The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Memory-Efficient Reversible Spiking Neural Networks

Hong Zhang', Yu Zhang'?>*

I'State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University,
Hangzhou, China
2Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Hangzhou, China
{hongzhang99, zhangyu80} @zju.edu.cn

Abstract

Spiking neural networks (SNNs) are potential competitors to
artificial neural networks (ANNs) due to their high energy-
efficiency on neuromorphic hardware. However, SNNs are
unfolded over simulation time steps during the training pro-
cess. Thus, SNNs require much more memory than ANNS,
which impedes the training of deeper SNN models. In this
paper, we propose the reversible spiking neural network to
reduce the memory cost of intermediate activations and mem-
brane potentials during training. Firstly, we extend the re-
versible architecture along temporal dimension and propose
the reversible spiking block, which can reconstruct the com-
putational graph and recompute all intermediate variables
in forward pass with a reverse process. On this basis, we
adopt the state-of-the-art SNN models to the reversible vari-
ants, namely reversible spiking ResNet (RevSResNet) and
reversible spiking transformer (RevSFormer). Through ex-
periments on static and neuromorphic datasets, we demon-
strate that the memory cost per image of our reversible SNN's
does not increase with the network depth. On CIFAR10 and
CIFAR100 datasets, our RevSResNet37 and RevSFormer-4-
384 achieve comparable accuracies and consume 3.79x and
3.00x lower GPU memory per image than their counterparts
with roughly identical model complexity and parameters. We
believe that this work can unleash the memory constraints in
SNN training and pave the way for training extremely large
and deep SNNs.

Introduction

Spiking neural networks (SNNs), brain-inspired models
based on binary spiking signals, are regarded as the third
generation of neural networks (Maass 1997). Due to the
sparsity and event-driven characteristics, SNNs can be de-
ployed on neuromorphic hardware with low energy con-
sumption. With the help of backpropagation through time
framework (BPTT) and surrogate gradient, direct training
SNNs are developing towards deeper and larger models. Ad-
vanced spiking architectures such as ResNet-like SNNs (Hu
et al. 2021; Fang et al. 2021a; Zhang et al. 2023) and spik-
ing vision transformers (Zhou et al. 2022, 2023) have been
proposed in succession, indicating that SNNs are potential
competitors to artificial neural networks (ANNs).

*Corresponding Author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

16759

500 4 MSResNet
—=— RevSResNet (ours) 16-384
g Spikingformer
= RevSFormer (ours) 104
s |
g | tesemees
g‘]-OO’ 2384 34T
E e
2 -
= 18 - N
2
(G} 2-384 3 N
v : 109
2 4 6 3 . |

Model Complexity (GFLOPs)

Figure 1: Reversible spiking neural networks are more
memory-efficient. Our proposed RevSResNet and RevS-
Former need less GPU memory than their non-reversible
counterparts during training. Besides, the memory cost of
reversible SNNs does not increase with the network depth.

Although the inference process of SNNs on neuromorphic
chips is relatively mature (Davies et al. 2018; Roy, Jaiswal,
and Panda 2019), these chips cannot support the training
process. Therefore, SNNs are still trained on graphics pro-
cessing units (GPUs). During the training process based on
the BPTT framework, SNNs are unfolded over simulation
time steps 7'. Thus, SNNs usually require higher computing
resources and memory bandwidth compared to ANNs. The
computational requirements can be compensated by some
Al accelerators (Okuta et al. 2017) or spending more time
in training. However, there is currently no solution to the
memory constraints. Under such constraints, some SNNs
are trained with a small batch size (Zhang, Fan, and Zhang
2023), indirectly affecting the final accuracy (Wu and John-
son 2021). Also, deeper SNNs are prevented from training.

The high memory consumption of SNNs comes from sev-
eral aspects. On the one hand, like ANNs, the memory re-
quired by SNNs increases linearly with the depth of the net-
work. The deeper the network, the more parameters and in-
termediate activations need storage. On the other hand, un-
like ANNS, the memory cost of SNNs increases with simu-
lation time step 7. SNNs need to store 7' times more inter-
mediate activations, and the membrane potentials of spiking

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

neurons need also to be stored for gradient computation. It
is evident that a significant amount of memory consumption
comes from storing intermediate activations and membrane
potentials (Gomez et al. 2017). By reducing this part of the
consumption, we can decouple the memory growth from the
depth to a large extent.

In this work, we propose reversible spiking neural net-
works to reduce the memory cost of SNN training. The in-
tention of reversibility is that each layer’s input variables
and membrane potentials can be re-computed by its out-
put variables. Therefore, even if no intermediate variables
are stored, we can quickly reconstruct them through such
reversible transformation. In this work, we first extend the
reversible architecture (Gomez et al. 2017) along the tem-
poral dimension to adapt to the BPTT training framework.
On this basis, we propose spiking reversible block, which
is reversible along spatial dimension and consistent along
temporal dimension. Then, we present the reversible spiking
ResNet (RevSResNet) and reversible spiking transformer
(RevSFormer), which are the reversible counterparts of MS
ResNet (Hu et al. 2021) and Spikingformer (Zhou et al.
2022) (the latest ResNet-like and transformer-like SNNs).
As is shown in Figure 1, our networks consume much less
memory per image than their counterparts. We verify the ef-
fect of RevSResNet and RevSFormer on static datasets (CI-
FAR10 and CIFAR100 (Krizhevsky, Hinton et al. 2009)) and
neuromorphic datasets (CIFAR10-DVS (Li et al. 2017) and
DVS128 Gesture (Amir et al. 2017)). The experiments show
that RevSResNet and RevSFormer have competitive per-
formance to their non-reversible counterparts. At the same
time, our reversible models significantly reduce memory
cost during the training process, saving 3.79x on the RevS-
ResNet37 and 3.00x on the RevSFormer-4-384 model.

In summary, our contributions are three-fold.

* We analyze the reversibility of SNNs in the spatial
and temporal dimensions and propose spiking reversible
block for the BPTT framework. On this basis, each
block’s input and intermediate variables can be calcu-
lated by its outputs.

We propose the reversible spiking ResNet (RevSResNet)
and reversible spiking transformer (RevSFormer). We re-
design a series of structures (such as downsample layers,
reversible spiking residual block, and reversible spiking
transformer block) to match the performance of the non-
reversible state-of-the-art spiking counterparts.

The experiments show that RevSResNet and RevS-
Former have competitive performance to their non-
reversible counterparts. At the same time, our reversible
models significantly reduce memory cost during the
training process.

Related Works
Spiking Neural Networks

SNNGs utilize binary spikes to transmit and compute informa-
tion, while the spiking neurons (Gerstner and Kistler 2002;
Yao et al. 2022) play a crucial role in converting analog
membrane potentials into binary spikes. There are two meth-

16760

ods to obtain deep SNNs: ANN-to-SNN conversion and di-
rect training. The ANN-to-SNN conversion methods (Diehl
et al. 2015; Bu et al. 2022; Deng and Gu 2021; Wang et al.
2022) convert the same structured ANNs into SNNs, which
usually achieves high accuracy. However, this method is lim-
ited because the obtained SNN requires a large time step
and is unable to handle neuromorphic data. The direct train-
ing method utilizes error backpropagation to train SNNs di-
rectly, where the BPTT framework (Shrestha and Orchard
2018) and surrogate gradient (Neftci, Mostafa, and Zenke
2019) techniques play a vital role. In recent years, direct
training spiking structures have been proposed successively,
including ResNet-like models (Lee et al. 2020; Fang et al.
2021a; Hu et al. 2021; Zhang et al. 2023), Spiking trans-
formers (Zhou et al. 2022, 2023), NAS SNNs (Na et al.
2022; Kim et al. 2022), etc. These networks have lower la-
tency, but the training process requires more computing re-
sources and memory costs than ANNs. Among them, high
memory cost limits the depth and time steps of the network.
Thus, this article aims to reduce the memory cost of the SNN
training based on reversible architectures.

Reversible Architectures

Reversible architectures are neural networks based on NICE
reversible transformation (Dinh, Krueger, and Bengio 2014).
Reversible ResNet (Gomez et al. 2017) is the first work that
utilizes it for CNN-based image classification tasks. They
employ reversible blocks to complete memory-efficient net-
work training. The core of its memory saving is that the in-
termediate activation can be reconstructed through the re-
verse process. After that, other works (Hascoet et al. 2019;
Sander et al. 2021; Li and Gao 2021) have further iter-
ated on the CNN-based reversible architectures. Recently,
(Mangalam et al. 2022) applied the reversible transforma-
tion to vision transformers and proposed Rev-ViT and Rev-
MViT, two memory-efficient transformer structures. They
found that reversible architectures have stronger inherent
regularization than their non-reversible counterparts. In ad-
dition, reversible transformation has also been adopted in
other networks, such as UNet (Briigger, Baumgartner, and
Konukoglu 2019), masked convolutional networks (Song,
Meng, and Ermon 2019), and graph neural networks (Li
et al. 2021a).

It is worth noting that the above reversible architectures
are reversible in the spatial dimension, in which the forward
process propagates from shallow to deep layers, and the re-
verse process propagates from deep to shallow layers. Un-
like them, reversible RNN (MacKay et al. 2018) is reversible
in the temporal dimension. It calculates hidden states in the
past by reversing them from the future. SNN is a network
with both spatial and temporal dimensions, while our spik-
ing reversible block is reversible along the spatial dimension
and consistent along the temporal dimension.

Approach

In this section, we first explain the spiking neuron model,
which is the preliminary of SNNs. Then, we present our
proposed spiking reversible block. Furthermore, we apply

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Start
X3\ - @ v}
t=1 @ F @ g
X1 ¢ |4
X3 - ®—
t=2
@ F @ G
X2 S,
End
t=3
(XY}
[]
[
® (a) Forward

X3

xi

Start
o) v}
Oy)Fr @gy)s N
@ Spiking Neuron
i
O]
o) 2 Convolution
Y;
@ @ § Attention
O Y2
[X X J
(b) Reverse

Figure 2: Illustration of the forward (a) and reverse (b) process of our spiking reversible block. We can recompute all interme-
diate variables in forward pass with the reverse process. Note that there is a reset process between them.

it to spiking ResNet-like and transformer-like structures and
propose the reversible spiking ResNet and reversible spiking
transformer. They both support memory-efficient end-to-end
training.

Spiking Neuron Model

The spiking neuron, which plays the role of activation func-
tion, is the fundamental unit used in SNNs. It converts
analog membrane potentials to binary spiking signals. The
leaky-integrate-and-fire (LIF) neuron is a widely used spik-
ing neuron whose discrete-time dynamics can be formulated
as follows:

HI = VI 1+ —— (1~ (VI = 1] = Veewes)) (D
S[t) =© (H[t] — Vin) 2
V[t] = H[t](1 — S[t]) + VresetS[t] 3)

where V[t] represents the membrane potential at time ¢, and
H [t] is the hidden membrane potential before trigger time ¢.
I[t] is the synaptic current, which is the input from other
neurons. Once H[t] exceeds the firing threshold V;j, the
neuron will file a spike expressed by S[t]. Then, the mem-
brane potential V' [t] will be reset to reset potential V,.s¢.

In addition to LIF, we also use (integrate-and-fire) IF neu-
ron in this work, which is a simplified version of LIF. Its
integrate dynamics (Eq.4) differs from LIF, while the fire
and reset processes remain unchanged.

Ht)=V[t—1]+ I]{] 4)

Spiking Reversible Block

Computation Graph of Spiking Reversible Block Dur-
ing standard backpropagation training, a single-batch is
computed with a forward-backward process. In contrast,

16761

for a reversible block, this computation turns to a forward-
reverse-backward process. The added reverse process uti-
lizes the output of the block to compute the input in reverse.
Then we can delete all inputs and intermediate variables af-
ter the forward process and save only the output. RevNet
(Gomez et al. 2017) and RevRNN (MacKay et al. 2018) im-
plement the reversible blocks in the spatial and temporal di-
mensions, respectively.

For SNNs, as long as the network is designed in a two-
residual-stream manner in (Gomez et al. 2017), we can es-
tablish the reverse process in the spatial dimension. How-
ever, in the temporal dimension, the reverse means that the
input potential of all neurons must be calculated through
their output spikes, which is theoretically impossible for
spiking neurons in Eq. 1. Therefore, spiking reversible
block should be reversible along the spatial dimension and
consistent along the temporal dimension. We extend the
single-batch computation process to forward-reset-reverse-
backward. The computation graphs for forward and reverse
processes are shown in Figure 2, where F and G can be set
as arbitrary spiking modules composed of spiking neurons,
convolutional layers, attention mechanisms, etc. Since spik-
ing neurons have different membrane potentials at different
time steps, F and G vary with time. We use F* and G¢ to
represent these two modules at the time step .

In the forward process, the starting node of the graph lies
in the input node at time step 1, and the end node is the out-
put at time 7', where T’ is the total time steps of the SNN. At
each time step ¢, output Y is calculated using formula 5, as
the horizontal arrows in Figure 2a. From time step ¢ to ¢ + 1,
the edges of the computation graph are established through
the inherited membrane potential of all spiking neurons in
F and G, as the red arrows illustrate in Figure 2a.

Yi = X| + F' (X3)

Vi = X4+ (v]) ®

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Before the reverse process, all spiking neurons are reset
by resetting membrane potential to the initial state, which is
named the reset process.

In the reverse process, the starting node of the graph lies
in the output node at time step 1, and the end node is the
input at time step 7". For each time step ¢, input X ¢ is cal-
culated using formula 6, as the reversed horizontal arrows in
Figure 2b. From time step ¢ to t+1, same as forward process,
the edges of the computation graph are established through
the inherited membrane potential of all spiking neurons in
F and G, as the red arrows show in Figure 2b.

Xf =i~ g (¥))

6
Xi =Y, - F"(X3) ©
Learning without Caching Intermediate Variables
During network training, the backward process is essential
for updating the network weights. Consider the presynaptic
weight W; of a spiking neuron in the [, layer. Its gradient

is calculated as follows:
=)

where S} and U] are the output spike (activation) and
membrane potential at time step ¢, which are calculated us-
ing the spiking neuron dynamics. It can be found that the
gradient calculation requires all output spikes and membrane
potentials at all time steps. In fact, almost all intermediate
variables in the forward process are needed in the backward
process. In standard training, these variables are cached in
GPU memory after the forward process. Because of the se-
quential nature of the network, all intermediate variables for
all layers at all time steps should be stored. Thus, peak mem-
ory usage becomes linearly dependent on the network depth
D and time steps T'. Its spatial complexity is O(D - T').

For the training of the spiking reversible block, we pro-
pose Theorem 1, which means all intermediate variables in
the forward process can be recomputed from output in the
reverse process. Then, only output Y needs caching in the
forward process. Furthermore, if spiking reversible blocks
are sequentially placed, we only need to store the output of
the last block. Before the backward process of any block, we
can recompute all intermediate variables with the output. In
this process, the peak memory usage is the memory required
for a single block whose spatial complexity is O(T"). Since
direct training SNNs often have relatively small 7" (such as
4), the peak memory usage during training is much smaller.

oL
aw,

oL 85
St oU?

oL oult!
8Ulf,+1 aUlt

(9 Ult
oW,

@)

Theorem 1 Consider a spiking reversible block with T’ time
steps, if the forward and reverse functions are formulated as
Eq. 5 and Eq. 6, and outputs of forward process are fed into
the reverse process, then X', Y and all intermediate vari-
ables (including the intermediate activations and membrane
potentials) in Ft and Gt in the forward process are the iden-
tical to those in the reverse process.

Proof. The proof of Theorem 1 is presented in the Ap-
pendix (Zhang and Zhang 2023).

16762

Multi-step Spiking Neuron

-
-

Figure 3: Basic block of RevSResNet. We utilize two resid-
ual functions with the same structure as F and G.

Reversible Spiking Residual Neural Network

ResNet (He et al. 2016) is one of the most popular deep
convolutional neural networks (CNNs), and residual learn-
ing is also the best solution for CNN-based SNNs to tackle
the gradient degradation problem (Fang et al. 2021a). With
the help of our spiking reversible block, we propose the re-
versible spiking residual neural network, which completes
the training of deep SNNs with much less memory usage.

Basic Block In ANN ResNet, the parameterized residual
function is wrapped around a single residual stream in each
block. We adopt it to the spiking reversible block and pro-
pose the two-residual-stream architecture in Figure 3. The
input X 1is partitioned into tensors X; and X5 in halves
along the channel dimension. The forward process follows
transformation in Eq. 5 to ensure reversibility. We utilize
two residual functions with the same structure as F and
G. To ensure that all operations are spike computations, we
adopt the Activation-Conv-BatchNorm paradigm (Hu et al.
2021). Each residual function consists of two sequentially
connected multi-step spiking neurons, convolutional layers,
and batch normalization.

Downsample Block Due to the reversibility of the basic
block, the feature dimensions of X and Y are identical.
Therefore, residual functions F and G must be equidimen-
sional in input and output spaces, which means that down-
sample layers (such as maxpooling or convolution with a
stride of 2) cannot appear in spiking reversible blocks. To
replace the downsampling basic blocks in ResNet, we set up

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

N=5+4x>n,
3x3, 128

3><3,64>
><2><n1

Total layers
convl

reversible sequence 1 3 x 3,64

(

reversible sequence 2 33,128 ' 2
v a 3x3,128) X EXm
. 3% 3,256 \
reversible sequence 3 (3 x 3,256) X 2 Xns
. 3x 3,448 \
reversible sequence 4 < 3 x 3, 448 X 2 X ny
average pool, fc, softmax

Table 1: Architectures of RevSResNet. The stride of convl
are set to 2 for downsampling. * means that a downsample
block is set at the beginning of the reversible sequence. [NV
represents the total number of layers.

a downsample block at the start of the stages where down-
sampling is required. We first use a 3 x 3 average pooling
with a stride of 2 to downsample the image scale and then in-
crease the feature channels using a 1 x 1 convolutional layer
with a stride of 1.

Network Architecture The high-level structure of RevS-
ResNet is the same as its non-reversible counterpart MS
ResNet (Hu et al. 2021). The first convolution is regarded
as the encoding layer which performs the initial downsam-
pling. Then the spiking features propagate through the four
stages with basic blocks. We set up a downsample block at
the start of the second to fourth stages. The network ends
with an average pooling and fully connected layer.

When spiking reversible blocks are sequentially con-
nected (we call it reversible sequence), we only need to
store the output of the last block to complete the training.
Leave out the downsample block, all stages in RevSRes-
Net are reversible sequences. No matter how the number of
blocks in a reversible sequence grows, the memory usage re-
quired by intermediate variables does not increase. The de-
tailed architectures of RevSResNet are summarized in Ta-
ble 1. RevSResNet-N means the network with N layers.

Reversible Spiking Transformer

Vision transformer has taken the accuracy of computer vi-
sion tasks to a new level. Combining our spiking reversible
block with the spiking transformer (Zhou et al. 2023), we
propose RevSFormer and prove the feasibility of reversible
structures in transformer-like SNNs.

Basic Block Unlike ResNet, a spiking transformer block
has two relatively independent residual functions: spiking
self-attention (SSA) and spiking MLP block (MLP). They
are wrapped around their residual connection, respectively.
Under this condition, we respectively consider SSA and
MLP as F and G, and propose the basic block in RevS-
Former, as is shown in Figure 4. We adopt the same SSA
and MLP structure as Spikingformer (Zhou et al. 2023), so
our basic block’s computational complexity and parameter

16763

Y, n
M g —\‘I
1
HERENEREE
@——F O F - O
. e
Y w— ®
¢ Spiking N
e ©0®) |
! Attention i
i i
E [Matrix Dot-Product] i
1 1
i o K v o
©00 ©00 ©OO |
i[Lir;ear] [Lir;ear] [Lir}ear] i
! I
©O0)
X3 X1

Figure 4: Basic block of RevSFormer. We consider spiking
self-attention and MLP block as F and G, respectively.

numbers are consistent with the original spiking transformer
block.

Network Structure The high-level structure of RevS-
Former is the same as its non-reversible counterpart Spik-
ingformer. The network includes a spiking tokenizer, L ba-
sic blocks, and a classification head. The spiking tokenizer
computes the patch embedding of the image and projects the
embedding into a fixed size with several convolutional and
maxpooling layers. The classification head is composed of a
spiking neuron and a fully connected layer. It is worth men-
tioning that all downsampling operations of RevSFormer are
placed in the spiking tokenizer. Since there are no other
downsampling or irreversible operations between all basic
blocks, RevSFormer has only one reversible sequence com-
posed of L basic blocks. As L grows, the memory required
to store intermediate variables is expected to stay the same.
The detailed configurations of RevSFormer are the same
as Spikingfomer. And RevSFormer-L-D means the network
has L blocks and the embedding dimension is D.

Experiments

We evaluate the performance of our reversible structures on
static datasets (CIFAR10 and CIFAR100) and neuromor-
phic datasets (CIFAR10-DVS and DVS128 Gesture). The
metrics include parameters, time steps, FLOPS, memory
per image, and the top-1 accuracy. The memory per im-
age is measured as the peak GPU memory each image oc-
cupies during training. To ensure direct comparability with
non-reversible counterparts, we match the model complex-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Methods Architecture Param Time FLOPS Mempry CIFAR10 CIFAR100
™M) Step (G) (MB/img) Top-1 Acc Top-1 Acc
Hybrid training (Rathi et al. 2020) VGG-11 9.27 125 - - 92.22 67.87
Diet-SNN (Rathi and Roy 2020) ResNet-20 0.27 10 - - 92.54 64.07
STBP (Wu et al. 2018) CIFARNet 17.54 12 - - 89.83 -
STBP NeuNorm (Wu et al. 2019) CIFARNet 17.54 12 - - 90.53 -
TSSL-BP (Zhang and Li 2020) CIFARNet 17.54 5 - - 91.41 -
STBP-tdBN (Zheng et al. 2021) ResNet-19 12.63 4 - - 92.92 70.86
TET (Deng et al. 2022) ResNet-19 12.63 4 - - 94.44 74.47
DS-ResNet (Feng et al. 2022) ResNet20 4.32 4 - - 94.25 -
Spikformer (Zhou et al. 2022) Spikformer-4-384 9.32 4 - - 95.19 77.86
MS ResNet (Hu et al. 2021) MS ResNet18 11.22 4 222 54.83 94.40 75.06
RevSResNet (ours) RevSResNet21 11.05 4 2.38 23.59 | 2.32x 94.53 75.46
MS ResNet (Hu et al. 2021) MS ResNet34 21.33 4 4.64 89.33 94.69 75.34
RevSResNet (ours) RevSResNet37 23.59 4 4.66 23.58 | 3.79x 94.77 76.34
Spikingformer (Zhou et al. 2023) Spikingformer-2-384 5.76 4 2.79 83.05 95.12 77.96
RevSFormer (ours) RevSFormer-2-384 5.76 4 2.79 41.68 | 1.99x 95.29 78.04
Spikingformer (Zhou et al. 2023) Spikingformer-4-384 9.32 4 3.70 125.06 95.35 79.02
RevSFormer (ours) RevSFormer-4-384 9.32 4 3.70 41.74 | 3.00x 95.34 79.04

Table 2: Comparison to prior works on static datasets, CIFAR100 and CIFAR10. Note that results of MS ResNet and Spiking-
former are based on our implementation for a fair comparison. Bold values denotes the memory usage of our reversible SNNs.

ity (FLOPS in metric) and number of parameters as closely
as possible. The dataset introduction, detailed network con-
figuration, and other experimental settings are presented in
the Appendix (Zhang and Zhang 2023).

Experiment on Static Datasets

CIFAR10 and CIFAR100 each provides 50000 train
and 10000 test images. On these datasets, we establish
two comparisons (MS ResNetl8 vs. RevSResNet21, MS
ResNet34 vs. RevSResNet37) for ResNet-like structures.
For transformer-like structures, the network configuration
and model complexity of RevSFormer are identical to Spik-
ingformer. Results are shown in Table 2.

From an accuracy perspective, we find that the perfor-
mance of RevSResNet and RevSFormer is comparable to
their counterparts with similar complexity. RevSResNet37
achieves 94.77% and 76.34% accuracy on CIFARIO and
CIFAR100 datasets, respectively, while RevSFormer-4-384
achieves 95.34% and 79.04% accuracy with a time step of 4.
The performance of RevSResNet and RevSFormer is even
slightly better than MS ResNet and SpikingFormer, which
may be due to stronger inherent regularization of reversible
architectures than vanilla networks (Mangalam et al. 2022).

From the memory perspective, our reversible SNNs
are much more memory-efficient than vanilla SNNs. On
one hand, RevSResNet37 and RevSFormer-4-384 consume
23.58 and 41.74 MB GPU memory per image, which is
3.79% and 3.00x lower than their counterparts. On the other
hand, the memory usage does not increase with depth in our
networks, which will be further discussed later.

Experiment on Neuromorphic Datasets

On the neuromorphic datasets, we conduct experiments with
two different time steps, 10 and 16. And we establish one
network comparison (MS ResNet20 vs. RevSResNet24) for
ResNet-like structures. For transformer-like structures, the

16764

network configuration are identical between reversible and
non-reversible structures.

Results are shown in Table 3. The relative changes in ac-
curacy and memory are similar to those on static datasets.
Our RevSResNet and RevSFormer achieve a memory us-
age reduction of 2.01x and 1.30Xx, respectively. And the
magnitude of the reduction stays consistent across differ-
ent time steps. In terms of performance, RevSResNet24 and
RevSFormer-2-256 achieve 76.4% and 82.2% accuracy on
CIFAR10-DVS dataset with a time step of 16.

Ablation Studies

Memory Usage vs. Depth Theoretically, for a reversible
sequence, the memory usage required by intermediate vari-
ables does not increase with the number of reversible blocks
because we only need to save the output of the whole se-
quence. Thus, for RevSResNet with 4 reversible sequences
and RevSFormer with 1 sequence, the memory usage per
image should not increase with depth. Figure 1 plots the
memory usage for our reversible SNNs and their counter-
parts. For ResNet-like structures, the relative memory saving
magnitude increases up to 8.1x as the model goes deeper.
For transformer networks, our RevSFormer-16-384 saves
9.1x GPU memory per image. It is expected that this mem-
ory saving magnitude will increase further with increasing
depth.

Memory Usage vs. Time Step The memory required by
an SNN is 7" times larger than an ANN. Thus, the GPU
memory required per image grows linearly with the total
time steps 7'. Figure 5 shows the relationship between mem-
ory usage and time steps. As is seen, for each model, the
memory usage increases with a certain slope m. In our re-
versible SNNs, intermediate variables in the non-reversible
parts (e.g., the downsample layers and the spiking tokenizer)
and the output of each reversible sequence still need caching.
Thus, memory usage is not decoupled from time steps 7'.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Methods FLOPS Memory CIFAR10-DVS DVS128 Gesture
(€)] (MB/img) Time Step Top-1 Acc Time Step Top-1 Acc

LIAF-Net (Wu et al. 2021) - - 10 70.40 60 97.56
TA-SNN (Yao et al. 2021) - - 10 72.00 60 98.61
Rollout (Kugele et al. 2020) - - 48 66.75 240 97.16
tdBN (Zheng et al. 2021) - - 10 67.80 40 96.87
PLIF (Fang et al. 2021b) - - 20 74.80 20 97.57
SEW ResNet (Fang et al. 2021a) - - 16 74.40 16 97.92
Dspike (Li et al. 2021b) - - 10 75.40 - -
DSR (Meng et al. 2022) - - 10 77.27 - -
DS-ResNet (Feng et al. 2022) - - 10 70.36 40 97.29
Spikformer (Zhou et al. 2022) - - 16 80.60 16 97.90
MS ResNet20 (Hu et al. 2021) 0.42 50.72 10 76.00 10 94.79
RevSResNet24 (ours) 0.43 24.97 | 2.03x 10 75.50 10 94.44
MS ResNet20 (Hu et al. 2021) 0.67 79.38 16 75.80 16 97.57
RevSResNet24 (ours) 0.69 39.52 | 2.01x 16 76.40 16 96.53
Spikingformer-2-256 (Zhou et al. 2023) 3.78 295.73 10 78.50 10 96.88
RevSFormer-2-256 (ours) 3.78 227.50 | 1.30x 10 81.40 10 97.22
Spikingformer-2-256 (Zhou et al. 2023) 6.05 466.08 16 80.30 16 98.26
RevSFormer-2-256 (ours) 6.05 359.58 | 1.30x 16 82.20 16 97.57

Table 3: Comparisons with prior works on neuromorphic datasets, CIFAR10-DVS and DVS128 Gesture. Note that results of
MS ResNet and Spikingformer are based on our implementation for a fair comparison. Bold values denote the memory usage

of our reversible SNNs.

1200
—— MS ResNet34
10001 - RevSResNet37 =285
g\ Spikingformer-4-384
= 800 RevSFormer-4-484
=3
2 600
o
§
S 400
o]
o
© 200
0
0 5 10 15 20 25 30 35 40
Time Step

Figure 5: Relationship between memory and time step.

However, through reversible architecture, we have greatly
reduced the slope of memory usage growth from 28.5 and
20.2 of non-reversible SNNs to 9.6 and 5.3 of our reversible
networks.

Computational Overhead during Training In general,
for a network with IV operations, the forward and backward
processes take N and 2NV operations approximately (Gomez
et al. 2017). Our spiking reversible block requires the extra
reset and reverse processes. The reset process take negligi-
ble operations and the reverse process take N operations,
same as forward. In summary, the reversible architectures
need roughly 33% more computations than vanilla networks
during training. Besides, reversible SNNs have larger max-
imum batch size, which may slightly influence the training
speed and final performance (Wu and Johnson 2021).

The training time and maximum batch size of our re-
versible SNNs and their counterparts are shown in Table 4.

16765

. Training time Maximum
Architecture (secondi / epoch) Batch size
MS ResNet34 98 239
RevSResNet37 131 1 1.33x% 644 1 2.69x
Spikingformer-4-384 105 164
RevSFormer-4-384 1334+ 1.27x 286 1 1.74x

Table 4: The training time and maximum batch size of our
reversible structures and their non-reversible counterparts.

The values are measured on a single 24GB RTX3090 GPU
under CIFARI10 dataset. Our RevSResNet37 takes 1.33x
more training time in practice. Besides, it achieves a 2.69 x
increase in maximum batch size, and the increase magnitude
will go larger on bigger models.

Conclusion

In this paper, we propose the reversible spiking neural net-
work to reduce the memory cost of intermediate activations
and membrane potentials during training of SNNs. We first
extend the reversible architecture along temporal dimension
and propose the reversible spiking block, which can recon-
struct the computational graph of forward pass with a re-
verse process. On this basis, we present the RevSResNet and
RevSFormer models, which are the reversible counterparts
of the state-of-the-art SNNs. Through experiments on static
and neuromorphic datasets, we demonstrate that the mem-
ory cost per image of our reversible SNNs does not increase
with the network depth. In addition, RevSResNet and RevS-
Former achieve comparative accuracies and consume much
less GPU memory than their counterparts with roughly iden-
tical model complexity and parameters.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Acknowledgments

This work was supported by STI 2030-Major Projects
2021ZD0201403, in part by NSFC 62088101 Autonomous
Intelligent Unmanned Systems.

References

Amir, A.; Taba, B.; Berg, D.; Melano, T.; McKinstry, J.;
Di Nolfo, C.; Nayak, T.; Andreopoulos, A.; Garreau, G.;
Mendoza, M.; et al. 2017. A low power, fully event-based
gesture recognition system. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 7243—
7252.

Briigger, R.; Baumgartner, C. F.; and Konukoglu, E. 2019.
A partially reversible U-Net for memory-efficient volumet-
ric image segmentation. In Medical Image Computing and
Computer Assisted Intervention-MICCAI 2019: 22nd In-
ternational Conference, Shenzhen, China, October 13-17,
2019, Proceedings, Part Il 22, 429-437. Springer.

Bu, T.; Ding, J.; Yu, Z.; and Huang, T. 2022. Optimized
Potential Initialization for Low-latency Spiking Neural Net-
works. arXiv preprint arXiv:2202.01440.

Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.;
Choday, S. H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al.
2018. Loihi: A neuromorphic manycore processor with on-
chip learning. leee Micro, 38(1): 82-99.

Deng, S.; and Gu, S. 2021. Optimal conversion of conven-
tional artificial neural networks to spiking neural networks.
arXiv preprint arXiv:2103.00476.

Deng, S.; Li, Y.; Zhang, S.; and Gu, S. 2022. Temporal ef-
ficient training of spiking neural network via gradient re-
weighting. arXiv preprint arXiv:2202.11946.

Diehl, P. U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.-C.; and
Pfeiffer, M. 2015. Fast-classifying, high-accuracy spik-
ing deep networks through weight and threshold balancing.
In 2015 International joint conference on neural networks
(IJCNN), 1-8. ieee.

Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516.

Fang, W.; Yu, Z.; Chen, Y.; Huang, T.; Masquelier, T.; and
Tian, Y. 2021a. Deep residual learning in spiking neural net-
works. Advances in Neural Information Processing Systems,
34:21056-21069.

Fang, W.; Yu, Z.; Chen, Y.; Masquelier, T.; Huang, T.; and
Tian, Y. 2021b. Incorporating learnable membrane time con-
stant to enhance learning of spiking neural networks. In
Proceedings of the IEEE/CVF international conference on
computer vision, 2661-2671.

Feng, L.; Liu, Q.; Tang, H.; Ma, D.; and Pan, G. 2022.
Multi-level firing with spiking ds-resnet: Enabling better

and deeper directly-trained spiking neural networks. arXiv
preprint arXiv:2210.06386.

Gerstner, W.; and Kistler, W. M. 2002. Spiking neuron mod-
els: Single neurons, populations, plasticity. Cambridge uni-
versity press.

16766

Gomez, A. N.; Ren, M.; Urtasun, R.; and Grosse, R. B. 2017.
The reversible residual network: Backpropagation without
storing activations. Advances in neural information process-
ing systems, 30.

Hascoet, T.; Febvre, Q.; Zhuang, W.; Ariki, Y.; and
Takiguchi, T. 2019. Layer-wise invertibility for extreme
memory cost reduction of cnn training. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion Workshops, 0-0.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770-778.

Hu, Y.; Deng, L.; Wu, Y.; Yao, M.; and Li, G. 2021. Ad-
vancing Spiking Neural Networks towards Deep Residual
Learning. arXiv preprint arXiv:2112.08954.

Kim, Y.; Li, Y.; Park, H.; Venkatesha, Y.; and Panda, P. 2022.
Neural architecture search for spiking neural networks. In
European Conference on Computer Vision, 36-56. Springer.

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.

Kugele, A.; Pfeil, T.; Pfeiffer, M.; and Chicca, E. 2020. Ef-
ficient processing of spatio-temporal data streams with spik-
ing neural networks. Frontiers in Neuroscience, 14: 439.

Lee, C.; Sarwar, S. S.; Panda, P.; Srinivasan, G.; and Roy,
K. 2020. Enabling spike-based backpropagation for train-
ing deep neural network architectures. Frontiers in neuro-
science, 119.

Li, D.; and Gao, S.-H. 2021. m-revnet: Deep re-
versible neural networks with momentum. arXiv preprint
arXiv:2108.05862.

Li, G.; Miiller, M.; Ghanem, B.; and Koltun, V. 2021a.
Training graph neural networks with 1000 layers. In Interna-
tional conference on machine learning, 6437-6449. PMLR.
Li, H.; Liu, H.; Ji, X_; Li, G.; and Shi, L. 2017. Cifar10-dvs:
an event-stream dataset for object classification. Frontiers
in neuroscience, 11: 309.

Li, Y.; Guo, Y.; Zhang, S.; Deng, S.; Hai, Y.; and Gu, S.
2021b. Differentiable spike: Rethinking gradient-descent for
training spiking neural networks. Advances in Neural Infor-
mation Processing Systems, 34: 23426-23439.

Maass, W. 1997. Networks of spiking neurons: the third gen-
eration of neural network models. Neural networks, 10(9):
1659-1671.

MacKay, M.; Vicol, P,; Ba, J.; and Grosse, R. B. 2018. Re-
versible recurrent neural networks. Advances in Neural In-
formation Processing Systems, 31.

Mangalam, K.; Fan, H.; Li, Y.; Wu, C.-Y.; Xiong, B.; Fe-
ichtenhofer, C.; and Malik, J. 2022. Reversible vision trans-
formers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10830—10840.
Meng, Q.; Xiao, M.; Yan, S.; Wang, Y.; Lin, Z.; and Luo,
Z.-Q. 2022. Training high-performance low-latency spiking
neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 12444—-12453.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Na, B.; Mok, J.; Park, S.; Lee, D.; Choe, H.; and Yoon, S.
2022. Autosnn: Towards energy-efficient spiking neural net-
works. In International Conference on Machine Learning,

16253-16269. PMLR.

Neftci, E. O.; Mostafa, H.; and Zenke, F. 2019. Surrogate
gradient learning in spiking neural networks: Bringing the
power of gradient-based optimization to spiking neural net-
works. IEEFE Signal Processing Magazine, 36(6): 51-63.
Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; and Loomis, C.
2017. CuPy: A NumPy-Compatible Library for NVIDIA
GPU Calculations. In Proceedings of Workshop on Ma-
chine Learning Systems (LearningSys) in The Thirty-first
Annual Conference on Neural Information Processing Sys-
tems (NIPS).

Rathi, N.; and Roy, K. 2020. Diet-snn: Direct input encod-
ing with leakage and threshold optimization in deep spiking
neural networks. arXiv preprint arXiv:2008.03658.

Rathi, N.; Srinivasan, G.; Panda, P.; and Roy, K. 2020. En-
abling deep spiking neural networks with hybrid conversion
and spike timing dependent backpropagation. arXiv preprint
arXiv:2005.01807.

Roy, K.; Jaiswal, A.; and Panda, P. 2019. Towards spike-
based machine intelligence with neuromorphic computing.
Nature, 575(7784). 607-617.

Sander, M. E.; Ablin, P.; Blondel, M.; and Peyré, G. 2021.
Momentum residual neural networks. In International Con-
ference on Machine Learning, 9276-9287. PMLR.

Shrestha, S. B.; and Orchard, G. 2018. Slayer: Spike layer
error reassignment in time. Advances in neural information
processing systems, 31.

Song, Y.; Meng, C.; and Ermon, S. 2019. Mintnet: Building
invertible neural networks with masked convolutions. Ad-
vances in Neural Information Processing Systems, 32.
Wang, Y.; Zhang, M.; Chen, Y.; and Qu, H. 2022. Signed
neuron with memory: Towards simple, accurate and high-
efficient ann-snn conversion. In International Joint Confer-
ence on Artificial Intelligence.

Wu, Y.; Deng, L.; Li, G.; Zhu, J.; and Shi, L. 2018. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in neuroscience, 12: 331.
Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Xie, Y.; and Shi, L. 2019.
Direct training for spiking neural networks: Faster, larger,
better. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, 1311-1318.

Wu, Y.; and Johnson, J. 2021. Rethinking” batch” in batch-
norm. arXiv preprint arXiv:2105.07576.

Wu, Z.; Zhang, H.; Lin, Y.; Li, G.; Wang, M.; and Tang,
Y. 2021. Liaf-net: Leaky integrate and analog fire network
for lightweight and efficient spatiotemporal information pro-
cessing. IEEE Transactions on Neural Networks and Learn-
ing Systems, 33(11): 6249-6262.

Yao, M.; Gao, H.; Zhao, G.; Wang, D.; Lin, Y.; Yang, Z.;
and Li, G. 2021. Temporal-wise attention spiking neural
networks for event streams classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 10221-10230.

16767

Yao, X.; Li, F.; Mo, Z.; and Cheng, J. 2022. Glif: A unified
gated leaky integrate-and-fire neuron for spiking neural net-
works. Advances in Neural Information Processing Systems,

35:32160-32171.

Zhang, H.; Fan, X.; and Zhang, Y. 2023. Energy-Efficient
Spiking Segmenter for Frame and Event-Based Images.
Biomimetics, (4).

Zhang, H.; and Zhang, Y. 2023.
Reversible Spiking Neural Networks.
arXiv:2312.07922.

Zhang, W.; and Li, P. 2020. Temporal spike sequence learn-
ing via backpropagation for deep spiking neural networks.
Advances in Neural Information Processing Systems, 33:
12022-12033.

Zhang, Y.; Zhang, H.; Li, Y.; He, B.; Fan, X.; and Wang,
Y. 2023. Direct Training High-Performance Spiking Neural
Networks for Object Recognition and Detection. Frontiers
in Neuroscience, 17: 1229951.

Zheng, H.; Wu, Y.; Deng, L.; Hu, Y.; and Li, G. 2021. Going
deeper with directly-trained larger spiking neural networks.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, 11062-11070.

Zhou, C.; Yu, L.; Zhou, Z.; Zhang, H.; Ma, Z.; Zhou, H.; and
Tian, Y. 2023. Spikingformer: Spike-driven Residual Learn-
ing for Transformer-based Spiking Neural Network. arXiv
preprint arXiv:2304.11954.

Zhou, Z.; Zhu, Y.; He, C.; Wang, Y.; Yan, S.; Tian, Y.; and
Yuan, L. 2022. Spikformer: When spiking neural network
meets transformer. arXiv preprint arXiv:2209.15425.

Memory-Efficient
arXiv preprint

