem 1 (Multiset Universality). Any value function
v; + X — Ry that satisfies (M) and (N) can be repre-
sented exactly as an mMVNN M? from Definition 1, i.e.,
SforV :={v; : X — Ry|satisfy (M) and (N)} it holds that

(&)
O

v={m" w000 <01}
Proof. Please, see Appendix B.2 for the proof.

Furthermore, we can formulate maximization over
mMVNNE, ie., max,ex MY (x) — (p,z), as a mixed inte-
ger linear program (MILP) analogously to Weissteiner et al.
(2022a), which will be key for our ML-powered clock phase.

3.2 Training Algorithm

In Algorithm 1, we describe how we train, for each bid-
der i € N, a distinct mMVNN M on demand query data
R;. Our design choices regarding this training algorithm
are motivated by the information that responses to demand
queries provide. According to myopic best response bidding,
at each round r, bidder 7 reports a utility-maximizing bundle
x¥ (p") € X at current prices p”. Formally, for all x € X

vi(z; (7)) — "2 (p7)) > vi(z) — ", x).  (6)

Notice that for any epoch ¢ and round r, the loss L(6,) for
that round calculated in Lines 4 to 6 is always non-negative,
and can only be zero if the mMVNN /\/lf (instead of v;)
satisfies Equation (6). Thus, the loss for an epoch is zero
iff the mMVNN /\/lf satisfies Equation (6) for all rounds,
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Validation Set 1
Training Set /'
Inferred Values Training Set g
Validation Set 2 ,,
Inferred Values Validation Set 2
Last CCA Iteration

Predictions

True Values

Figure 1: Scaled prediction vs. true plot of a trained
mMVNN via Algorithm 1 for the national bidder in the
MRVM domain (see Section 6).

and in that case the model has captured the full information
provided by the demand query responses R; of that bidder.
Finally, note that Algorithm 1 can be applied to any MILP-
formalizable ML model whose parameters can be efficiently
updated via GD, such as MVNNs or ReLU-NNs.

In Figure 1, we present a prediction vs. true plot of an
mMVNN, which we trained via Algorithm 1. We present
the training set of 50 demand query data points I?; in blue
circles, where the prices {p"}>2, are generated according
to the same rule as in CCA. Additionally, we mark the bun-
dle 4 € X from this last CCA iteration (i.e., the one
resulting from p°°) with a black star. Moreover, we present
two different validation sets on which we evaluate mM VNN
configurations in our hyperparameter optimization (HPO):
Validation set 1 (red circles), which are 50, 000 uniformly at
random sampled bundles z € X, and validation set 2 (green
circles), where we first sample 500 price vectors {p" }2%%
where the price of each item is drawn uniformly at random
from the range of 0 to 3 times the average maximum value
of an agent of that type for a single item, and then deter-
mine utility-maximizing bundles z}(p") (w.r.t. v;) at those
prices (cp. Equation (1)). While validation set 1 measures
generalization performance in a classic sense over the whole
bundle space, validation set 2 focuses on utility-maximizing
bundles. We additionally demonstrate the inferred values
of the bundles of the training set and validation set 2 us-

ing triangles of the same colour, i.e., {{p", z} (pr)>}fi/1500.
These triangles highlight the only cardinal information that
our mMVNNs have access to during training and are a
lower bound of the true value. In Figure 1, we see that our
mMVNN is able to learn at the training points (blue cir-
cles) the true value functions almost perfectly up to a con-
stant shift x, i.e., M7 (z) ~ v;(x) + . This is true even
though the corresponding inferred values (blue triangles) are
very far off from the true values (p", z} (p")) < v;(z}(p")).
Moreover, the nM VNN generalizes well (up to the constant
shift x) on validation sets 1 and 2. Overall, this shows that
Algorithm 1 indeed leads to mMVNNs ./\/lfT which are a
good approximation of v; + k. Note that learning the true

~
~
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value function up to a constant shift suffices for our proposed
demand query generation procedure presented in Section 4.

4 ML-powered Demand Query Generation

In this section, we show how we generate ML-powered de-
mand queries and provide the theoretical foundation for our
approach by extending a well-known connection between
clearing prices, efficiency and a clearing objective function.
First, we define indirect utility, revenue and clearing prices.

Definition 2 (Indirect Utility and Revenue). For linear
prices p € R, a bidder’s indirect utility U and the seller’s
indirect revenue R are defined as

U(p,v;) = max {vi(z) — (p,z)} and (7)
1
R(p) = max {Z (p, ai>} = Z CiDy ®)
iEN JEM

i.e., at prices p, Equations (7) and (8) are the maximum util-
ity a bidder can achieve for all x € X and the maximum rev-
enue the seller can achieve among all feasible allocations.

Definition 3 (Clearing Prices). Prices p € RT are clearing
prices if there exists an allocation a(p) € F such that

1. for each bidder i, the bundle a;(p) maximizes her utility,
Le., vi(a’i(p)) - <pa az(p)> = U(pa vi)7Vi €N, and
2. the allocation a(p) € F maximizes the sellers revenue,

ie, Yien (pyai(p)) = R(p).?

Next, we provide an important connection between clear-
ing prices, efficiency and a clearing objective W . Theorem 2
extends Bikhchandani and Ostroy (2002, Theorem 3.1).

Theorem 2. Consider the notation from Definitions 2
and 3 and the objective function W (p,v) R(p) +
> ien U(p,vi). Then it holds that, if a linear clearing price
vector exists, every price vector

p’ € argmin W (p,v) (9a)
PERT,
such that (zF(P))ien € F (9b)

is a clearing price vector and the corresponding allocation
a(p') € F is efficient.?

Proof. Please, see Appendix C.1 for the proof. O

Theorem 2 does not claim the existence of linear clearing
prices (LCPs) p € RZ,,. For general value functions v, LCPs
may not exist (Bikhchandani and Ostroy 2002). However, in
the case that LCPs do exist, Theorem 2 shows that a/l min-
imizers of (9) are LCPs and their corresponding allocation

2For linear prices, this maximum is achieved by selling every
item, ie.,Vj € M : Y. y(ai); = c; (see Appendix C.2).
3More precisely, constraint (9b) should be reformulated as
(@7 (D) ien € X X' (B) : (27 (P))sen € F,
ieN
where X;"(p) := argmax, {vi(z) — (P, )}, since in theory,
z; (p) does not always have to be unique.
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is efficient. This is at the core of our ML-powered demand
query generation approach, which we discuss next.

The key idea to generate ML-powered demand queries is
as follows: As an approximation for the true value function
v, we use for each bidder a distinct mMVNN MY : X —
R>q that has been trained on the bidder’s elicited demand
query data R; (see Section 3). Motivated by Theorem 2, we
then try to find the demand query p € RY, minimizing

W(p, ( 2)7: ) subject to the feasibility constraint (9b).
This way, we 1]ind demand queries p € RZT}, which, given

the already observed demand responses R, have high clear-
ing potential. Note that unlike the CCA, this process does
not result in monotone prices.*

Remark 1 (Constraint (9b)). An important economic insight
is that minimizing W (-, (M?)"_,) is optimal, when LCPs
exist (also without constraint (9b) as shown in Lemma 2 in
Appendix C.1). If however LCPs do not exist, it is favourable
to minimize W under the constraint of having no predicted
over-demand for any items (see Appendix D.9 for an em-
pirical comparison of minimizing W with and without con-
straint (9b)). This is because in case the market does not
clear, our ML-CCA (see Section 5), just like the CCA, will
have to combine the clock bids of the agents to produce a
feasible allocation with the highest inferred social welfare
according to Equation (2). See Appendix D.6 for details.

Note that (9) is a hard, bi-level optimization problem. We
minimize (9) via gradient descent (GD), since Theorem 3
gives us the gradient and convexity of W, (Mf):;l)

Theorem 3. Let (Mf)z;l be a tuple of trained mMVNNs
and let &7(p) € argmax,cy {M?(z)— (p,x)} denote
each bidder’s predicted utility maximizing bundle w.rt.
M. Then it holds that p — W (p, (Mf):’zl) is convex,
Lipschitz-continuous and a.e. differentiable. Moreover,

c— Z i (p) € V"W (p, (M?)?:l)

i€EN

(10)
is always a sub-gradient and a.e. a classical gradient.

Proof. In Appendix C.2 we provide the full proof. Con-
cretely, Lemmas 3 and 4 prove the Lipschitz-continuity and
the convexity. In the following, we provide a sketch of how
the (sub-)gradients are derived. First, since X" is finite, it
is intuitive that 27 (p) is a piece-wise constant function and
thus 0,%% (p) *= 0 (as intuitively argued by Pogandic et al.
(2020) and proven by us in Lemma 6). Then we can compute

*We see no reason why non-monotone prices would introduce
additional complexity for the bidders. With our approach, the prices
quickly converge to the final prices, and then only change very lit-
tle, as shown in Figures 5 to 8 of Appendix D.7. For this reason,
one could even argue that round-over-round optimizations for the
bidders may be easier in our auction: given that prices are close
to each other round-over-round, the optimal bundle from the last
round is still close to optimal (in terms of utility) in the next round.
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the gradient a.e. as if #}(p) was a constant:

\ (R(p) +> U(p,Mf)>

i€EN

VoW (b, (MO, )

=V, | D epi+ D (MUE (D) — (p. 2 ()

JEM 1EN
etk Y (0-V, (pd () =c— Y ().
iEN iEN

For a mathematically rigorous derivation of sub-gradients
and a.e. differentiability see Lemmas 5 and 6. O

With Theorem 3, we obtain the following update rule of
classical GD pi** < p; —y(c;— Y, (#5(p));), Vi € M.
Interestingly, this equation has an intuitive economic inter-
pretation. If the j® item is over/under-demanded based on
the predicted utility-maximizing bundles &} (p), then its new
price p}*" is increased/decreased by the learning rate times
its over/under-demand. However, to enforce constraint (9b)
in GD, we asymmetrically increase the prices 1 4+ u € R>g
times more in case of over-demand than we decrease them
in case of under-demand. This leads to our final update rule
(see Item 1 in Appendix D.6 for more details):

new @

PFY Sy = T(e; = Y (& (p);), Vi€ M, (lla)
ieN
'?j — { v (1 + M) , 65 < ZzeN(i‘f(p)% (11b)
0 ,else

To turn this soft constraint into a hard constraint, we in-
crease this asymmetry via y iteratively until we achieve fea-
sibility and in the end we select the GD step with the lowest
W value within those steps that were feasible. Based on the
final update rule from (11), we propose NEXTPRICE (Algo-
rithm 3 in Appendix D.6), an algorithm that generates de-
mand queries with high clearing potential, which addition-
ally induce utility-maximizing bundles that are predicted to
be feasible (see Appendix D.6 for all details).

5 ML-powered Combinatorial Clock Auction

In this section, we describe our ML-powered combinatorial
clock auction (ML-CCA), which is based on our proposed
new training algorithm from Section 3 as well as our new
demand query generation procedure from Section 4.

We present ML-CCA in Algorithm 2. In Lines 2 to 5,
we draw the first Q™ price vectors using some initial de-
mand query method Fi,;; and receive the bidders’ demand
responses to those price vectors. Concretely, in Section 6,
we report results using the same price update rule as the
CCA for Fyy. In each of the next up to Q™ — Q™' ML-
powered rounds, we first train, for each bidder, an mM VNN
on her demand responses using Algorithm 1 (Line 7). Next,
in Line 9, we call NEXTPRICE to generate the next demand
query p based on the agents’ trained mMVNNs (see Sec-
tion 4). If, based on the agents’ responses to the demand
query (Line 11), our algorithm has found market-clearing
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GSVM LSVM

SRVM MRVM

MECHANISM ECLOCK ERAISE EPROFIT CLE' ECLOCK ERAISE EI’ROFIT CLE' ECLOCK ERAISED EPROFIT CLE' ECLOCK ERAISE EI’ROFIT CLE'

ML-CCA

98.23 98.93 100.00 56 91.64 96.39 99.95

26 99.59 99.93 100.00

13 93.04 93.31 93.68 0

CCA 90.40 93.59 100.00 3

82.56 91.60 99.76

0 99.63 99.81

100.00 8 92.44 92.62 93.18 0

Table 1: ML-CCA vs CCA. Shown are averages over a test set of 100 synthetic CA instances of the following metrics: efficiency
in % for clock bids (E¢pock), raised clock bids (Egse) and raised clock bids plus 100 profit-max bids (Eprorr) and percentage
of instances where clearing prices were found (CLE.). Winners based on a paired t-test with « = 5% are marked in grey.

Algorithm 2: ML-CCA(Q™", Q™, Fi.)
Parameters: Q™ Q™ with Q™" < Q™ and Fy;

1 Re (DN

2 forr =1,..,Q" do

3 pT — Enit(R)

4 foreach i € N do Initial demand query responses

| Ri < RyU{(zi(p"),p")}

6 forr=Q" +1,..,Q" do

7 foreach i € N do

>Draw Q™! initial prices

wm

>ML-powered rounds

8 | M? < TRAINONDQS(R;) balgorithm 1
9 | p" < NEXTPRICE((M!)" ) b Algorithm 3
10 foreach i € N do >Dpemand query responses for p”

1 | Ri« R;U{(zi(p"),p")}

12 if Z (m:‘ (pk))j = ¢; Vj € M then >Market-clearing
=1

13 Set final allocation a* (R) + (2} (p"))i=1

14 Calculate payments m(R)  (m:(R))i=1

15 return a* (R) and 7(R)

16 foreach i € N do

17 ‘ R; < R; U B; >Optional Push bids
18 Calculate final allocation a* (R) as in Equation (2)

19 Calculate payments 7 (R) bE.g., VCG
20 return a*(R) and 7(R)

(Appendix A)

prices, then the corresponding allocation is efficient and is
returned, along with payments 7(R) according to the de-
ployed payment rule (Line 15). If, by the end of the ML-
powered rounds, the market has not cleared, we optionally
allow bidders to submit push bids, analogously to the sup-
plementary round of the CCA (Line 17) and calculate the
optimal allocation a*(R) and the payments 7(R) (Lines 18
and 19). Note that ML-CCA can be combined with various
possible payment rules 7 ( R), such as VCG or VCG-nearest.

6 Experiments

In this section, we experimentally evaluate the performance
of our proposed ML-CCA from Algorithm 2.

6.1 Experiment Setup.

To generate synthetic CA instances, we use the GSVM,
LSVM, SRVM, and MRVM domains from the spectrum
auction test suite (SATS) (Weiss, Lubin, and Seuken 2017)
(see Appendix D.1 for details). We compare our ML-CCA
with the original CCA. For both mechanisms, we allow a
maximum of 100 clock rounds per instance, i.e., we set
Q™ = 100. For CCA, we set the price increment to 5% as
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in (Industry Canada 2013) and optimized the initial reserve
prices to maximize its efficiency. For ML-CCA, we create
Q™ price vectors to generate the initial demand query data
using the same price update rule as the CCA, with the price
increment adjusted to accommodate for the reduced num-
ber of rounds following this price update rule. In GSVM,
LSVM and SRVM we set Q™" = 20 for ML-CCA, while in
MRVM we set Q™ = 50. After each clock round, we report
efficiency according to the clock bids up to that round, as
well as efficiency if those clock bids were raised (see Sec-
tion 2.2). Finally, we report the efficiency if the last clock
round was supplemented with Q™M* = 100 bids using the
profit max heuristic. Note that this is a very unrealistic and
cognitively expensive bidding heuristic in practice, as it re-
quires the agents to both discover their top 100 most prof-
itable bundles as well as report their exact values for them,
and thus only adds theoretical value to gauge the difficulty
of each domain.

6.2 Hyperparameter Optimization (HPO).

We optimized the hyperparameters (HPs) of the mMVNNs
for each bidder type of each domain. Specifically, for each
bidder type we trained an mMVNN on the demand re-
sponses of a bidder of that type on 50 CCA clock rounds
and selected the HPs that resulted in the highest R? on val-
idation set 2 as described in Section 3.1. For more details
please see Appendix D.3.

6.3 Results.

All efficiency results are presented in Table 1, while in Fig-
ure 2 we present the efficiency after each clock round, as
well as the efficiency if those clock bids were enhanced with
the clock bids raised heuristic (for 95% CIs and p-values see
Appendix D.7).

In GSVM, ML-CCA’s clock phase exhibits over 7.8%
points higher efficiency compared to the CCA, while if we
add the clock bids raised heuristic to both mechanisms, ML-
CCA still exhibits over 5.3% points higher efficiency. At the
same time, ML-CCA is able to find clearing prices in 56%
of the instances, as opposed to only 3% for the CCA.

The results for LSVM are qualitatively very similar; ML-
CCA’s clock phase increases efficiency compared to the
CCA by over 9% points, while clearing the market in 26% of
the cases as opposed to 0%. If we add the clock bids raised
heuristic to both mechanisms, ML-CCA still increases effi-
ciency by over 4.7% points.

The SRVM domain, as suggested by the existence of only
3 unique goods, is quite easy to solve. Thus, both mecha-
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Figure 2: Efficiency path plots in SATS for ML-CCA and

CCA both after clock bids (solid lines) and raised clock bids

(dashed lines). Averaged over 100 runs including a 95% CI.
The dashed black vertical line indicates the value of Q™.

nisms can achieve almost 100% efficiency after their clock
phase. For the clock bids raised heuristic our method reduces
the efficiency loss by a factor of more than two (from 0.19%
to 0.07%), and additionally, one can see from Figure 2 that
our method reaches over 99% in less than 30 rounds.

In MRVM, ML-CCA again achieves statistically signif-
icantly better results for all 3 bidding heuristics. Notably,
the CCA needs both the clock bids raised heuristic and 38
profit max bids to reach the same efficiency as our ML-CCA
clock phase, i.e., it needs up to 138 additional value queries
per bidder (see Appendix D.7). In MRVM, LCPs never ex-
ist, thus neither ML-CCA nor the CCA can ever clear the
market.

To put our efficiency improvements in perspective, in
the GSVM, LSVM and MRVM domains, ML-CCA'’s clock
phase achieves higher efficiency than the CCA enhanced
with the clock bids raised heuristic, i.e., the CCA, even if it
uses up to an additional 100 value queries per bidder, cannot
match the efficiency of our ML-powered clock phase. In Fig-
ure 2, we see that our ML-CCA can (almost) reach the effi-
ciency numbers of Table 1 in a significantly reduced number
of clock rounds compared to the CCA, while if we attempt
to “speed up” the CCA, then its efficiency can substantially
drop, see Appendix D.8. In particular, in GSVM and LSVM,
using 50 clock rounds, our ML-CCA can achieve higher ef-
ficiency than the CCA can in 100 clock rounds.

6.4 Computational Efficiency.

For our choice of hyperparameters, the computation time
when using 8 CPU cores’ (see Appendix D.2 for details on
our compute infrastructure) for a single round of the ML-
CCA averages under 45 minutes for all domains tested. No-
tably, for three out of four domains, it averages less than 10
minutes (see Table 7 in Appendix D.7). The overwhelming

>Note that Algorithm 1 is not GPU-implementable, as it re-
quires solving a MIP in each iteration, for every demand response
by an agent

majority of this time is devoted to training the mMVNNs of
all bidders using our Algorithm 1 and generating the next
DQ using our Algorithm 3 detailed in Section 4. It is im-
portant to note that both of these algorithms can always be
parallelized by up to the number of bidders N, further re-
ducing the time required. In our implementation, while we
parallelized the training of the NV mMVNNs, we did not do
so for the generation of the next DQ. In spectrum auctions,
typically no more than 2 rounds are conducted per day. For
the results presented in this paper, we ran the full auction for
400 instances. Given the estimated welfare improvements of
over 25 million USD per auction, attributed to ML-CCA’s
efficiency gains, we consider ML-CCA’s computational and
time requirements to be negligible.

7 Conclusion

We have proposed a novel method for training MVNNs to
approximate the bidders’ value functions based on demand
query observations. Additionally, we have framed the task of
determining the price vector with the highest clearing poten-
tial as minimization of an objective function that we prove is
convex, Lipschitz-continuous, a.e. differentiable, and whose
gradient for linear prices has an intuitive economic interpre-
tation: change the price of every good proportionally to its
predicted under/over-demand at the current prices. The re-
sulting mechanism (ML-CCA) from combining these two
components exhibits significantly higher clearing potential
than the CCA and can increase efficiency by up to 9% points
while at the same time converging in a much smaller number
of rounds. Thus, we have designed the first practical ML-
powered auction that employs the same interaction paradigm
as the CCA, i.e., demand queries instead of cognitively too
complex value queries, yet is able to significantly outper-
form the CCA in terms of both efficiency and clearing po-
tential in realistic domains.
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