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Abstract

Fair allocation of indivisible goods presents intriguing chal-
lenges from both a social choice perspective and an algorith-
mic standpoint. Due to the indivisibility of goods, it is com-
mon for one agent to envy the bundle of goods assigned to
another agent and, indeed, envy-free solutions do not exist
in general. In line with the classical game-theoretic concept
of Nucleolus in coalitional games, we propose that a fair al-
location should minimize the agents’ dissatisfaction profile
in a lexicographic manner, where the dissatisfaction of an
agent is defined as her maximum envy towards other agents.
Therefore, we seek allocations that minimize the maximum
envy. In cases where multiple solutions have an equal maxi-
mum value, we minimize the second-worst value, and so on.
Additionally, as is customary in fair division problems, we
also consider an efficiency requirement: among the alloca-
tions with the best agents’ dissatisfaction profile, we priori-
tize those that maximize the sum of agents’ utilities, known
as maximum social welfare. Such allocations, referred to as
maxileximin allocations, always exist.
In this study, we analyze the computational properties of
maxileximin allocations in the context of fair allocation prob-
lems with constraints. Specifically, we focus on the Con-
nected Fair Division problem, where goods correspond to the
nodes of a graph, and a bundle of goods is allowed if the
subgraph formed by those goods is connected. We demon-
strate that the problem is F∆P

2 -complete, even for instances
with simple graphical structures such as path and star graphs.
However, we identify islands of tractability for instances
with more intricate graphs, such as those having bounded
treewidth, provided that the number of agents is bounded by
a fixed number and utility functions use small values.

Introduction
Fair allocation of indivisible goods is a central problem
in social choice theory (Amanatidis et al. 2023; Steinhaus
1948; Brams and Taylor 1996), and it has been intensively
analysed from the computational and algorithmic viewpoint
by the AI community (Bouveret et al. 2016; Lang and Rothe
2016; Walsh 2020; Shams et al. 2022). With multiple agents
and indivisible goods, we cannot expect to be able to allocate
goods in a way that makes everyone happy, so that in gen-
eral some agent could envy the bundle of goods assigned to
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another agent. However, if we can find an envy-free (EF) al-
location where no agent strictly prefers the bundle assigned
of another agent to her own bundle, such an allocation can
be clearly perceived as a fair one. Whenever these alloca-
tions do not exist, we have to find some other fair way for
assigning goods. In fact, there are many interesting works in
the literature which define relaxations of envy-freeness (cf.
Amanatidis, Birmpas, and Markakis 2018), notions such as
envy-freeness up to one good (Lipton et al. 2004) or up to
any good (Caragiannis et al. 2016), or the related maximin
share allocations (Budish 2011). Other approaches deal ex-
plicitly with the (unavoidable) envy, by trying to guarantee
to agents the maximum amount of fairness with respect to
the scenario at hands. For instance, one can minimize the
maximum envy ratio (Caragiannis et al. 2009), the multi-
plicative degree of envy (Nguyen and Rothe 2014), the num-
ber of envious agents (Netzer, Meisels, and Zivan 2016),
or the maximum envy (e.g., Cai, Filos-Ratsikas, and Tang
2016), just to name a few.

This work pushes ahead on this research and aims at iden-
tifying a solution that exists always and is as fair and ac-
ceptable as possible for all agents. Fairness properties are
well studied in coalitional game theory and fundamental to
solution concepts, such as the classical notion of Nucleo-
lus (Schmeidler 1969), which minimizes in a lexicographic
way the dissatisfaction of all player coalitions. In our con-
text, the dissatisfaction can be measured as the maximum
envy towards other agents. Following this approach, we ar-
gue that an important class of allocations, which received
less attention in the literature, is the one of the leximin al-
locations, that is, those minimizing the maximum envy and,
among possible solutions with equal maximum value, mini-
mize the second-worst value, and so on.
Example 1. Consider a scenario where four indivisible
goods (say a, b, c, and d) are available. Figure 1 reports
on the left the utilities that three agents can get with these
goods. E.g., agent 1 values 3 the good a, and 2 the other
goods. Clearly, in any feasible allocation, one agent gets a
bundle with two goods, while the others get one good. The
figure also displays two allocations B and B′. According to
the former, agent 1 and agent 3 have utility 3, while agent
2 gets the bundle {b, c} with a total utility 4. Both agents 1
and 3 would get utility 4 with the bundle assigned to agent 2,
hence the difference 4−3 is a measure of their envy. Agent 2
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Figure 1: Allocations B and B′ in Example 1

does not envy any bundle of other agents. Consider now B′:
this is good division for agent 1, who get the bundle {a, b}
with a total utility 5. Agent 2 envies that bundle, and her
envy is 4− 2 = 2 in this case. The envy of agent 3 is instead
4 − 3 = 1. Therefore it is natural to prefer the allocation
B to B′. On the other hand, B′ should be preferred to the
allocation B′′, symmetrical to B, where agent 1 takes d and
agent 3 takes a. In this case, we would have two unhappy
agents (1 and 3 ) with the worst envy level 2, instead of 1. �

While focusing on the kinds of setting exemplified above,
it must be noticed that—unlike the Nucleolus that is de-
fined in a fully transferable utility setting and it is a unique
point—multiple lexmin allocations can exist over the same
scenario. In particular, minimizing the envy does not always
lead to maximize the sum of agents’ utilities, that is, the so-
cial welfare. We thus explicitly require that the desirable al-
locations, called MAXILEXIMIN allocations (short: MLM),
besides having the lexicographically smallest envy vector,
must have the maximum social welfare, too. Indeed, such
efficiency requirement is typically needed in desirable out-
comes, otherwise there could be solutions without envies
just because all agents are unhappy. In fact, fairness is usu-
ally combined with efficiency, see (Barman, Krishnamurthy,
and Vaish 2018; Caragiannis et al. 2016; de Keijzer et al.
2009; Bei et al. 2021).

In this paper, we precisely focus on MLM allocations and
we consider the setting of fair allocation problems with con-
straints, which received considerable attention in the last few
years (see, e.g., Suksompong 2021). In particular, we deal
with the Connected Fair Division (CFD) problem proposed
by Bouveret et al. (2017), where goods correspond to the
nodes of a graph, and a bundle of goods is allowed if the
subgraph induced by its goods is connected. For instance,
in Figure 1 the four goods are arranged on a path, so that
{a, b} is a feasible bundle, while {a, c} is not. This setting
attracted the attention of the community, and there are many
works in the literature, studying relaxation of EF allocations
such as the maximin share, the parameterized complexity
by considering different possible fixed parameters, the price
of connectivity, and so on (Suksompong 2017; Lonc and
Truszczynski 2018; Bouveret, Cechlárová, and Lesca 2018;
Igarashi and Peters 2019; Bilò et al. 2022; Deligkas et al.
2021; Bei et al. 2022).

In fact, an approach to envy minimization similar to ours
has recently been defined in (Shams et al. 2021), following
the older social-evaluation function based on Gini inequal-

ity indices (Weymark 1981): the work aims at reducing the
vector of user dissatisfactions by minimizing the Ordered
Weighted Average (OWA) of the envy vector, that is, by us-
ing an aggregation function that computes the weighted sum
of the envy vector of all agents, non-increasingly ordered.
The use of decreasing weight vectors (that sum to one) al-
lows obtaining solutions where the dissatisfaction reduction
is preferred more for those who are unhappier. It is shown
that allocations minimizing such an OWA can be computed
using a mixed-integer linear program. The work of Shams
et al. (2021), however, does not consider fair division with
constraints; in particular, as far as we know, connectivity
constraints have not been studied for OWA allocations.

In the following, we refer to MLM-CFD as the problem
of computing a maxileximin allocation in the setting of con-
nected fair division. We study MLM-CFD from the computa-
tional viewpoint and we provide the following contributions:
• We show that MLM-CFD is an intractable problem,

precisely F∆P
2 -complete, even on path and star graphs

(since an MLM always exists, the decision problem is
trivial). These results do not rely on the known NP-
hardness of deciding whether envy-free allocations on
such graphs exist (Bouveret et al. 2017), since F∆P

2 -
hardness is shown to hold even on settings where envy-
free allocations are guaranteed to exist, and the problem
is just maximizing the social welfare over them (which
are clearly the leximin ones).
• We then consider possible restrictions of the problem, but

it turns out that F∆P
2 -hardness still holds even on smooth

scenarios where utility functions use only “small” val-
ues, i.e., values that are polynomially bounded (or, equiv-
alently, given in unary notation). This time, however,
more complex network topologies are involved.
• Finally, we analyze scenarios where the number of agents

is bounded by some given constant to identify a tractable
class of MLM-CFD instances. We prove that MLM-CFD
belongs to the functional version of LogCFL, a complex-
ity class included in polynomial time and whose prob-
lems can be solved by leveraging parallelization (Got-
tlob, Leone, and Scarcello 2002; Chandra, Kozen, and
Stockmeyer 1981), if we consider smooth scenarios and
the graphs of the goods have small degree of cyclic-
ity, formally, if they have bounded treewidth (Robertson
and Seymour 1986). Interestingly, the algorithm can be
adapted to work for different fairness notions, in partic-
ular for OWA allocations; moreover, smooth functions
clearly include binary evaluation functions, which are
also studied in the literature (see, e.g., Goldberg, Hol-
lender, and Suksompong 2020). The problem is still in-
tractable, if utility functions use arbitrary large values.

Formal Framework
Envy-free allocations. An allocation scenario for MLM-
CFD is a tuple σ = (N,G, {ui}i∈N ) where N is the set
[1;n] of natural numbers encoding the agents, G = (V,E)
is a connected non-empty graph whose nodes in V are the
available goods and, for each i ∈ N , ui is the utility function
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of agent i. In this paper, we focus on the widely used frame-
work where the value of a bundle of goods for any agent
i ∈ N is obtained as the sum of the values she assigns to
each good: ui is a function that maps each good v ∈ V to
a natural1 number ui(v), and the value ui(X) of a set X
of goods is just given by

∑
g∈X ui(g), with ui(∅) = 0. An

allocation for σ is a tuple B = (B1, ...,Bn), whose compo-
nents associate each agent i ∈ N with a bundle Bi ⊆ V . In
the framework we consider, bundles are required to be con-
nected, that is, the goods in each bundle induce a connected
subgraph of G. Since goods are indivisible, bundles must be
disjoint, that is, Bi∩Bi′ = ∅ for each pair of distinct agents i
and i′. An allocation B is envy-free if ui(Bi) ≥ ui(Bj), for
each pair i, j ∈ N . As it is usually done when dealing with
envy-freeness, we also require that all goods are assigned to
agents, so that allocations are complete:

⋃n
i=1 Bi = G.

Example 2. Consider again the example in Figure 1: allo-
cations B and B′ are complete, and we have B1 = {a},
B2 = {b, c}, B3 = {d}, with u1(B1) = 3, u2(B2) = 4,
and u3(B3) = 3. Note that neither allocation is envy-free.

Lexicographic Envy Minimization. The envy of agent i for
an allocation B is the non-negative value maxj∈N ui(Bj)−
ui(Bi). Define ξ(B) to be the vector containing the agents’
envies for B arranged in non-increasing order. For a pair of
n-dimensional vectors v1, v2, denote by v1 ≺ v2 the fact that
v1 precedes v2 in the (total) lexicographic order, that is, there
exists some q ∈ N such that v1[p] = v2[p] for all p < q, and
v1[q] < v2[q]. An allocation B is said a leximin allocation if
there is no allocation B′ such that ξ(B′) ≺ ξ(B). The set of
all leximin allocations is denoted by LEXIMIN(σ).
Example 3. For the considered allocations, we have ξ(B) =
〈1, 1, 0〉, ξ(B′) = 〈2, 1, 0〉, and ξ(B′′) = 〈2, 2, 0〉. There-
fore, ξ(B) ≺ ξ(B′) ≺ ξ(B′′). It can be checked that B is
the unique leximin allocation for the scenario. �

Refinements based on the Social Welfare. The social wel-
fare of an allocation B is the value SW(B) =

∑n
i=1 ui(Bi).

E.g., in our running example, we have SW(B) = 3+4+3 =
10. A leximin allocation B is SW-maximal, or maxileximin,
if SW(B) ≥ SW(B′), for every B′ ∈ LEXIMIN(σ). The set
of these allocations is denoted by MAXILEXIMIN(σ), in the
running example it is the singleton {B}.

Arbitrary Number of Agents
We assume a standard encoding for any allocation scenario
σ: the utility function ui of each agent i ∈ N is encoded
by explicitly listing all possible goods v with the associated
value ui(v). Therefore, the encoding size ||σ|| is O(|V |2 +
|N | × |V | ×Mσ), where Mσ is the maximum size over the
values encodings occurring in the utility functions.

Arbitrary Utility Functions
Our first result is that MLM-CFD is complete for F∆P

2 , the
class of all problems for which a solution can be computed

1For the sake of presentation, to avoid discussing subtle issues
related to the fractional form representation of rational numbers,
we prefer (w.l.o.g.) to use natural numbers encoded in binary.

Figure 2: Construction in the proof of Theorem 4.

in polynomial time by invoking with unitary cost an NP ora-
cle. Notably, hardness holds even on the restriction of MLM-
CFD to instances where envy-free allocations are guaran-
teed to exist (shortly denoted by MLM-CFDef ), and even on
very simple graph topologies—namely star and path graphs.

Theorem 4. MLM-CFDef is F∆P
2 -hard on star graphs.

Proof Sketch. Let Ḡ = (V̄ , Ē) be a graph where each node
x ∈ V̄ is weighted with a number wx ≥ 0. A set of nodes
V̄ ′ ⊆ V̄ is an independent set if |V̄ ′ ∩ ei| ≤ 1, for each
ei ∈ Ē. The weight of an independent set V̄ ′ ⊆ V̄ is
the value

∑
x∈V̄ ′ wx. Computing an independent set having

maximum possible weight is F∆P
2 -hard (cf., Krentel 1988).

Based on Ḡ, we build (in polynomial time) an alloca-
tion scenario σḠ = (N,G, {ui}i∈N ) as follows. The graph
G = (V,E) is a star, having the node R ∈ V as its cen-
ter, and such that V = {R} ∪ Ē ∪ V̄ . Note that nodes and
edges of Ḡ are viewed as goods in the new instance (nodes
ofG). As an example, Figure 2 reports a graph Ḡ over nodes
{a, b, c, d} and the graph associated with the corresponding
scenario σḠ. The set N of agents in σḠ is such that:

• for each ei = {x, y} ∈ Ē, N contains the agent AG(ei)
such that uAG(ei)(x) = uAG(ei)(y) = 2, uAG(ei)(ei) =
3, and uAG(ei)(v) = 0 for each v ∈ V \ {x, y, ei};
• N contains the agent AG(R) such that: uAG(R)(R) =∑

x∈V̄ wx + 1; uAG(R)(x) = wx for each x ∈ V̄ ; and
uAG(R)(v) = 0 for each v ∈ V \ V̄ \ {R};

• N contains further dummy agents AG(1), ..., AG(|V̄ |−1)
getting utility 0 for any good;

• no further agent is in N .

Let us point out two important properties of the reduction.
Assume that V̄ ′ is an independent set for the graph Ḡ and

consider an allocation B such that: BAG(ei) = {ei} for each
ei ∈ Ē; BAG(R) = {R} ∪ V̄ ′; and the remaining |V̄ | − |V̄ ′|
goods are arbitrarily allocated to agents AG(1), ..., AG(|V̄ |−
|V̄ ′|). It is immediate to check that B is envy-free. So, any
solution to MLM-CFD is an envy-free allocation maximiz-
ing the social welfare. In particular, the social welfare of B
is given by SW(B) =

∑
x∈V̄ ′ wx + 3|Ē|+ uAG(R)(R).

On the other hand, let B be an envy-free allocation and
note that R ∈ BAG(R). Since bundles are connected, for
each ei = {x, y} ∈ Ē, agent AG(ei) cannot simultaneously
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Figure 3: Construction in the proof of Theorem 5.

get x and y. Hence, we derive that BAG(ei) = {ei}. More-
over, since AG(ei) does not envy AG(R), it is the case that
|BAG(R) ∩ ei| ≤ 1. That is, BAG(R) ∩ V̄ is an independent
set for the graph Ḡ. And, indeed, the weight of this indepen-
dent set is given by SW(B)− 3|Ē| − uAG(R)(R).

Hence, from any solution to MLM-CFD on σḠ, we get an
independent set for Ḡ having maximum weight.

Theorem 5. MLM-CFDef is F∆P
2 -hard on path graphs.

Proof Sketch. Let H̄ = (V̄ , Ē) be a hypergraph where
Ē = {e1, ..., em} is a set of hyperedges such that, for each
ei ∈ Ē, |ei ∩ V | = 3. Assume that each hyperedge ei ∈ Ē
is equipped with a weight wi ≥ 0. A set packing for H̄ is
a set E′ ⊆ Ē of hyperedges that are pairwise disjoint, and
its weight is the value

∑
ei∈E′ wi. Computing a set packing

having maximum weight is F∆P
2 -hard (cf., Krentel 1988).

Based on H̄ , we build (in polynomial time) an alloca-
tion scenario σH̄ = (N,G, {ui}i∈N ) as follows. The graph
G = (V,E) is a path over V = {xi, yi, zi, ei | ei =
{x, y, z} ∈ Ē} ∪ {L}. In particular, the subgraph induced
over xi, yi, zi is connected, for each ei = {x, y, z} ∈ Ē;
and L separates the nodes in {e1, ..., em} from the others—
the specific ordering of the nodes in the path is irrelevant as
long as these properties are satisfied. As an example, Fig-
ure 3 reports a hypergraph H̄ over nodes {a, b, c, d} and the
graph associated with the corresponding scenario σH̄ .

The set N of agents in σH̄ is such that:

• for each ei ∈ Ē, N contains AG(ei) with uAG(ei)(x
i) =

uAG(ei)(y
i) = uAG(ei)(z

i) = 2wi, uAG(ei)(ei) = 5wi;
and uAG(ei)(v) = 0 for each v 6∈ {xi, yi, zi, ei};
• for each x ∈ V̄ occurring in δ hyperedges, N contains

the agents AG(x, 1), ..., AG(x, δ− 1). Each AG(x, j) gets
utility 0 for any good, but uAG(x,j)(v) = 1 for v ∈ {xh |
x ∈ eh, eh ∈ Ē};
• N contains agent AG(L) that gets utility 0 for any good,

but uAG(L)(L) = 1;
• no other agent is in N .

Let us point out two important properties of the reduction.
Assume that Ē′ is a set packing of maximum weight and

note that an allocation B satisfying the following condi-
tions can be built given Ē′: for each ei = {x, y, z} ∈ Ē′,

BAG(ei) ⊇ {xi, yi, zi}; for each ei = {x, y, z} 6∈ Ē′,
BAG(ei) ⊇ {ei}; BAG(L) ⊇ {L}; for each x ∈ V̄ occur-
ring in δ > 1 hyperedges, BAG(x,1) ∪ . . . ∪BAG(x,δ−1) ⊇
{xh | x ∈ eh, eh ∈ Ē \ Ē′}. It can be checked that
these conditions guarantee that B is envy-free. In partic-
ular, note that if ei = {x, y, z} is not in Ē′, then no
agent can get a bundle with the three goods xi, yi, and
zi. By simple algebraic calculations, it can be checked that:
SW(B) = 6

∑
ei∈Ē′ wi + 5

∑
ei 6∈Ē′ wi + 1 + 3|Ē| − |V̄ | =∑

ei∈Ē′ wi +
∑
ei∈Ē wi + 1 + 3|Ē| − |V̄ |.

On the other hand, assume that B is an envy-free allo-
cation. We immediately derive that BAG(L) ⊇ {L}, and
|(BAG(x,1)∪ . . .∪BAG(x,δ−1))∩{xh | x ∈ eh, eh ∈ Ē}| =
δ−1 for each x ∈ V̄ occurring in δ > 1 hyperedges. Let S be
the set of goods not allocated to any of these agents. Assume
that B maximizes the social welfare. If S contains the nodes
xi, yi, and zi, then BAG(ei) ⊇ {xi, yi, zi} clearly holds.
Otherwise, we have BAG(ei) ⊇ {ei}. In particular, note that
|{xh | x ∈ eh, eh ∈ Ē} ∩ S| ≤ 1 holds for each x ∈ V̄
occurring in δ > 1 hyperedges. Therefore, the set {ei |
BAG(ei) ⊇ {xi, yi, zi}} is a set packing. It can be checked
that its weight is SW(B)−

∑
ei∈Ē wi − 1− 3|Ē|+ |V̄ |.

Hence, from any solution to MLM-CFD on σH̄ , we get a
set packing for H̄ having maximum weight.

We now show the F∆P
2 -completeness. To this end, con-

sider the ∃-BETTER problem that, given as input a scenario,
an n-dimensional vector v, and a number w, asks whether
there is an allocation B such that ξ(B) ≺ v, or ξ(B) = v
and SW(B) > w. This problem is clearly in NP, and it can
be used as an oracle for computing a maxileximin allocation.

Theorem 6. MLM-CFD is F∆P
2 -complete.

Proof Sketch. After Theorem 4 and Theorem 5, we have
to focus on the membership in F∆P

2 only. The problem can
be solved with a polynomial number of calls to an NP ora-
cle for ∃-BETTER as follows. Let M be the maximum sum
of the values of the goods V over all agents, which is an
upper bound for any agent’s envy, and let Msw = n ∗M ,
which is an upper bound for the social welfare. Use binary
search over the n elements of the vector of envies to com-
pute the leximin vector of envies, say ξ∗: call the ∃-BETTER
oracle with parameters (σ, v,Msw), where v is the vector of
envies 〈M/2, 0, . . . , 0〉; if the answer is “yes” then replace
M/2 byM/4 and try again, otherwise try with 3/4M . Once
the value for the first position have been found, say e1, re-
peat the procedure to compute the minimum second worst-
envy by calling the oracle with an envy-vector parameter
v = 〈e1,M/2, 0, . . . , 0〉. At the end of this phase, use again
logarithmic search to maximize the social welfare, by fixing
the envy-vector parameter to ξ∗ and changing the threshold
value for the social welfare at each call of ∃-BETTER (start-
ing with the parameters (σ, ξ∗,Msw/2) . Finally, by using
a classical self-reduction technique, compute an allocation
with the desired envy profile and social welfare value by per-
forming further n× |V | calls to an NP oracle.
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Smooth Utility Functions
A class C of allocation scenarios has smooth utility functions
if their output values are polynomially bounded, that is, if
their maximum value-sizeMσ isO(log(|N |+|V |)), for each
σ ∈ C. Note that one can equivalently consider O(log(|N | ·
|V |)), which is inO(log(|N |+|V |)2) = O(log(|N |+|V |)).

It is immediate to check that proofs of Theorem 4 and
Theorem 5 provide us with NP-hardness results even when
such functions are considered. Indeed, the problems consid-
ered in the reductions are well-known to be NP-hard even if
nodes/hyperedges have unitary weight. In fact, we can show
that MLM-CFD remains complete for F∆P

2 even on smooth
functions. This time, we need to use a different reduction
with more involved graph topologies.

Theorem 7. MLM-CFD is F∆P
2 -hard even on smooth utility

functions.

Proof Sketch. Consider the F∆P
2 -complete LEX-SAT

problem (Krentel 1988): given a (w.l.o.g.) satisfiable
Boolean formula Φ = c1 ∧ · · · ∧ cm in conjunctive normal
form over the set {α1, ..., αn} of variables, compute the
lexicographically maximum satisfying assignment, with
variables being ordered by their indices (that is, α1 is the
most significant variable). Based on Φ, we build (in poly-
nomial time) an allocation scenario σΦ = (N,G, {ui}i∈N )
as follows. The graph G = (V,E) is defined over the set
V = {αp, ᾱp | p ∈ {1, ..., n}} ∪ {c1, ..., cm} ∪ {e, h}. Its
edges are such that: for each p ∈ {1, ..., n}, E contains
the edges {αp, ᾱp}, {αp, e}, and {ᾱp, e}; for each clause
cj and variable αp occurring positively (resp., negatively),
E contains {cj , αj} (resp., {cj , ᾱj}); E contains the edge
{e, h}, and no further edge is in E. As an example, Figure 4
reports the graph associated with the scenario σΦ, for the
formula Φ = (α1 ∨ ¬α2 ∨ α3) ∧ (α4).

The set N of agents in σΦ is such that:

• N contains AG(h) such that uAG(h)(h) = m(n+ 1) and
uAG(h)(v) = 0, for each v ∈ V \ {h};
• N contains AG(e) such that uAG(e)(h) = m(n+ 1) and
uAG(e)(cj) = (n + 1), for each j ∈ {1, ...,m}, and
uAG(h)(v) = 0, for each v ∈ V \ {c1, ..., cm};
• N contains AG(1), ..., AG(n) such that uAG(p)(ᾱp) =
n − p + 1, for each p ∈ {1, ..., n}, and uAG(h)(v) = 0,
for each v ∈ V \ {ᾱ1, ..., ᾱp};
• no further agent is in N .

We now claim that there is a one-to-one correspondence
between leximin allocations for σΦ and lexicographically
maximum satisfying assignments for Φ. The key ingredi-
ent to prove the claim is that any leximin allocation B is
such that BAG(h) ⊇ {h} and BAG(e) ⊇ {e, c1, ..., cm}.
In particular, by the connectedness condition of BAG(e), it
holds that the assignment τB such that τB(αp) = true iff
BAG(e) ⊇ {αp} is satisfying—and the construction is pos-
sible since Φ is satisfiable, so that we can always build B in
a way that AG(h) and AG(e) do not envy any other agents.
Eventually, we have just to observe that the envy of agent
AG(p) is n− p+ 1 if ᾱp ∈ BAG(e) holds; otherwise, AG(p)

h

Figure 4: Construction in the proof of Theorem 7.

does not envy any other agent. That is, the vector of the en-
vies correspond to the variables that evaluate to true in the
associated assignment.

For the other way round, note that any truth assignment τ
immediately identifies an allocation B with τB = τ .

Bounded Number of Agents
We now focus on classes of allocation scenarios where the
number of agents is bounded by some fixed constant. Ob-
serve that, if the underlying graphs are trees, then MLM-
CFD can be solved in polynomial time by exhaustively enu-
merating all possible (polynomially many) allocations (cf.,
Bouveret et al. 2017). It is thus natural to consider classes of
graphs that generalize acyclicity, as the quasi-acyclic graphs
formalized by the notion of treewidth (Robertson and Sey-
mour 1986).

LetG = (V,E) be an undirected graph, with V andE be-
ing its (non-empty) sets of vertices and edges, respectively.
A tree decomposition ofG is a pair 〈T, χ〉, where T is a tree,
and χ is a labeling function assigning to each vertex p in T
a set of nodes χ(p) ⊆ V , such that the following conditions
are satisfied: (1) for each node x ∈ V , there exists p in T
such that x ∈ χ(p); (2) for each edge {x, y} ∈ E, there ex-
ists p in T such that {x, y} ⊆ χ(p); and, (3) for each node
x ∈ V , the subgraph of T induced by all vertices p such that
x ∈ χ(p) is connected.

The width of 〈T, χ〉 is the number maxp∈T (|χ(p)| − 1).
The treewidth of G, denoted by tw(G), is the minimum
width over all its decompositions. Treewidth is a general-
ization of acyclicity: G is acyclic if, and only if, tw(G) = 1.

Arbitrary Utility Functions
We first point out that, looking for islands of tractability, it
is crucial to consider restrictions of utility functions.

Indeed, MLM-CFD is NP-hard even for classes with only
two agents having the same utility functions and goods
graphs having bounded treewidth: we can show that even de-
ciding whether there is an envy-free allocation is NP-hard,
in these cases. The proof is routine and uses a reduction from
the PARTITION problem (Garey and Johnson 1979).
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Input: σ,E, 〈T, χ〉
Task: decide whether there is an allocation B such that, ∀i, j ∈ N ,E[i][j] = ui(Bj)

Method:
let q be root of T
CHECKPROFILE(q, ∅, E, ∅, N)

Procedure CHECKPROFILE(q, λp, ωp,CTp, rest)

Begin Procedure
guess a (total) mapping λq : χ(q) 7→ N assigning to agents the goods occurring at q
let new = AGq \ AGp (the new active agents introduced at q)
Stop and Fail if new 6⊆ rest or λq(g) 6= λp(g), for some good g occurring in both mappings
let terminal = AGp \ AGq (the agents that are active at p and disappear at q)
for each agent a ∈ terminal , Stop and Fail if
ωp[i][a] 6= 0 , for some i ∈ N (some value of the bundle assigned to a does not match the profileE), or
CTp[a] contains more than one component (the bundle of goods assigned to a is not connected)

for each agent a ∈ AGq :
∀i ∈ N , update the profile value for i w.r.t. the bundle assigned to a: ωq [i][a] = ωp[i][a]−

∑
g∈(goodsq [a]\goodsp[a])

ui(g)

if a ∈ new then guess the components-tree CTq [a] with the connected components of the induced subgraphG[goodsq [a]]

else guess an update of the components-tree CTq [a] (to consider new goods and remove disappeared goods)
if q is a leaf of T then

if rest 6= new then Stop and Fail (there is some agent without any bundle of goods)
for each agent a ∈ AGq and each agent i ∈ N , Stop and Fail if

ωq [i][a] 6= 0 (the profile value for i w.r.t. the bundle assigned to a does not matchE[i][a]), or
CTq [a] contains more than one component (the bundle of goods assigned to a is not connected)

else (q is not a leaf of T )
guess a partition rest ′, rest ′′ of the agents in rest \ new to be dealt with in the two subtrees
guess two matrices ω′

q and ω′′
q such that, ∀i ∈ N, ∀a ∈ AGq , ω′

q [i][a] + ω′′
q [i][a] = ωq [i][a], and

∀i ∈ N, ∀j ∈ N \ AGq , ω′
q [i][j] = ω′′

q [i][j] = ωq [i][j]

guess a split (CT ′
q [a],CT ′′

q [a]) of the components-tree of each a ∈ AGq

Let ` and r be the left child and the right child of q in T
CHECKPROFILE(`, λq, ω

′
q,CT ′

q, rest
′)

CHECKPROFILE(r, λq, ω
′′
q ,CT ′′

q , rest
′′)

End Procedure

Figure 5: Deciding the existence of an allocation matching a given value profile

Smooth Utility Functions
Finally, we are able to provide our main tractability result,
for all those instances where there is a bounded number
of agents possibly competing for a large number of goods,
whose connections have a small degree of cyclicity, and
where utility functions only use small values (that is, val-
ues at most polynomially larger than the input size, so that
they have a logarithmic encoding).
Theorem 8. On classes of smooth allocation scenarios with
a bounded number of agents and having bounded treewidth,
MLM-CFD belongs to LLogCFL, and thus it is a paralleliz-
able and polynomial time problem.

Proof Sketch. Let σ be a smooth allocation scenario over a
graph G = (V,E) with |N | = k agents, and denote its size
by ‖σ‖. We show that the algorithm described in the proof of
Theorem 6 can be implemented by a LOGSPACE machine
with a LogCFL oracle. First observe that, because we have k
agents and logspace utilities, the binary search procedure re-
quires logspace only. It then suffices to show that ∃-BETTER
is in LogCFL. To this end, for any allocation B, consider the
matrix E such that E[i][j] = ui(Bj) ∀i, j ∈ N , which we
call the value profile of B. Note that it is immediate to com-
pute, based onE, the envy vector for the agents, call it ξ(E),
as well as the social welfare

∑
i∈N E[i][i]. Then, for an in-

stance (σ, v, s) for ∃-BETTER, where v is a vector of (non-
increasing) envies and s is a threshold for the social welfare,
we can enumerate in polynomial time all value profiles E
such that ξ(E) ≺ v, or ξ(E) = v and

∑
i∈N E[i][i] > s.

Indeed, even if there are exponentially many bundle alloca-
tions, there are only polynomially-many distinct value pro-
files, whose sizes are logarithmic—as we deal with k2 small
values. We thus get the tractability for ∃-BETTER by exhibit-
ing the algorithm shown in Figure 5 that, given any value
profile E, checks whether there actually exists an allocation
whose value profile is equal to E. The algorithm is based on
a non-deterministic Boolean function CHECKPROFILE that
can be implemented on a logspace Alternating Turing Ma-
chine (ATM), with polynomial accepting computation trees,
which entails that the problem belongs to LogCFL. The
ATM works top-down along a tree decomposition. In partic-
ular, because the treewidth is bounded by a fixed constant,
we can compute beforehand a minimum-width tree decom-
position of the graph G in linear time (Bodlaender 1993)—
or we can compute it when needed, as the problem belongs
to LLogCFL, too. Moreover, we can transform this decompo-
sition into a tree decomposition 〈T, χ〉 ofG having the same
width and such that T is a full binary tree.

High-level description. We use “node” to refer to any
node of the decomposition tree T , while “good” refers to
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any node of G. If π : X 7→ Y is a partial mapping from
X to Y , then we write x ∈ π to mean any element x in
the active domain of π, that is, such that x ∈ X is actually
mapped to some π(x) ∈ Y . Moreover, ∅ denotes the empty
mapping (having an empty active domain). We describe the
ATM as a high-level recursive procedure performing non-
deterministic guess operations. More precisely, when called
with a node q as its parameter, the procedure CHECKPRO-
FILE starts guessing an assignment of goods λq : χ(q) 7→ N .
Denote by AGq the so-called active agents at q, that is, the
set of agents {a ∈ N | λq(g) = a, for some g ∈ χ(q)}
to which the goods occurring at q are assigned. Denote by
goodsq[a] the goods assigned to such an agent a at q, i.e.,
the set {g ∈ χ(q) | λq(g) = a}. Let t be the treewidth of
G, and note that there are at most t + 1 goods in χ(q), and
thus at most t+1 active agents at q. These sets and the map-
ping can be stored with O(log ‖σ‖) bits (goods, agents, and
nodes are encoded with suitable pointers to the input tape, or
indices identifying such elements). The machine also stores
a matrix ωq which holds, for each pair i, j ∈ N , the value
ωq[i][j] that is still missing in the evaluation of agent i of the
(partial) bundles assigned to agent j, in order to match the
desired entry E[i][j] of the value-profile. At the first call of
the function at the root of the decomposition tree, this ma-
trix is set to E, and each entry, identified by a pair i, j ∈ N ,
is then reduced during the computation by considering the
values according to ui of the goods assigned to j along the
decomposition tree. Before the recursive calls on the chil-
dren of q in T , the ATM guesses two matrices ω′q and ω′′q
that encode the values that, for each entry, should be dealt
with in the two subtrees rooted at the children of q. More-
over, it stores the set of agents rest whose bundles have to be
assigned in the subtree rooted at q; at the root, rest is set to
N . Before performing the recursive calls, the ATM guesses
a partition rest ′ and rest ′′ of rest \ new holding the agents
not yet considered (in the set of new active agents new ) that
should be dealt with in the subtrees rooted at the children of
q. At leaves, all agents must be considered.

Connection constraint. The more involved issue is how
the ATM can check that the bundle Ba of goods to be as-
signed to agent a is connected, and that no good is assigned
to different agents during the algorithm, possibly at differ-
ent non-adjacent nodes of the decomposition tree T . This
is non-trivial, as we do not have enough memory to store
bundles at vertices of T (recall that we can use just logarith-
mic space and so we can store a constant number of indices
of goods, while each bundle may contain an arbitrary num-
ber of goods). Note, on the one hand, that the nodes of the
decomposition tree T containing goods of Ba induce a con-
nected subtree of T . But, on the other hand, those specific
goods goodsq[a] from Ba that occur at node q of this subtree
can be goods that are not directly connected in the graph G.
Because of the logarithmic-space constraint, we may have
only a partial view of Ba, and we cannot say anything about
the connection property of Ba.

The main ingredient here is to manage, at any node q
of the decomposition-tree, a logarithmic-space partial rep-
resentation of a spanning tree of the bundle assigned to

each active agent a at q, denoted by CT q[a] and called
components-tree. The vertices of CT q[a] encode a parti-
tion of the goods goodsq[a] assigned to a at q, and are ini-
tially set to be the connected components of the subgraph
G[goodsq[a]] induced on G by these goods. Note that there
are at most t such vertices, because the treewidth is t and
at most t + 1 goods occur at q. The edges (at most t) of
any components-tree are guessed non-deterministically by
the ATM, and encode paths among the connected compo-
nents. These paths involve goods, still unknown at this point
of the algorithm, that will eventually be found while travers-
ing the decomposition tree. Any edge between two compo-
nents in CT q[a] encodes a placeholder that we must find
somewhere down in T an actual connection between some
pair of goods occurring in these components. Let ` and r be
the children of q, we require that the actual presence of such
a connection is checked either in the subtree rooted at ` or
in the subtree rooted at r. If two components are not to be
checked in a subtree, they are combined in one component
(the other subtree must eventually deal with them, by check-
ing the existence of the required path). To this end, a suitable
split operation produces a pair of components-tree CT ′q[a]

and CT ′′q [a] to be checked recursively.
Recursive calls. Eventually, CHECKPROFILE executes a

recursive call for each child of q in order to check that
the non-deterministic choices performed at q are actually
correct. To conclude, just observe that all the information
needed at each call of CHECKPROFILE can be encoded in
logarithmic space, as required.

Conclusion
We have proposed maxileximin allocations as a fair method
for allocating indivisible goods and have examined their
computational properties, by identifying both hard and easy
instances. Our approach guarantees the existence of a solu-
tion, which is a critical feature in any application. Moreover,
in our notion, efficiency is intertwined with fairness. Indeed,
it is easy to show examples of envy-free solutions in which
almost all agents are dissatisfied, while other envy-free so-
lutions offer substantially improved outcomes for all agents.
We firmly believe that, in such situations, choosing the envy-
free solution that maximizes agents’ utilities is a matter of
fairness, not just of system efficiency.

The techniques described in the paper can be used to
demonstrate the tractability of different measures of dissatis-
faction, such as minimizing the Ordered Weighted Average
(OWA) of the envy vector (Shams et al. 2021). Exploring is-
lands of tractability for scenarios with an arbitrary number
of agents is a potential area for future research. Additionally,
it is worth noting that our approach can be easily extended to
incorporate further refinements of leximin allocations. This
could involve considering additional measures to optimize in
agents’ dissatisfaction profiles (currently focused on envies
alone), and potentially incorporating other efficiency notions
(we have examined social welfare). Specifically, it would be
interesting to study the problem of computing MLM alloca-
tions where we additionally consider metrics related to the
notion of maximin share (Budish 2011).
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