
Manipulation-Robust Selection of Citizens’ Assemblies

Bailey Flanigan1, Jennifer Liang2, Ariel D. Procaccia2, Sven Wang3

1 Carnegie Mellon University
2 Harvard University

3 Massachusetts Institute of Technology

Abstract

Among the recent work on designing algorithms for se-
lecting citizens’ assembly participants, one key property of
these algorithms has not yet been studied: their manipula-
bility. Strategic manipulation is a concern because these al-
gorithms must satisfy representation constraints according to
volunteers’ self-reported features; misreporting these features
could thereby increase a volunteer’s chance of being selected,
decrease someone else’s chance, and/or increase the expected
number of seats given to their group. Strikingly, we show that
Leximin — an algorithm that is widely used for its fairness —
is highly manipulable in this way. We then introduce a new
class of selection algorithms that use `p norms as objective
functions. We show that the manipulability of the `p-based
algorithm decreases in O(1/n1−1/p) as the number of vol-
unteers n grows, approaching the optimal rate of O(1/n) as
p → ∞. These theoretical results are confirmed via experi-
ments in eight real-world datasets.

1 Introduction
In a citizens’ assembly, a panel of randomly-chosen con-
stituents convenes to make a policy recommendation on a
political issue. Although citizens’ assembly participants are
not career politicians, their recommendations are informed
by an extensive process of learning from experts and de-
liberating with one another. As such, citizens’ assemblies
are appealing because they combine the goals of engag-
ing everyday citizens in democratic decision-making, while
also facilitating informed decisions. Citizens’ Assemblies
are now being used to make increasingly high-profile de-
cisions around the world (Participedia 2023); for example,
France recently ran a national-level assembly on the topic of
assisted dying, and its outcome is slated to affect policy on
palliative care (Bürgerrat 2023).

Because the participants of a citizens’ assembly represent
their entire underlying constituency, the process by which
they are selected is crucial to whether the policy recom-
mendation they produce is perceived as trustworthy. The
importance of this selection process has motivated a grow-
ing body of research on selection algorithms (Ebadian and
Micha 2023; Ebadian et al. 2022; Flanigan et al. 2020, 2021;

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Flanigan, Kehne, and Procaccia 2021), which solve the fol-
lowing task: from among a pool of volunteers, randomly
sample a panel that is (at least approximately) descriptively
representative of the underlying population. This means that
if the population is 48% women, the panel should be approx-
imately 48% women. Because exact representation of all
identities cannot be achieved with a finite-size panel, practi-
tioners’ main goal is to achieve representation with respect
to a handful of key features, such as gender, age, geographic
location, education level, and opinion on the issue at hand.

The main algorithmic challenge in selecting descriptively
representative participants is self-selection bias: different
demographic groups agree to participate at vastly different
rates, so the pool of volunteers from which the panel is sam-
pled is demographically skewed compared to the underly-
ing population. Consequently, simple sampling techniques
do not produce the desired descriptive representation.

Existing work has circumvented the challenge of achiev-
ing representation to a large degree. The first selection al-
gorithms, developed by practitioners, were heuristics that
searched for representative panels, injecting randomness
wherever possible. More recent work has contributed algo-
rithms that not only find representative panels, but do so in
a way that achieves other desiderata simultaneously. For ex-
ample, Flanigan et al. (2021) presents a framework of algo-
rithms that are maximally fair to individual pool members:
that is, they make pool members’ probabilities of being se-
lected as equal as possible, subject to representation con-
straints. One algorithm within this framework, called Lex-
imin (Flanigan et al. 2021), is now widely used in practice.

Beyond the desiderata of representation and maximal fair-
ness, follow-up work has contributed methods for addition-
ally achieving transparency (Flanigan, Kehne, and Procac-
cia 2021). However, at the current frontier of research on
selection algorithms, a key desideratum remains yet un-
touched: their manipulability.

In this paper, we initiate the study of selection algorithms’
vulnerability to perhaps the most salient type of potential
manipulation: volunteers misreporting their features. With
Theorem 1.1, we now illustrate in detail why the selection
process, as it commonly works in practice, can permit — and
strongly incentivize — such manipulation.

Example 1.1. We want to select a panel of 10 people to
convene on climate policy. We care about descriptive repre-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9696

sentation of one feature only: people’s level of concern about
climate change. This feature has two possible values: those
who are less concerned (20% of the population) and more
concerned (80% of the population). Thus, we will reserve 2
and 8 panel seats for these respective groups.
STAGE 1: RECRUITING THE POOL OF VOLUNTEERS. We
send out invitations to 1000 uniformly sampled households
in our constituency. In response, 100 people volunteer to par-
ticipate, but they are strongly self-selected: only 4 are truly
less concerned, and 96 of them are truly more concerned.1
In preparation for selection, we ask all 100 volunteers to re-
port which group they belong to. Among these volunteers,
suppose there is one strategic agent i who is truly more con-
cerned, but is willing to misreport their group membership
if it increases their chance of being on the panel.
STAGE 2: PANEL SELECTION. Given this pool of volunteers
and their self-reported group memberships, a selection algo-
rithm is then used to choose a panel. We assume nothing
about this algorithm except that it treats people in the same
group uniformly, and it produces a panel with 2 seats for less
concerned people and 8 seats for more concerned people.

It is not hard to see that, in this example, i benefits sig-
nificantly from misreporting their group membership. If i
truthfully reports they are more concerned, they will join a
group of 96 people for whom the panel has 8 seats, and thus
will be chosen with probability 8/96 ≈ 8%. If i reports that
they are less concerned, they will join a group of 5 people
for whom the panel has 2 seats, and will be chosen with
probability 2/5 = 40%. By misreporting that they are less
concerned, i can increase their selection probability by al-
most 32%. Moreover, with probability 40%, i will be given
a panel seat reserved for less concerned people, thereby giv-
ing the group of more concerned people an extra panel seat.

Theorem 1.1 illustrates why such manipulation is of prac-
tical concern: the nature of self-selection bias in this ex-
ample would be fairly easy for constituents to anticipate —
surely, people who care less about climate change will be
less likely to volunteer — making the optimal manipulation
public knowledge.2 Moreover, we cannot always prevent
manipulation through verification; here, people’s opinions
would be impossible to check. As citizens’ assemblies are
used for increasingly higher-profile decisions, the political
power associated with participating — and thus the incentive
to manipulate — will only increase. Theorem 1.1 also shows
a fundamental impossibility: when there is self-selection
bias, achieving descriptive representation necessitates giv-
ing different probabilities to different groups, thereby per-
mitting manipulability. In other words, no selection algo-
rithm can achieve representation while eliminating manip-
ulation incentives. This motivates our research question:

Research question: What aspects of the selection process
can we adjust in practice to limit agents’ incentives to

misreport their features?

1These numbers are based on a real-world panel selection task
(instance sf-e in our empirical analysis).

2More generally, there are clear patterns across real-world in-
stances of which groups tend to be most underrepresented among
volunteers (e.g., those with less education).

Approach. We focus on two main aspects of the selection
process that can be changed in practice: the size of the pool
of volunteers n, and the choice of selection algorithm. The
intuition for why increasing n could help is simple: as the
pool grows, there are more volunteers per available panel
seat. For the correct choice of selection algorithm, this could
permit the decrease of all volunteers’ selection probabilities,
thereby diluting the potential gains of manipulation.

Among selection algorithms, we consider only algorithms
that achieve maximal fairness, because per Theorem 1.1,
manipulation incentives arise from inequality in selection
probabilities (thus, the goal of equalizing selection probabil-
ities is aligned with limiting manipulation). Specifically, we
introduce and study rounding-based selection algorithms —
a class of maximally fair algorithms that generalizes an al-
gorithm of Flanigan et al. (2020). As discussed in Section 2,
rounding-based algorithms closely reflect those used in prac-
tice, but enforce a slightly relaxed notion of representation.

Each rounding-based algorithm optimizes a different fair-
ness objective: a function measuring how fairly the chance to
participate is spread over volunteers. We study several such
functions: Leximin, the objective most commonly used in
real-world panel selection (Flanigan et al. 2021); Nash Wel-
fare, which has known fairness and transparency properties
and is available online for practical use (Flanigan, Kehne,
and Procaccia 2021); and all `p norms, which we newly in-
troduce to the citizens’ assembly setting.
Results and Contributions. (1) Manipulation model. Our
first contribution is to formally model three realistic manipu-
lation incentives in the assembly selection context: increas-
ing one’s own probability of selection, changing someone
else’s, and — as we saw in Theorem 1.1 — misappropriating
seats from other groups. (2) Impossibilities for existing
algorithms. We then show that, somewhat alarmingly, the
state-of-the-art objectives Leximin and Nash Welfare are ar-
bitrarily manipulable on multiple of these counts. Even as
n grows large, they permit agents to gain probability 1 by
misreporting, and they allow coalitions to misappropriate
a constant fraction of the panel seats. These lower bounds
give a key insight: fairness objectives are manipulable when
they permit some agents to receive very high selection prob-
abilities. (3) An optimal selection algorithm. Motivated
by this finding, we study `p norms, which heavily penal-
ize high probabilities due to their strong convexity. We show
that even when agents can costlessly misreport any vector
of features, the manipulability of the `p-norm declines in
n at a rate n−(1−1/p), a rate which holds for all three no-
tions of manipulability. We further show that any selection
algorithm must suffer manipulability at least Ω(1/n); as
p → ∞, our upper bound approaches this lower bound, im-
plying that the `∞ norm — the objective that minimizes the
maximum selection probability — achieves optimal conver-
gence. As a bonus, our analysis handles coalitions of size up
to Θ(n). (4) Empirical results. We complement these the-
oretical results with experiments in eight real-world panel
selection datasets. Our empirical results closely track our
theory, showing that Leximin and Nash Welfare suffer high
manipulability even as n grows, while the manipulability of
the `2 and `∞ norms declines quickly.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9697

2 Model
Foundations of Selection Algorithms
At a high level, a selection algorithm must select a panel of
k agents from the pool of n agents. This panel must be repre-
sentative of the population with respect to a predefined set of
features F , where each f ∈ F has a predefined set of possi-
ble values Vf . For example, the feature f = age might have
possible values Vage = {18 - 40, 41 - 60, 61 +}. We assume
that for each feature f , its possible values Vf are exhaustive
and mutually exclusive. We define FV :=

⋃
f∈F Vf to con-

tain all feature-value pairs, (f, v) for all f ∈ F, v ∈ Vf .
For all (f, v), p(f,v) is the fraction of the underlying popula-
tion with value v for feature f . Then, a representative panel
contains p(f,v) · k agents with value v for feature f , for all
(f, v) ∈ FV . Let p := (p(f,v)|f ∈ F, v ∈ Vf).

An instance of the panel selection task is then composed
of population rates p; a desired panel size k; and the pool
N , which is defined by all n agents’ true values of each fea-
ture. To define these values, we let f(i) denote i’s value for
f , thereby implicitly treating each feature as a function f :
[n]→ Vf . i’s values across features are summarized in their
feature vector w(i) := (f(i)|f ∈ F). The pool of volunteers
N := (w(i)|i ∈ [n]) is then an n-tuple containing all agents’
feature vectors. We letW :=

∏
f∈F Vf be the collection of

all possible feature vectors (i.e., all possible intersections of
feature-value pairs). A generic feature vector is w ∈ W . We
will often reason only about fractional composition of a pool
N , called ν(N). This vector is indexed by feature-vector,
with w-th entry νw(N) := |{i ∈ [n] : w(i) = w}|/|N |
representing the fraction of the pool with vector w.

In practice, organizers must rely on agents to report their
feature vectors. Agent i’s reported feature vector is denoted
w̃(i) ∈ W ; in general, we will use tilde ·̃ throughout the
paper to distinguish reported values from true values. The
reported pool is then denoted as Ñ = (w̃(i)|i ∈ [n]). In an
instance p, k,N , a selection algorithm A actually receives
as input p, k, Ñ , and must map it to a panel K ⊆ Ñ .

In the next subsection, we will formally define three mo-
tives with which an agent might misreport their feature vec-
tor. All these motives revolve around controlling a particular
resource: selection probability. Agent i’s selection probabil-
ity is P[i ∈ K], the probability i is chosen for the panel.
We define πAi (p, k, Ñ) to be the selection probability given
to agent i by algorithm A on input p, k, Ñ . Accordingly,
the vector of agents’ selection probabilities is πA(p, k, Ñ).
Since p and k’s true values are known to the algorithm, we
simply write πA(Ñ). A generic vector of selection probabil-
ities is π. Note that there are k available seats for n people,
so the average selection probability over agents must be k/n.

Manipulation of Selection Algorithms
In the game we study, we permit all agents to costlessly mis-
report any feature vector in W . We assume that agents re-
port their feature vector w̃(i) with knowledge of the entire
instance p, k,N , plus full access to the selection algorithm.3

3It is realistic to assume agents know p and k, and can access
the selection algorithm: p is found in census data, and for trans-

While the assumption that agents exactly know the true pool
N is slightly adversarial, our study of simple manipulation
heuristics in Section 5 will shed light the potential for ma-
nipulation using less detailed information about the pool.

We do not commit to a specific utility function for agents,
because they might manipulate with a variety of different
goals. Instead, we define the three measures of manipulabil-
ity below, each corresponding to a different motive: the in-
ternal manipulability MANIPint captures how much a coali-
tion can increase the selection probability of its members;
the external manipulability MANIPext captures how much
a coalition can harm a non-member; and the composition
manipulability MANIPcomp captures how many seats (in ex-
pectation) a coalition can misappropriate from any feature-
value group. We denote a coalition as C, and we let N−C
denote the pool with the feature vectors of i ∈ C re-
moved. In instance p, k,N , the manipulability of A by any
coalition of size c is defined, per notion, as follows, where
> := maxC⊆[n],|C|=c maxw̃∈W|C| is shorthand for tak-
ing the worst possible coalition of size c and worst possible
strategic reports of its members.

MANIPint(N,A, c) := > max
i∈C

πAi (N−C ∪ w̃)− πAi (N),

MANIPext(N,A, c) := > max
i/∈C

πAi (N)− πAi (N−C ∪ w̃),

MANIPcomp(N,A, c) :=

> max
(f,v)∈FV

∑
i:f(i)=v

πAi (N−C ∪ w̃)−
∑

i:f(i)=v

πAi (N).

Rounding-Based Selection Algorithms
We study the manipulability of a class of selection algo-
rithms which we call rounding-based selection algorithms.
Each rounding-based algorithm is specified by a convex
function g : [0, 1]n → R; we will refer to the algorithm
defined by function g simply as g. Algorithm g proceeds in
two steps: Step 1 computes selection probabilities that mini-
mize g, subject to some constraints; then, Step 2 dependently
rounds these probabilities to produce a final panel. Since se-
lection probability is the resource sought by manipulating
agents — and the selection probabilities are fully determined
in Step 1 — only the Step 1 will be of interest in this paper.
Step 1. Find g-optimal selection probabilities. Given in-
stance p, k,N , in this step the algorithm optimizes g over
the polytope R(N), defined such that π ∈ R(N) ⇐⇒ π
satisfies the following constraints:∑

i∈N :f(i)=v

πi = kp(f,v) for all (f, v) ∈ FV (C1)

∑
i∈N

πi = k (C2)

π ∈ [0, 1]n (C3)

parency, k might be public and the selection algorithm would be
open-sourced. Assuming agents know N is somewhat adversarial,
because in practice, the agents report their features simultaneously;
however, this assumption reflects the concern that, by comparing
census data and the compositions of past pools, agents could infer
who tends to participate, and thus the likely composition of N .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9698

(C1) requires ex-ante representation for all feature-value
pairs; (C2) requires that the panel is the correct size in expec-
tation (required for Step 2), and (C3) requires π to contain
valid probabilities. Formally, in step 1 the algorithm g solves
the following convex program:

min
π

g(π) s.t. π ∈ R(N) (OPT-PROB)

Note that without loss of generality, we can assume that the
solution of this convex program assigns the same probability
to all agents with the same feature vector, since as any feasi-
ble solution can be transformed into such a solution, per the
definition of R(N). We will consider only such solutions
throughout the paper.
Step 2: Randomized-rounding. This step intakes the selec-
tion probabilities found in the previous step, called πg , and
samples a panel K of size k using the discrepancy-based
rounding procedure of Flanigan et al. (2020). For our
purposes, the key property of this rounding procedure is
that it preserves the selection probabilities πg; we defer the
details of this procedure to Appendix A.
Specific choices of g. We will instantiate the rounding-
based algorithms above with various convex functions g—
all which, when minimized, tend to make selection proba-
bilities more equal. We analyze two choices of g that serve
as benchmarks: Nash Welfare, and Leximin. Nash Welfare is
the geometric mean of selection probabilities:

nash(π) := −
∏
i∈[n]

πi.

Leximin is not itself strictly a function, but a refinement of
the objective Maximin, which maximizes the minimum se-
lection probability given to any agent:

maximin(π) := −min
i∈[n]

πi.

The Leximin-optimal solution is computed iteratively: opti-
mize maximin, fix the minimum entry of that solution as a
lower bound on any entry of π, then maximize the second-
lowest entry; repeat until all entries are fixed.

Finally, we study all `p norms for p > 1, which measure
the distance between π and the vector of exactly equal se-
lection probabilities (k/n, k/n, . . . , k/n):

`p(π) := ‖π − (k/n, . . . , k/n)‖pp.
Connections to existing algorithms. With rounding-based
algorithms defined, we can now compare them to existing
selection algorithms. The most closely-related algorithm is
that of Flanigan et al. (2020). Their algorithm computes se-
lection probabilities within R as in our in Step 1, and then
rounds them via the same procedure as in our Step 2. The
main difference is that their algorithm manually sets selec-
tion probabilities to specific values in Step 1 in a way that
ends up satisfying the constraints, while algorithm g within
our class sets them by optimizing the function g.

Slightly further afield are the most widely-implemented
maximally fair algorithms, as introduced by Flanigan et al.
(2021). These algorithms differ from ours only in that they
enforce representation slightly differently: instead of ex ante
representation, they require the satisfaction of hard upper

and lower demographic quotas ex post (e.g., quotas might
require that a panel of 10 people contains between 4 and
6 women). As we show in Theorem A.2, our algorithms
are formally equivalent to a continuous relaxation of these
quota-based algorithms where agents are divisible. More-
over, our rounding-based algorithms do, in fact, achieve a
relaxed version of these ex-post quotas: they are guaranteed
to produce a panel containing within ±|F | of kp(f,v) agents
with each value v of each feature f (Lemma 9, Flanigan et al.
(2020)). This panel is found via a rounding scheme based on
a discrepancy theorem due to Beck and Fiala (1981).

3 Leximin and Nash are Highly Manipulable
We begin by analyzing the two objectives most closely tied
to practice. Strikingly, Theorem 3.1 shows that both leximin
and nash are extremely manipulable: using either algorithm,
an individual agent can gain selection probability 1 by mis-
reporting, and a coalition can deterministically misappropri-
ate (approaching) half of all panel seats for their own group.
The proof of this theorem is found in Appendix B; we give
a proof sketch below.

Theorem 3.1. For an arbitrarily large n and for all c ∈
[1, k/2), there exists an instance p, k,N , |N | = n such that

MANIPint(N, leximin, 1) = 1 and
MANIPint(N, nash, 1) = 1; moreover,

MANIPcomp(N, leximin, c) = c and
MANIPcomp(N, nash, c) = c.

Proof sketch. Fix a c ∈ [1, k/2). All claims are proven
by a single instance p, k,N with features f1, f2 that take
on binary values {0, 1} (so the possible feature vectors are
00, 01, 10, 11). In this instance, we let the population rates
of all feature-values be balanced: pf1,0 = pf1,1 = pf2,0 =
pf2,1 = 1/2. We construct N with the following fractional
composition, where ν∗ should be thought of as a quantity
shrinking in c: ν00(N) = ν11(N) = ν∗, ν10(N) = 1− 2ν∗,
and ν01(N) = 0. We let this pool have some size |N | = n ≥
k2, such that its fractional composition can be realized.

First, observe that in this instance, all agents with vec-
tor 10 must receive zero selection probability due to the
constraints: giving them any probability would induce a
constraint-violating imbalance in the probability given to
agents with f1 = 0 versus f2 = 0, which cannot be re-
balanced because the complementary vector 01 does not ex-
ist in N . This suggests a manipulation strategy: an agent
with 10 could misreport 01, thereby permitting greater fair-
ness by allowing agents with 10 to receive some probability.

Let i with w(i) = 10, and define Ñ := N−i ∪ {01} as
the pool resulting from i using the proposed strategy. In in-
stance p, k, Ñ , agents with 10 can receive probability; the
catch is that, for every unit of probability given to such an
agent, a unit must also be given to i, meaning that i must
receive |N |ν10 times the probability of any agent with 10.
The key observation is that both leximin and nash prioritize
ensuring the minimum probability is not too small, with lit-
tle consideration for what happens to the highest probability.
For this reason, both algorithms give i selection probability

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9699

1 in the instance p, k, Ñ . i has gained probability 1 by misre-
porting, implying the bounds on MANIPint(N, leximin, 1) and
MANIPint(N, nash, 1). This argument extends to an entire
coalition of c < k/2 such agents, implying the bounds on
MANIPcomp(N, leximin, c) and MANIPcomp(N, nash, c).

Takeaway: strongly convex objectives. The key takeaway
from this proof is that objectives that do not penalize high
selection probabilities can be highly manipulable. A nat-
ural class of objectives that do penalize high probabilities
are strongly convex objectives — we formalize this intuition
in Theorem B.1. This insight suggests that in future study
of selection algorithms, it may be desirable to focus on
such objectives. This finding also motivates our focus on `p
norms — a natural class of strongly-convex objectives.

4 `p-Norms Approach Optimal
Manipulability as p→∞

We now present upper-bounds on all three measures of ma-
nipulability for all rounding-based algorithms `p with p > 1.
These upper bounds will hold for any instance whose pool
satisfies Theorem 4.1, which conceptually requires that the
pool has a minimal level of feature vector richness.

Assumption 4.1 (Pool richness). N contains some set of
feature-vectorsW∗ ⊆ W such that

1. there is a constant κ∗ > 0 such that νw(N) ≥ κ∗ + k/n
for all w ∈ W∗, and

2. R(N) contains a solution π∗ such that πi = 0 for all
i : w(i) /∈ W∗.

This assumption is likely to hold in practice; in fact, due to
how the pool is sampled, every feature-vector group’s pres-
ence in the pool should grow approximately linearly in n.
We expand on this in Appendix C. Also, note that the pool
used to prove Theorem 3.1 satisfies Assumption 4.1 (The-
orem C.1), thus demonstrating a genuine gap between the
manipulability of all `p norms and leximin, nash.

Theorem 4.2. Let p > 1, and let N be any pool of size n
satisfying Assumption 4.1 withW∗, κ∗, π∗. Let κ ∈ (0, κ∗);
then, for any coalition size c ≤ κn, we have that

MANIPint(N, `p, c) ∈ O
(
k/n1−1/p

)
,

MANIPext(N, `p, c) ∈ O
(
k/n1−1/p

)
, and

MANIPcomp(N, `p, c) ∈ O
(
ck/n1−1/p

)
.

Proof. Fix a pool N with W∗, κ∗, π∗, as in the theorem
statement. Fix any coalition C ⊆ N of size c ≤ κn. Let
Ñ := N−C ∪ {w̃(i)|i ∈ C} be the manipulated pool.
For convenience, we will again work with feature-vector-
indexed objects. We will again use νw(N) as the frequency
of w in N . We also define tw(π) :

∑
i:w(i)=w πi as the total

probability π gives to agents with vector w. Let the vector
of these totals be t(π) = (tw(π)|w ∈ W). We can now
reformulate the constraints defining R(N) in terms of the

variable t: let T (N) ⊆ R|W| such that t(π) ∈ T (N) iff∑
w:wf=v

tw(π) = kp(f,v) for all (f, v) ∈ FV (C1’)

∑
w

tw(π) = k (C2’)

tw(π)

nνw(N)
∈ [0, 1] for all w ∈ W (C3’)

Let π∗ ∈ R(N) be the feasible solution assumed to exist by
Assumption 4.1. Then, construct the vector π̃ as follows:

π̃i = tw(i)(π
∗) / nνw(i)(Ñ) for all i ∈ N.

In effect, the total probability assigned to each vector group
from π∗ to π̃ is maintained, despite the potentially changing
number of agents in that group from N to Ñ . Formally:
Claim 1: For all w ∈ W , tw(π∗) = tw(π̃). Proof:

tw(π̃) =
∑

i:w(i)=w

π̃i =
∑

i:w(i)=w

tw(π∗)

nνw(Ñ)
= tw(π∗).

Claim 2: π̃ ∈ R(N). Proof: We prove this by equivalently
showing that t(π̃) ∈ T (Ñ). The satisfaction of constraints
C1’ and C2’ follow from Claim 1. Moreover, by definition
tw(π̃)

nνw(Ñ)
≥ 0 for all w. Then, it just remains to show C3’:

tw(π̃)

nνw(Ñ)
=

tw(π∗)

nνw(Ñ)
≤ tw(π∗)

n(νw(N)− κ)

≤ tw(π∗)

n(κ∗ + k/n− κ)
≤ k

k + n(κ∗ − κ)
≤ 1.

Now, we will show that the vectors of probabilities π∗, π̃
have maximum entry on the order 1/n:
Claim 3: ‖π∗‖∞ ≤ k/κ∗n and ‖π̃‖∞ ≤ k/(κ∗−κ)n. Proof:
For all i with w(i) /∈ W∗, π∗i = π̃i = 0 by definition. For i
with w(i) ∈ W∗, we have that

π∗i =
tw(π∗)

nνw(N)
≤ k

nκ∗
and π̃i =

tw(π∗)

nνw(Ñ)
≤ k

n(κ∗ − κ)
.

Now, we relate the infinity-norms of any feasible solution
and the `p-optimal solution of OPT-PROB:
Claim 4: For all π ∈ R(N), ‖π`p(N)‖∞ ≤ n1/p‖π‖∞ +

2kn−
p−1
p . Proof: By the optimality of π`p(N), we have that

`p(π
`p(N))1/p ≤ `p(π(N))1/p. Then, using properties of

norms, and the triangle inequality (twice), we obtain that

‖π`p(N)‖∞ ≤ `p(π`p(N))1/p + ‖k/n1‖p
≤ `p(π)1/p + ‖k/n1‖p
≤ ‖π‖p + 2‖k/n1‖p ≤ n1/p‖π‖∞ + 2kn

1−p
p .

Using that π∗ ∈ R(N), π̃ ∈ R(Ñ), Claims 3 and 4 together
imply that ‖π`p(N)‖∞ ≤ k/(κ∗ n1−1/p) + 2k/n1−1/p and
likewise, ‖π`p(Ñ)‖∞ ≤ k/((κ∗−κ)n1−1/p)+2k/n1−1/p.
Using that the entries of all π are nonnegative, it follows that

‖π`p(Ñ)− π`p(N)‖∞ ≤
(

1

κ∗ − κ + 2

)
k

n1−1/p
. (1)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9700

We’ve now shown an upper bound on how many any i’s
probability changes between pool N and pool Ñ . This im-
mediately implies the upper bounds on MANIPint(N, `p, c)

and MANIPext(N, `p, c). Our upper bound on ‖π`p(Ñ)‖∞
further implies that post-defection, the members of the coali-
tion can have at most O(ck/n1−1/p) total selection proba-
bility, giving our upper bound on MANIPcomp(N, `p, c).

We now show a lower bound that applies to any rounding-
based algorithm. It shows that up to constants, the manipu-
lability of `∞ decreases at the optimal rate in n.
Theorem 4.3. There is some η > 0 such that there exist
pools N of arbitrarily large size n which, for any coalition
size c ≤ 5n/64 and all objectives g, satisfy
MANIPint(N, g, c) ≥ η k/n, MANIPext(N, g, c) ≥ η k/n,

MANIPcomp(N, g, c) ≥ η ck/n.
The same pools also satisfy Theorem 4.1.
The proof is in Appendix C and relies on an example ex-
actly like Theorem 1.1: there is one binary feature, where v1
is severely underrepresented in the pool. The bounds arise
from agents with v0 misreporting v1.

5 Manipulability of Real-World Instances
Now we compare the manipulability of leximin, nash, `2 and
`∞ in eight real-world panel selection instances. Instance
details are provided in Appendix D. We present here two
representative instances, called sf(a) and hd, and defer the
rest to Appendix D. The datasets were obtained from groups
of assembly organizers based in the UK and US, respec-
tively. Each real-world instance consists of p, k,N . To study
how manipulability changes as we increase the pool size,
we simply copy the pool, leaving p and k fixed. In each in-
stance, we copy the pool until n ≥ 100k, as practitioners
often specify their target pool size in multiples of k.

We will test our selection algorithms against an individual
manipulator — that is, we measure how much selection
probability any agent can gain by misreporting their
feature vector. The most powerful individual manipulator
could gain MANIPint(N,A, 1) probability against A— the
quantity to which our theoretical bounds apply. Given the
computational difficulty of calculating the optimal manipu-
lation (each agent has |W| ∈ Ω(2|F |) possible strategies),
we test our algorithms against three practically-motivated
heuristic strategies: OPT-1, MU, and HP, defined below.
The results are summarized in Figure 1.
OPT-1: Optimal misreport of one feature. An agent play-
ing strategy OPT-1 reports the feature vector that benefits
them most, subject to misreporting their value for at most
one feature. This strategy, in practice, might correspond to
a practical setting in which only a few features cannot be
validated. When comparing across algorithms, we think of
OPT-1 as a proxy for the optimal individual manipulation.
As column 1 of Figure 1 shows, the manipulability of `2 and
`∞ against OPT-1 declines quickly in n, while leximin and
nash remain arbitrarily susceptible to manipulation. The
fact that leximin and nash are so manipulable even when
agents are willing to misreport only one feature was not

implied by our lower bounds, and shows the findings in our
theoretical lower bounds are of practical relevance.
MU: Most underrepresented. Let η(f,v)(N) := |{i|f(i) =
v}|/|N | be the fraction of agents with value v for feature f .
An agent playing strategy MU reports the vector containing
the most underrepresented value of each feature f — that is,
w̃f := arg maxv∈Vf

p(f,v)/η(f,v)(N). Again, leximin and nash
are arbitrarily manipulable against MU, even for large n.
The vulnerability of leximin and nash here is of especially
high practical concern, because the MU manipulation
strategy is perhaps the most likely to be used in practice by
less sophisticated manipulators: it is intuitive and requires
only ordinal information about (the only O(|F |) many)
feature-value frequencies and no access to the algorithm
(in contrast, OPT-1 and HP require algorithm access and
information about the pool’s vector-level composition).
HP: Highest-Probability. Another reasonable heuristic a
manipulator i might use would be to report the vector w̃ that
receives the highest selection probability in the true pool; we
call this heuristic HP. That this strategy’s efficacy declines
in n intuitively makes sense: misreporting a vector that is al-
ready in the pool means joining a vector group whose size
is growing linearly in n (at least in these experiments, where
we are duplicating N). This intuition alludes to the insight
that the most problematic misreports for suboptimal algo-
rithms are those of vectors that do not already exist in the
pool — an intuition supported by both the proof of our lower
bound in Theorem 3.1, and the fact that the most underrepre-
sented vector (targeted by the much more effective strategy
MU) is not in the original pool of any instance we study.

Extension: Manipulability and Selection Bias
While n is much easier to change in practice than the level
of self-selection bias (SSB), the SSB could be decreased by
a more targeted recruitment process, motivating our study of
this would impact the manipulability. We introduce a mea-
sure of SSB in an instance, which roughly captures how
severely the algorithm must skew selection probabilities to
satisfy the constraints:

∆p,k,N := max
(f,v)∈FV

p(f,v)

η(f,v)(N)
− min

(f,v)∈FV

p(f,v)

η(f,v)(N)

Figure 2(a) shows that this measure of SSB is highly pre-
dictive of manipulability: across instances, the manipulation
gain of OPT-1 (scaled by k/n, for standardization) against
`∞ corresponds closely with instances’ ∆p,k,N values, as
listed in the figure legend. Proceeding with this measure, we
evaluate the impact of decreasing it in two ways. First, in
Figure 2(b), we decrease the SSB smoothly by interpolating
between the original poolN and the “nearest” (by Euclidean
distance) pool N ′ with ∆p,k,N ′ = 0. Second, in Figure 2(c),
we decrease the SSB by successively dropping features from
the instance in decreasing order of their feature-level SSB,
defined as ∆p,k,N restricted to the values of a given feature.
Using either approach, in sf(a), the manipulability of all al-
gorithms except leximin against OPT-1 drops quickly, while
leximin remains manipulable until extremely low levels of
SSB are reached. We defer the details of these methods, plus
results for the remaining instances, to Appendix D.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9701

2.5 5.0 7.5 10.0
number of pool copies

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: sf(a); strategy: OPT-1

2.5 5.0 7.5 10.0 12.5
number of pool copies

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: hd; strategy: OPT-1

2.5 5.0 7.5 10.0 12.5
number of pool copies

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: hd; strategy: MU

2.5 5.0 7.5 10.0 12.5
number of pool copies

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: hd; strategy: HP

2.5 5.0 7.5 10.0
number of pool copies

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: sf(a); strategy: MU

2.5 5.0 7.5 10.0
number of pool copies

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: sf(a); strategy: HP

Figure 1: Rounding-based algorithms leximin, nash, `2, and `∞ versus each manipulation strategy in instances sf(a) and hd.

0.000.250.500.751.00
level of self selection bias Æ

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: sf(a); strategy: OPT-1

0246
number of feature constraints

0.0

0.5

1.0

m
an
ip
ul
at
io
n
ga
in

instance: sf(a); strategy: OPT-1

0 25 50 75 100
number of pool copies (mult. k)

0

5

10

15

m
an
ip
ul
at
io
n
ga
in

(m
ul
t.
k
/n

) algorithm: `1; strategy: OPT-1
sf(e) (15.28)

sf(b) (11.78)

cca (10.56)

sf(d) (8.02)

sf(a) (6.08)

newd (4.16)

hd (3.54)

sf(c) (3.18)

(a) (b) (c)

Figure 2: The impact of self-selection bias on the manipulability of leximin, nash, `2 and `∞ by an agent playing OPT-1 strategy.

6 Discussion
Our work illuminates a tradeoff between two goals: ensuring
that no one gets too little selection probability (as pursued in
the related work (Flanigan et al. 2021)), and ensuring that no
one gets too much probability (which we show is important
for limiting manipulation incentives). leximin and nash pri-
oritize the first goal but, as we show, perform poorly on the
second. In contrast, we show that `p norms can be optimal
in regards to the second goal, but they perform poorly on the
first: we find that both `2 and `∞ give at least one agent zero
probability in all eight instances we study (see Appendix D).
This begs the question: is there an objective that both pre-
vents high probabilities (thereby limiting manipulability) as
well as low probabilities? An objective with optimal depen-
dency on n for both desiderata at once would give all agents
Θ(1/n) probability.4

Another first-order technical extension of this work would
be to repeat this analysis within quota-based algorithms, as
they implement the notion of representation most commonly
used (Flanigan et al. 2021). Because the separation between
leximin, nash versus `p norms is due to fundamental proper-
ties of these objectives, we expect them to exhibit roughly
similar behavior in quota-based algorithms. However, the
combinatorial structure of quotas may make quota-based al-
gorithms much more manipulable in the worst case.

4Θ(1/n) is the optimal rate at which manipulability can decline
(Theorem 4.3); because any algorithm must divide k probability
over n people, the minimum probability can be at most Θ(1/n).

Even without this extension to quota-based algorithms,
our work raises some practical insights. First, it suggests that
in general, algorithms permitting high selection probabili-
ties come with risks of manipulability — a property that can
be tested in any selection algorithm, maximally fair or not.
If one does maximize a carefully chosen fairness objective,
our work reveals practicable strategies for limiting manipu-
lation incentives: decreasing the SSB (even simply by drop-
ping features that one expects to be highly self-selected), or
recruiting a larger pool. Based on our empirical results, even
doubling the pool sizes currently used in practice would sub-
stantially decrease manipulability.

Beyond the application of assembly selection, our prob-
lem is conceptually reminiscent of strategic classification,
in which agents may misreport their features to increase
their probability of receiving a desirable prediction from a
machine-learned classifier (Hardt et al. 2016; Dong et al.
2018; Chen, Liu, and Podimata 2020; Ahmadi et al. 2021).
Within the strategic classification framework, we can view
a selection algorithm as a constrained classifier: one which
classifies agents as either on or off the panel with some prob-
ability based on their features, while satisfying demographic
representation constraints on who receives a positive clas-
sification. While some existing work is tangentially related
(Liu, Garg, and Borgs 2022), to our knowledge this precise
problem has not been studied in the strategic classification
literature. Our notions of manipulability, and our technical
results on the stability of our convex program, may be of
interest for this domain.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9702

Acknowledgements
We thank Thibaut Horel and Paul Gölz for helpful tech-
nical discussions; the reviewers for their excellent feed-
back; and with the several organizations that provided real-
world citizens’ assembly data including the Sortition Foun-
dation, the Center for Blue Democracy, Healthy Democ-
racy, and New Democracy. This work was partially sup-
ported by the National Science Foundation under grants IIS-
2147187, IIS-2229881 and CCF-2007080; and by the Of-
fice of Naval Research under grant N00014-20-1-2488 (AP);
the AFOSR Multidisciplinary University Research Initiative
(MURI) project ANSRE (SW); and a Fannie and John Hertz
Foundation Fellowship and a National Science Foundation
Graduate Research Fellowship (BF).

References
Ahmadi, S.; Beyhaghi, H.; Blum, A.; and Naggita, K. 2021.
The strategic perceptron. In Proceedings of the 22nd ACM
Conference on Economics and Computation, 6–25.
Bansal, N. 2019. On a generalization of iterated and ran-
domized rounding. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, 1125–1135.
Beck, J.; and Fiala, T. 1981. “Integer-making” theorems.
Discrete Applied Mathematics, 3(1): 1–8.
Bürgerrat. 2023. French citizens’ assembly supports assisted
dying. https://www.buergerrat.de/en/news/french-citizens-
assembly-supports-assisted-dying/. Accessed: 2023-08-10.
Chen, Y.; Liu, Y.; and Podimata, C. 2020. Learning strategy-
aware linear classifiers. Advances in Neural Information
Processing Systems, 33: 15265–15276.
Dong, J.; Roth, A.; Schutzman, Z.; Waggoner, B.; and Wu,
Z. S. 2018. Strategic classification from revealed prefer-
ences. In Proceedings of the 2018 ACM Conference on Eco-
nomics and Computation, 55–70.
Ebadian, S.; Kehne, G.; Micha, E.; Procaccia, A. D.; and
Shah, N. 2022. Is Sortition Both Representative and Fair?
Advances in Neural Information Processing Systems, 35.
Ebadian, S.; and Micha, E. 2023. Boosting Sortition via
Proportional Representation. Manuscript.
Flanigan, B.; Gölz, P.; Gupta, A.; Hennig, B.; and Procaccia,
A. D. 2021. Fair algorithms for selecting citizens’ assem-
blies. Nature, 596(7873): 548–552.
Flanigan, B.; Gölz, P.; Gupta, A.; and Procaccia, A. D.
2020. Neutralizing self-selection bias in sampling for sor-
tition. Advances in Neural Information Processing Systems,
33: 6528–6539.
Flanigan, B.; Kehne, G.; and Procaccia, A. D. 2021. Fair
sortition made transparent. Advances in Neural Information
Processing Systems, 34: 25720–25731.
Hardt, M.; Megiddo, N.; Papadimitriou, C.; and Wootters,
M. 2016. Strategic classification. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer
Science, 111–122.
Liu, L. T.; Garg, N.; and Borgs, C. 2022. Strategic rank-
ing. In International Conference on Artificial Intelligence
and Statistics, 2489–2518.

Participedia. 2023. https://participedia.net/search?
selectedCategory=case&recruitment method=random,
stratified. Accessed: 2023-08-14.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9703

