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Abstract

Homography estimation is a fundamental problem in com-
puter vision. Previous works mainly focus on estimating ei-
ther a single homography, or multiple homographies based on
mesh grid division of the image. In practical scenarios, single
homography is inadequate and often leads to a compromised
result for multiple planes; while mesh grid multi-homography
damages the plane distribution of the scene, and does not fully
address the restriction to use homography.
In this work, we propose a novel semantics guided multi-
homography estimation framework, Mask-Homo, to pro-
vide an explicit solution to the multi-plane depth disparity
problem. First, a pseudo plane mask generation module is
designed to obtain multiple correlated regions that follow the
plane distribution of the scene. Then, multiple local homogra-
phy transformations, each of which aligns a correlated region
precisely, are predicted and corresponding warped images are
fused to obtain the final result. Furthermore, a new metric,
Mask-PSNR, is proposed for more comprehensive evaluation
of alignment. Extensive experiments are conducted to verify
the effectiveness of the proposed method. Our code is
available at https://github.com/SAITPublic/MaskHomo.

Introduction
Homography (H) estimation is a fundamental problem in
computer vision, that has been extensively used in various
applications, such as image alignment, image stitching, etc.
A homography is a type of projective transformation, which
can be used to describe the mapping relationship between
the pixel coordinates of two planes within an image pair.

Traditional H estimation solutions are feature-based,
which follow the pipeline of feature detection and matching,
outlier rejection and numerical calculation. However, they
are highly dependent on the feature detection quality,
leading to inaccurate estimation in low texture scenes.

In recent years, unsupervised deep learning-based meth-
ods (Nguyen et al. 2018; Ye et al. 2021) which directly
predict H by minimizing the difference between the warped
source image and target image become top performers.
However, an optimal H can be obtained only under the
following constraints: (1) rotation only movements of the
camera; (2) the scene locates at a planar surface; (3) the
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Figure 1: Comparison between single-H and multi-H. When
multiple planes exist in a scene, single-H tends to focus
on the dominant plane or find a balance between multiple
planes, leading to misalignment in some regions. The
overlay image is generated with R channel from the target
image and G, B channels from the warped source image.

scene is at a distance from the observer. Therefore, when
dealing with scenes containing multiple planes, single-H
encounters difficulties in locating and aligning the corre-
sponding regions within the image pair (Fig 1).

To deal with this, (Zhang et al. 2020) learns a mask to
reject outlier regions and only select reliable regions for
H estimation. Later, (Hong et al. 2022) proposes to guide
the estimated H to focus on the dominant plane. Despite
the efforts, these methods still obtain a global H, which is
intrinsically a compromised result for multi-plane scenes.

Recently, (Liu et al. 2016) and (Nie et al. 2022) propose
to estimate multiple Hs by dividing the image into mesh
grids and computing a local H for each grid. (Liu et al.
2022b) and (Liu et al. 2022a) also propose to use mesh grid
H estimation. By dividing the image into even mesh grids,
there will be both cases where one grid contains multiple
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MSE: 0.0977   
PSNR: 25.7402

MSE: 0.1516   
PSNR: 31.8068

MSE: 0.3736  
PSNR: 23.0633

MSE: 0.4308   
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Figure 2: Comparison of different alignment effects evalu-
ated using MSE(↓) and Mask-PSNR(↑). It can be noticed
that in this case, compared to MSE, Mask-PSNR is more
consistent with human observation.

planes and cases where one plane is divided into multiple
grids, hence damaging the plane distribution, and the
limitations of single-H models are also not fully addressed.
Besides, calculated Hs for adjacent grids are likely not
consistent when their dominant planes are different.

Another issue is that when evaluating H estimation
performance, most existing works use Mean Squared Error
(MSE), also referred to as Point Matching Error in (Zhang
et al. 2020; Hong et al. 2022; Liu et al. 2022a). MSE
calculates the deviations between the labeled matching point
pairs within image pairs. However, as illustrated in Fig 2, a
better MSE on sparse matching point pairs may not always
guarantee better alignment of the entire image. In (Nie
et al. 2022), the authors employ Peak Signal-to-Noise Ratio
(PSNR), which calculates pixel-wise difference. Though,
PSNR on the whole image can be affected by the plane-
induced depth disparity and moving objects (people, vehicle,
etc.) and cannot adequately represent the alignment quality.

To solve the aforementioned issues, we propose a novel
framework, named Mask-Homo, for multi-H estimation and
a new metric Mask-PSNR for more comprehensive evalua-
tion of the alignment quality. In the proposed framework,
given a pair of images, we obtain mask regions which
correspond to pseudo planes within the images and carry
out regional H estimation for the correlated mask pairs. The
final warping output is obtained by fusing multiple warped
images using estimated regional Hs. To summarize, our
main contributions are as follows:

• A multi-H estimation framework, Mask-Homo, which
solves the plane-induced depth disparity issue.

• A pseudo plane mask generation module, which obtains
pseudo plane masks for regional H estimation, based on
semantic information guidance.

• An auxiliary metric, Mask-PSNR, for more dense and
visual consistent alignment quality evaluation.

Related Work
Image Segmentation Image segmentation methods can
be broadly classified into three categories: instance seg-
mentation (Li et al. 2017; Lee and Park 2020), semantic
segmentation (Strudel et al. 2021; Hamilton et al. 2022),
and panoptic segmentation (Li et al. 2019; Zhou et al.
2022). Semantic segmentation assigns a category label to
each pixel to identify objects, instance segmentation focuses
on identifying and segmenting individual instances of the
objects, and panoptic segmentation combines the strengths

of the previous two. Conventional segmentation aims to
identify objects, while in our context, we aim for correlated
image regions from the same plane within image pairs,
which can be approximately induced by a homography.

Single-H Estimation Traditional approaches for H es-
timation typically involve detecting and matching feature
points, rejecting outliers, and obtaining H with Direct Linear
Transformation (Hartley and Zisserman 2003). With the
advancement of deep learning, (DeTone, Malisiewicz, and
Rabinovich 2016) introduces the first deep H estimation
model in 2016, since when numerous methods have been
proposed. Supervised methods (Le et al. 2020; Shao et al.
2021) use a synthetic dataset for training, that lacks realistic
scene depth disparity, and generalize poorly on real images.
In contrast, the Unsupervised method (Nguyen et al. 2018)
uses real image pairs and develops an end-to-end algorithm
by computing photometric loss. (Jiang et al. 2023) further
proposes to generate a realistic dataset from unlabelled real-
world image pairs. (Zhang et al. 2020) and (Le et al. 2020)
propose to predict a mask to remove outliers and moving ob-
jects; while (Hong et al. 2022) proposes to guide the model
to focus on the dominant plane by imposing a coplanarity
constraint. Some SOTA image stitching methods (Nie et al.
2021, 2023) also explore different H estimation strategies.
Although these methods have achieved good performance,
they result in a global H, which is either a trade-off between
multiple planes or focusing on the dominant plane, and still
face the model inadequacy problem.

Multi-H Estimation To better handle the depth disparity
challenge in multi-plane scenes, various approaches have
been proposed. (Gao, Kim, and Brown 2011) proposes a
dual H method which accounts for the distant plane and
ground plane, separately. (Zaragoza et al. 2013) estimates
a global projective warp while accommodating local devi-
ations. (Lee and Sim 2020) partitions the image into super
pixels and conducts warping based on a locally optimal H.
However, these methods are feature-based and not robust in
low texture scenes. For deep learning-based solutions, (Liu
et al. 2016) introduces MeshFlow to predict a sparse motion
field by dividing the image into mesh grids and computing
a local H for each grid. (Liu et al. 2022b) and (Liu et al.
2022a) generalize the previous single-H method to local
mesh grid H estimation. (Nie et al. 2022) also proposes to
predict multi-grid H from global to local. Although these
approaches are able to describe nonlinear motions better,
the mesh grid separation of the image damages the plane
distribution of the scene, and does not essentially handle the
model inadequacy problem of single-H.

Optical Flow Optical flow (OF) (Sun et al. 2018; Teed and
Deng 2020) is a different type of image alignment method
from H. OF achieves heavy, pixel-level fine alignment with a
high degree of freedom (DoF), while parametric H achieves
light-weight, globally optimal alignment with a much lower
DoF. This paper targets on H-based solutions. Multi-H offers
a trade-off between the number of H and how much aligned
is the image pair, and the goal is to obtain the best set of H
to minimize the geometric errors.
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Figure 3: The overall pipeline of Mask-Homo. 1) Pseudo plane mask generation module obtains region correlations within the
image pair. 2) Multi-homography estimation module predicts multiple local homographies for different regions. The multiple
warped images are further fused to obtain the final result. It is interesting to find that the optical flow of the global H is very
similar to one of the local Hs, as shown in the yellow dotted frame; this also proves that the global H estimation usually
concentrates on one dominant plane instead of the whole image.

Method
Overview
The pipeline of the proposed Mask-Homo framework is
illustrated in Fig 3. The framework has two main modules.
The Pseudo Plane Mask Generation Module takes a pair of
images Ia and Ib as input and outputs two sets of correlated
pseudo plane mask pairs (Eq. 1).

(Ma,Mb) = S(Ia, Ib) (1)

The Multi-Homography Estimation Module takes the
correlated mask pairs and image pair as input and outputs
regional H estimation results for different regions (Eq. 2).

H = H(Ia, Ib;Ma,Mb) (2)

Last, multiple warped images obtained with different
regional Hs (JIH = Ψ(H, I)) are fused to generate the final
artifact-free output.

The notations are as follows: we use S and H to denote
the two main modules, I,M,H/Ĥ,N to denote image,
mask, homography for forward/backward warping and the
number of regional homographies. Ψ is used to represent the
warping operation and JH is the warped image or feature by
H . Blackboard bold font (M and H) is used to represent sets.

Pseudo Plane Mask Generation
The goal of this module is to find region correlations
between an image pair, where the two correlated regions can
be approximately induced by a homography. The correlated
regions include not only rigid planes such as ground or lake
surface, but also planes in a more approximate sense, such
as a range of buildings or mountains in the distance; we

refer to them as pseudo planes. Intuitively, the masks for
pseudo planes should be reasonably large, connected, and
correlate to each other between the image pair, to enable
robust and accurate local H estimation. We therefore form
the fundamental geometric requirements for pseudo plane
masks: with decent degree of connectivity and area.

Since connected pixels of same object category usually
lie on same pseudo plane, we utilize semantic segmentation
(Hamilton et al. 2022) to obtain initial segmentation results.
However, they may be fragmented and not accurate in some
regions, as shown in Image pair 1 of Fig 4(b). We conduct
post-processing to acquire utilizable pseudo plane masks.

The required correlated masks for H estimation train-
ing and inference are slightly different. For H estimation
training, we aim for mask pairs that are as accurate as
possible. That is to say, we only focus on meaningful and
credible regions to calculate a local H within an image
pair. Specifically, we choose to trust the segmentation
results with larger areas for different categories and rely
on mask matching to reduce the influence of segmentation
errors. Small or unmatched regions are not included for H
estimation training. While for inference, we aim for mask
pairs that cover the entire image. Specifically, for regions
that are not credible enough to calculate a H, we assume that
it is more likely to share the nearby local H.

The visual demonstration is shown in Fig 4. As shown in
Image pair 2 of Fig 4(d)(e), for the yellow mask pair, when
used for H estimation training, only the sea region mask pair
is used; while for inference, nearby small masks including
the mountain in the distance and persons are merged with
it to form a larger mask pair that share the same local H.
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Figure 4: From left to right are original images, initial segmentation results, segmentation results after removing segmentation
fragments, mask pairs for H estimation training and inference, respectively. For H estimation training, matched mask pairs share
the same segmentation category, have close area and center point location; matched and unmatched mask pairs are represented
with white happy face and blue sad face. Same marks are used to indicate whether local or global H is used for inference.

When there exists unmatched masks, they are combined and
handled with global H, which is estimated from the entire
image using full mask pair (bottom middle part in Fig 3).

The pseudo code of this module is depicted in Algorithm
1. We denote initial segmentation, mask matching opera-
tions as K and P , size and class as S, C. Shole, Sseg , Dmin,
Srto and N are five hyper-parameters. Specific procedures
of segmentation post-processing are presented below.

For H estimation training (1) Remove segmentation
fragments that are smaller than Shole. (2) Select masks that
are larger than Sseg . (3) Remove moving object classes. (4)
Mask matching. Two masks match only when the following
conditions are true: (a) they belong to the same class; (b)
center point location difference is minimal and lower than
Dmin; (c) size difference is lower than Srto.

For inference (1) Remove segmentation fragments that
are smaller than Shole. (2) Select at most N masks that are
larger than Sseg . (3) Merge unselected masks with selected
ones. (4) Mask matching and image matching. Use local
H and global H for matched and unmatched image pair,
respectively. For partly matched image pair, local and global
H are used together, for matched and unmatched mask pairs.

Multi-Homography Estimation
As can be seen in Fig 1, multiple Hs are required in order to
align the sky, mountain, water and islands accurately and
respectively. Multi-Homography Estimation Module con-
ducts regional H estimation, based on previously acquired

pseudo plane mask pairs. As H is estimated locally from a
certain and mostly irregular region within the image pair,
traditional 4-point parameterization (DeTone, Malisiewicz,
and Rabinovich 2016), characterized with 4-corner offsets,
is not applicable. We use 8 orthogonal flow bases parame-
terization(Ye et al. 2021) for regional H representation.

We follow the transformer network design by (Hong
et al. 2022) for H estimation while incorporating the
pseudo plane mask information. The query-key correlation
of transformers establishes better local correspondence for H
estimation, compared to CNN-based alternatives. The input
images are first converted to feature maps from a feature
extractor. Then, feature maps at multiple levels are extracted
from a multi-scale CNN encoder. Last, the resulting feature
pyramids are utilized for coarse-to-fine H estimation, using a
transformer with cascaded self-attention encoder and class-
attention decoder blocks.

To incorporate pseudo plane mask information, the mask
is multiplied with image feature, which is extracted from
the feature extractor, before being fed into the multi-scale
CNN encoder for H estimation. For more details about the
transformer network, please refer to (Hong et al. 2022).

As for the loss function, we also integrate the
pseudo plane mask information into triplet loss (Schroff,
Kalenichenko, and Philbin 2015) and feature identity loss
(Ye et al. 2021). Given an image pair (Ia, Ib) and a
correlated mask pair (Ma,M b), which corresponds to a
local homography H , masked triplet loss encourages the
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Algorithm 1: Pseudo Plane Mask Generation S
Input: Image pair: Ia, Ib

Output: Correlated masks: Ma,Mb

1 Minit ← K(Ia, Ib) // (Fig.4(b))
2 for M in Minit do
3 if Sm < Shole then
4 Merge M to surrounding M ′

5 end
Result: Mfilled // (Fig.4(c))

6 for M in Mfilled do
7 case Homography estimation training do
8 if Sm > Sseg & Cm ̸= moving obj. then
9 Add M to Mc // Candidate masks

10 (Ma,Mb)←P (Mc) // Mask matching
(Fig.4(d))

11 end
12 case Inference do
13 if Sm > Sseg & (M ∈ largest N masks) then
14 Add M to Ms // Selected masks
15 else
16 Add M to Mu // Unselected masks
17 end
18 for M in Mu do
19 M′

s ←Merge M to closest Ms

20 end
21 (Ma,Mb)←P(M′

s) // Mask matching
(Fig.4(e))

22 end
23 end

masked region in Ia to approach the corresponding masked
region in Ib, while the difference between two masked
regions is maintained. Masked feature identity loss enforces
the feature extractor (G) to be warp-equivalent.

For the masked triplet loss when warping from Ia to
Ib, the anchor is defined as M b ⊙ G(Ib), the positive is
defined as M b ⊙ J

G(Ia)
H and the negative is defined as

Ma ⊙ G(Ia). ⊙ denotes element-wise multiplication; vice
versa for backward warping from Ib to Ia.

We use LFI , LTrif and LTrib to denote feature identity
loss, forward and backward triplet loss, and L̈ to denote loss
being calculated on masks. The definition for masked feature
identity loss is shown in Eq. 3. The total loss function for H
estimation training is summarized in Eq. 4.

L̈fi = ||Mb ⊙ J
G(Ia)
H −Mb ⊙ G(JIa

H )||

+ ||Ma ⊙ J
G(Ib)

Ĥ
−Ma ⊙ G(JIb

Ĥ )||
(3)

L̈H = L̈f + L̈b + L̈fi (4)

With previous two modules, we have obtained multi-
ple regional H transformations corresponding to different
pseudo planes in the scene. Multiple warped images can be
obtain accordingly, each of which aligns a correlated region
precisely. In the inference stage, the generated pseudo plane
mask pairs cover the entire image. We take advantage of
this mask information to maintain consistent warping within
individual mask regions, and conduct fusion to finally obtain
an artifact-free and natural-looking result.

Experiments
Dataset Our method is evaluated on a natural image dataset
(Zhang et al. 2020; Liu et al. 2022a) with 75.8k training
pairs and 4.2k testing pairs. The scenes in the dataset are
roughly categorized into five types: REgular (RE), Low
Texture (LT), Low Light (LL), Small Foreground (SF) and
Large Foreground (LF), where the last four types are more
challenging. For each test pair of images, 8-10 labeled
matching point pairs are provided. Six of them are located on
the dominant plane and can be used for global H evaluation,
while the rest 2-4 point pairs are from other planes and can
be further used for local H estimation.

Evaluation Metrics As aforementioned, apart from
the conventional MSE, we further utilize Mask-PSNR for
more comprehensive evaluation. In (Nie et al. 2022), PSNR
is calculated on the overlapping regions after warping of
the entire image. However, the existence of depth disparity
and moving objects affects its accuracy. Thus, we propose
Mask-PSNR, which calculates PSNR on the correlated mask
regions. Mask-PSNR avoids the influence of depth disparity
by following the region correlation hypothesis, and the effect
of moving objects by segmentation post-processing.

Implementation Details For training, we randomly crop
384×512 patches near the center of original images to avoid
out-of-bound coordinates after warping. Other parameters
for H estimation transformer are same to (Hong et al. 2022).
Adam optimizer (P. Kingma and Ba 2015) is employed. For
H estimation training, the learning rate is 1 × 10−4, which
decays by a factor of 0.8 after every epoch, batch size is 8
and it takes 10 epochs to train.

For segmentation post-processing, there are five hyper-
parameters involved: Shole, Sseg , Dmin, Srto and N . The
first four parameters determine the shape of generated
segmentation masks. We empirically find that Dmin affects
the diversity of generated segmentation masks much more
significantly than others. Thus in our experiments, we fix
Shole = 500, Sseg = 10, 000, Srto = 15%, while
Dmin is varied to investigate the influence of segmentation
post-processing on the performance. The last parameter N
decides the maximum number of pseudo plane masks within
each image pair in inference, which is empirically set to 4.

Comparison with Existing Methods
To qualitatively and quantitatively evaluate the performance
of the proposed method, we report comparisons with 5
single-H methods: Supervised (DeTone, Malisiewicz, and
Rabinovich 2016), Unsupervised (Nguyen et al. 2018), CA-
Unsupervised (Zhang et al. 2020), BasesHomo (Ye et al.
2021), HomoGAN (Hong et al. 2022); 3 multi-H1 methods:
APAP (Zaragoza et al. 2013), MeshFlow (Liu et al. 2016),
MeshBasesHomo (Liu et al. 2022a); 2 dense optical flow
methods: PWCNet (Sun et al. 2018), RAFT (Teed and
Deng 2020). Due to space limitations, more detailed results
can be found in the supplementary material.

1MeshBasesHomo (Liu et al. 2022a) is the latest and SOTA
multi-H work. However the code for the mesh grid H estimation
part has not been released yet, thus we cannot test it with Mask-
PSNR or conduct qualitative comparisons.
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CA-Unsupervised BasesHomo HomoGAN Mask-Homo (Ours) Unsupervised APAP MeshFlow

Figure 5: Qualitative results of our method and six other deep learning-based methods. First four are single-H methods; next
two are multi-H methods. Error-prone regions are highlighted with red, yellow and green boxes. Best viewed with zooming in.

PWCNet RAFT Mask-Homo (Ours)

Figure 6: Qualitative results with two OF methods.

Qualitative comparison In Fig 5, we present qualitative
results of our method together with six recent works. First
four are single-H methods; next two are multi-H methods.

The first example is challenging as it contains a range of
buildings, distant power lines and snow covered foreground
pavement, resulting in diverse planes and depth disparities.
The second and third examples also include multiple planes,
of which the dominant plane locates at the mountain and
building, respectively. As highlighted in colored boxes,
existing methods cannot align these images as well as ours.

The Unsupervised method (Nguyen et al. 2018) predicts
a single H based on the entire image, leading to a compro-
mised result on multiple planes. CA-Unsupervised (Zhang
et al. 2020) and BasesHomo (Ye et al. 2021) select reliable
regions when estimating the H, while HomoGAN (Hong
et al. 2022) focuses on the dominant plane. These methods
perform well on aligning regions of concern, however the
rest regions of the image are ignored, leading to low
performance on whole image evaluation. For instance, as the
yellow boxes in three examples are not located in dominant
regions, none of previous methods can align them as well
as ours. APAP and MeshFlow (Zaragoza et al. 2013; Liu
et al. 2016) learn multiple Hs based on image mesh grids.
However, Hs estimated from local mesh grids are not as
accurate as from the proposed pseudo planes. Our method

estimates multiple Hs following the plane distribution, and
is able to align different regions simultaneously.

In Fig 6, we provide warping results using our method
and OF. As can been seen, OF sometimes damages the
consistency of the image content, or fails when moving
object passes quickly. Our network learns a special OF
constrained by the 8 H bases. It is embedded within a 8-D
subspace, which is significantly smaller than 2HW -D space
of a general OF. In both cases, our method is able to align
different regions, with a much lower DoF.

Quantitative comparison We report quantitative compar-
isons with 5 single-H methods, 3 multi-H methods, and 2
dense optical flow methods, using MSE and Mask-PSNR.

As can been seen from Table 1, the MSE in the upper half
(Row 3-10) measures the error between 6 pairs of matching
points on the dominant plane and is used for single-H
evaluation. While, the lower half (Row 11-18) measures the
error between all pairs of matching points, some of which
are outside the dominant plane, therefore more suitable for
multi-H evaluation. The Mask-PSNR reflects the similarity
between the correlated region pair after warping.

For MSE, when compared with single-H methods (Row
4-9), our method achieves better performance than SOTA
methods in most cases. Our method outperforms the baseline
HomoGAN∗ (Hong et al. 2022) (p.t.) by 16% (0.49→0.41)
and even the best HomoGAN∗ (f.t.) as well (0.42→0.41).
However, for the LT scene, we are having slightly worse
MSE. This may be because that our method estimates
H from local regions, which is affected by low texture
regions in these scenes. When compared with multi-H meth-
ods (Row 12-15), the SOTA method is MeshBasesHomo
(Liu et al. 2022a). Our method outperforms it by 13%
(0.79→0.69) when using similar amount of H (our method
uses at most 4 H). Even for MeshBasesHomo with 8 × 8
mesh, i.e. 64 H, which is much larger than ours, our method
still surpasses it in RE and LT cases. For the LF scene,
our method does not perform as well, and we think it is
related to that most LF scenes contain moving objects (cars,
etc.) that occur as large foreground, and in our H estimation
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MSE (↓) Mask-PSNR (↑)
RE LT LL SF LF Avg RE LT LL SF LF Avg

I3×3
2 - dominant plane 7.75 7.65 7.21 7.53 3.39 6.70 29.41 39.10 35.72 34.60 36.84 35.13

Supervised 1.51 4.48 2.76 2.62 3.00 2.87 26.07 31.41 33.20 27.70 27.52 29.18
Unsupervised 0.79 2.45 1.48 1.11 1.10 1.39 Inf4 30.73 32.86 26.97 Inf Inf
CA-Unsupervised 0.73 1.01 1.03 0.92 0.70 0.88 37.54 38.06 42.08 35.35 35.14 37.64
BasesHomo 0.29 0.54 0.65 0.61 0.41 0.50 37.57 38.02 42.27 35.67 35.28 37.76
HomoGAN∗ (p.t.)3 0.28 0.49 0.61 0.62 0.45 0.49 40.31 42.96 43.28 38.75 39.91 41.04
HomoGAN∗ (f.t.) 0.26 0.40 0.60 0.49 0.32 0.42 40.27 42.79 43.25 38.51 39.95 40.95
Mask-Homo (Ours) - dominant plane 0.22 0.61 0.54 0.39 0.31 0.41 40.47 43.20 43.32 40.76 41.87 41.93
I3×3 - all points 7.81 7.87 7.49 8.34 4.14 7.13 29.41 39.10 35.72 34.60 36.84 35.13
APAP 1.59 2.72 1.75 1.70 2.10 1.97 28.38 32.31 35.11 28.06 29.95 30.76
MeshFlow 0.46 1.04 1.06 1.09 1.36 1.00 37.50 37.53 41.72 35.14 37.35 37.85
MeshBasesHomo (2×2 mesh) 0.39 1.01 0.85 0.72 0.99 0.79 -4 - - - - -
MeshBasesHomo (8×8 mesh) 0.32 0.91 0.67 0.48 0.74 0.62 - - - - - -
PWCNet 0.42 1.51 0.82 1.03 0.99 0.95 32.54 31.98 41.60 34.81 33.70 34.93
RAFT 0.32 0.99 0.74 0.49 0.88 0.68 37.29 39.79 42.50 39.02 40.37 39.79
Mask-Homo (Ours) - all points 0.27 0.86 0.73 0.55 1.05 0.69 40.47 43.20 43.32 40.76 41.87 41.93

Table 1: MSE and Mask-PSNR comparison results of our method with both traditional and deep learning-based, single-H and
multi-H methods. In the upper half, MSE reports the mean squared error between six pairs of matching points that are located
on the dominant plane and is used for single-H evaluation. In the lower half, MSE is between all pairs of matching points,
some of which are located in areas outside the dominant plane, and more suitable for multi-H evaluation. The best and second
best results are highlighted using boldface and underlining, respectively. Moreover, the results of two OF methods are added as
reference, which are highlighted using italics.
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Figure 7: Investigation of the influence of pseudo plane mask
generation on the homography estimation performance with
two most influential parameters: Dmin and N .

training, moving objects are removed. When compared with
OF methods (Row 16-17), our method surpasses PWCNet
and achieves comparable result to RAFT, which further
verify the effectiveness of the proposed framework.

For Mask-PSNR, our method notably outperforms all
existing methods (0.89dB, compared to SOTA), especially
for SF and LF scenes (2.01dB and 1.92dB). This also agrees
with our intuition that global H cannot align the images well
when notable foreground or multiple planes exist.

Investigation of Pseudo Plane Mask Generation
In this subsection, we investigate the influence of pseudo
plane mask generation on the performance. As introduced
earlier, the pseudo plane mask generation is mainly affected
by 2 parameters: Dmin and N . Dmin is maximal center

2I3×3 refers to identity transformation.
3* denotes reproduced results using officially released pre-

train(p.t.) and fine-tune(f.t.) models. HomoGAN∗(p.t.) is the
baseline model we utilize.

4Inf means existence of mask regions having no overlapping.

point location difference. A smaller value guarantees more
accurate mask matching, while a larger value allows less
strict matching with larger diversity. N is maximum number
of pseudo plane masks within image pairs. In experiments,
we find that N being set to 4 is able to cover most cases.

Fig 7 shows the performance with different settings of
Dmin and N . MSE results on six dominant plane point pairs
and all point pairs are displayed, respectively. The figures
present how performance changes when Dmin is varied
from 15 to 45 with an interval of 10, and when N is varied
from 4 to 8 with an interval of 2. With a larger value of
Dmin, which indicates more loose mask matching and more
paired of local regions being found, the performance first
increases and then stays stable. This shows the effectiveness
of the multi-H framework. With an increasing number of
H being used, a performance gain can also be observed.
Despite the performance change, the results with different
parameter settings are all high and stable, indicating the
robustness of the proposed pseudo plane mask generation.

Conclusion
A major challenge in multi-H estimation is how to obtain
correlated regions that follow the scene plane distribution.
In this paper, we explore a novel framework for this task. By
incorporating local pseudo plane mask information, which
is obtained in an unsupervised manner, we achieve better
local alignment; and further obtain a globally fused natural-
looking result. Experiments prove that the proposed method
can qualitatively and quantitatively achieve better alignment
when compared with SOTA.

For future work, (1) jointly considering depth and seman-
tics; (2) an end-to-end deep learning framework that learns
correlated regions and H simultaneously will be our target.
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