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Abstract

One of the challenges in generating human-like music is ar-
ticulating musical expressions such as dynamics, phrasing,
and timbre, which are difficult for computational models to
mimic. Previous efforts to tackle this problem have been in-
sufficient due to a fundamental lack of data containing infor-
mation about musical expressions. In this paper, we introduce
MID-FiLD, a MIDI dataset for learning fine-level dynamics
control. Notable properties of MID-FiLD are as follows: (1)
All 4,422 MIDI samples are constructed by professional mu-
sic writers with a strong understanding of composition and
musical expression. (2) Each MIDI sample contains four dif-
ferent musical metadata and control change #1 (CC#1) value.
We verify that our metadata is a key factor in MID-FiLD, ex-
erting a substantial influence over produced CC#1 values. In
addition, we demonstrate the applicability of MID-FiLD to
deep learning models by suggesting a token-based encoding
methodology and reveal the potential for generating control-
lable, human-like musical expressions.

Introduction
Expressive dynamics is an essential element for improv-
ing the quality and completeness of music (Todd 1992). As
shown in the spectrogram in Figure 1, expressive dynam-
ics control the loudness of an instrument, which is a sub-
jective perception of sound pressure. In a performance, the
performer focuses not only on performing the correct pitch
and duration of the notes but also on conveying musical ex-
pression including loudness intended by the composer (Ję-
drzejewska, Zjawiński, and Stasiak 2018). In order to create
high-quality and realistic music using deep learning tech-
niques, recent studies have aimed to mimic characteristics of
human performances including expressive dynamics (Huang
et al. 2018; Huang and Yang 2020). Furthermore, expressive
dynamics has been regarded as a crucial factor in control-
lable generation of music (Tan, Luo, and Herremans 2020;
Wu et al. 2022).

Duly recognizing the significance of conveying expres-
sive dynamics, a majority of studies dealing with MIDI data
focused on generating note-level MIDI velocity, which can
adjust the loudness of each note (Cancino-Chacón et al.
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Figure 1: Example illustrating variations in Mel-
spectrogram according to alterations in expressive dy-
namics. As the value of expressive dynamics fluctuates, the
intensity of the sound signal varies over time. It can be seen
that expressive dynamics affect the amplitude of a specific
frequency in music, which leads to changes in loudness.

2018; Jeong et al. 2019b; Lauly 2010). Likewise, in the
area of audio synthesis, previous studies have made efforts
to reflect the loudness of music when rendering MIDI data
(Castellon, Donahue, and Liang 2020; Wu et al. 2022). To
accomplish this, most studies extracted the loudness features
directly from the frequency and amplitude of the audio sig-
nal without using domain-specific annotations.

However, these previous attempts are bound by two in-
herent limitations. Primarily, note-level expressive dynamics
are insufficient to reenact musical expression performed by
most western instruments. Except for piano or percussion, in
which the attack of a note defines the loudness, most western
instruments can induce variation in the loudness of a single
note. For example, a string, woodwind, or brass instrument
can perform a crescendo that stretches within a note (Berndt
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Attributes Instrument Mood Track role Note-level
Dynamics

Fine-level
Dynamics

MAESTROv3 (2019) Single × × ⃝ ×
MusicNet (2017) Multiple × × ⃝ ×
URMP (2018) Multiple × × × ×
Lakh MIDI (2016) Multiple × × ⃝ △
ComMU (2022) Multiple × ⃝ ⃝ ×
MID-FiLD (Ours) Multiple ⃝ ⃝ ⃝ ⃝

Table 1: Comparison of MID-FiLD to other recent MIDI datasets. We compare MID-FiLD to other MIDI datasets on: instru-
ments, metadata (mood and track role), and parameters of dynamics (note-level and fine-level). Since only a portion of Lakh
MIDI dataset contains fine-level dynamics, it is marked as △.

and Hähnel 2010). Therefore, modelling fine-level expres-
sive dynamics is necessary to create music with a variety of
instruments. In addition, expressive dynamics can be pro-
duced based not only on the properties of the notes but also
on the auxiliary attributes, or metadata, of music. Further,
human composers tend to factor in various elements, includ-
ing the type of instrument, mood, or track role of the music,
when crafting expressive dynamics (Gabrielsson and Juslin
1996; Li et al. 2018). Hence, it can be a naive approach to
simply extract musical dynamics from an audio signal of hu-
man performance without any metadata aligned. Although
some MIDI datasets may include partial samples with an-
notations of fine-level dynamics (Raffel 2016), they are also
limited in providing a sufficient amount of aligned metadata
that elucidates the characteristics of the music.

In this paper, we introduce MID-FiLD, a new dataset
containing 4,422 MIDI music samples that are paired with
fine-level expressive dynamics and meta information col-
lected by professional composers. We focus on fine-level
annotations for expressive dynamics represented as param-
eter values of modulation wheel of MIDI, a type of control
change messages within MIDI. Control change (CC) mes-
sages denote parameter values that modify the attributes of
various instrumental sounds over time (Moog 1986). MID-
FiLD provides #1 parameter values of CC (i.e., CC#1), cor-
responding to the incremental amount of modulation wheel
to represent the time-varying dynamics of the instrument’s
sound (for details, refer to Appendix A). The CC#1 val-
ues for each MIDI sample were carefully annotated by do-
main professionals, which leads to annotations that are sub-
stantially more sophisticated than the note-level annotations
or features from the existing datasets. Furthermore, in line
with the preceding study (Lee et al. 2022), our dataset incor-
porates metadata including mood, track role, and min-max
range of CC#1 values. Given the importance of their role in
understanding musical conditions, we show that these meta-
data can be employed strategically in the dynamics genera-
tion task.

Based on our dataset, we conduct the following analysis
and experiments to demonstrate its excellence. First, we an-
alyze the dataset through exploratory data analysis (EDA)
to reveal the relationships between expressive dynamics and
metadata of music. Given that our dataset contains not only
dynamics but also meta information which represents prop-

erties of music, it becomes feasible to reveal the tendency
of dynamics that are otherwise unexplored within the con-
fines of MIDI-only data. Second, we evaluate baseline mod-
els on a generation task with MID-FiLD through an abla-
tion study with our novel, task-specific representation. By
training a deep learning model with MID-FiLD, improved
performances are observed in terms of fidelity and control-
lability.

In summary, the main contributions of our work are as
follows:

• MID-FiLD contains fine-level expressive dynamics. The
dataset is crafted by professional composers, which en-
compasses a broader range of natural loudness variations
compared to the existing note-level dataset.

• This is the first dataset which contains both fine-level dy-
namics and sufficient metadata including track role and
mood. Moreover, we identify a substantial correlation be-
tween metadata and dynamics through experiments, im-
plying the strength of our dataset in tasks involving the
generation of dynamics.

• We provide a baseline model including data representa-
tion, and corresponding metrics for generating fine-level
values of dynamics with MID-FiLD.

Additionally, the main differences of MID-FiLD compared
to existing datasets are summarized in Table 1.

Related Work
Datasets Containing Expressive Dynamics
A number of music datasets have provided information
related to expressive dynamics through various attributes.
Symbolic music datasets such as Lakh MIDI Dataset (Raffel
2016), MAESTRO (Hawthorne et al. 2019), Pop1k7 (Hsiao
et al. 2021), or ComMU (Lee et al. 2022) include human per-
formance data in the format of MIDI. With the exception of
Lakh MIDI Dataset, these datasets only include note veloc-
ities as parameters of expressive dynamics, which are lim-
ited to note-level variation in loudness. Lakh MIDI Dataset
comprises multi-track MIDI with various types of control
changes for flexible control of distinctive instruments. How-
ever, it does not contain sufficient meta information such as
track roles or mood-related attributes for each sample. On
the other hand, audio datasets can provide high-quality audio

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

223



recordings for various instruments. RWC Music database
(Goto et al. 2002), MusicNet (Thickstun, Harchaoui, and
Kakade 2017), and URMP (Li et al. 2018) are examples of
audio datasets collected through recording. Although these
datasets can provide features related to dynamics from the
raw audio, the quality of features depends on extraction
methods that are either heuristic or automatic. These ex-
tracted features can be less accurate than those of careful
annotations produced by professional musicians.

Modeling Expressive Dynamics of Symbolic Music
In the symbolic domain, expressive dynamics has been
considered as one of the effective parameters to modify
quantized MIDI events into realistic music performances
(Cancino-Chacón et al. 2018). Finding good expressive dy-
namics has been often associated with generating relevant
note velocity. Recent deep learning techniques, such as re-
current neural network (RNN) (Lauly 2010) and graph neu-
ral network (GNN) (Jeong et al. 2019b), encouraged gen-
erative models to learn non-linearity in a large number of
expressive parameters conditioned by the musical score at-
tributes including note pitches, durations, or onset timings.
Moreover, deep probabilistic models such as variational au-
toencoder (VAE) have facilitated the stochastic generation
of the expressive dynamics constrained by the musical score
(Maezawa 2018; Maezawa, Yamamoto, and Fujishima 2019;
Jeong et al. 2019a). Nonetheless, these studies are mostly
limited to piano performance and note-level dynamics.

Modeling Expressive Dynamics of Audio
Expressive dynamics have been regarded as one of the in-
termediate parameters for synthesizing audio of human-
performed music from MIDI data. While conventional ap-
proaches include a feed-forward neural network predicting
the dynamics of a motif performed by a violin (Ortega,
Perez-Carrillo, and Ramírez 2019), recent studies focused
on Differentiable Digital Signal Processing (DDSP) (Engel
et al. 2020). Utilizing LSTM-based model (Jonason 2020) or
MIDI2Params model (Castellon, Donahue, and Liang 2020),
high-level acoustic parameters including loudness from a
given MIDI were predicted as inputs for the DDSP module.
More recently, MIDI-DDSP has become state-of-the-art in
realistic audio synthesis for various instruments from MIDI
scores (Wu et al. 2022). MIDI-DDSP exploits an expression
generator, which aims to predict 6 hand-crafted parameters
related to volume, pitch, and noise from a MIDI input. Al-
though it allows a user to finely adjust time-varying sound
attributes, its application is limited to note-level dynamics.
Furthermore, achieving accurate and sensitive integration of
the parameters necessitates a deep understanding of music
and audio signals on the user’s part.

MID-FiLD
Data Collection
MID-FiLD has 4,422 samples that consist of short note se-
quences with 4 corresponding metadata. Table 2 includes ba-
sic information of MID-FiLD.

# Samples 4,422
# Notes 91,863
# Average notes per sample 20.8
Types of instruments 18
Types of track role 6
Types of mood 19
Range of CC#1 value 0-127

Table 2: Basic information of MID-FiLD.

Figure 2: Example of CC#1 values with notes in MID-FiLD
displayed by a digital audio workstation (Logic Pro X).
Ascending values express an increase in loudness, and de-
scending values express a decrease in loudness.

MID-FiLD was made by professional composers based
on a systematic approach. Composers were divided into two
groups. One group created a composition guideline for the
MIDI samples including metadata of each sample, and the
other composed MIDI samples based on the guideline, fol-
lowing the data collection workflow in ComMU dataset (Lee
et al. 2022).

In addition to creating MIDI notes and entering metadata,
composers also incorporated nuanced dynamics into each
sample, taking into account not only the melody but also
the sample’s metadata. Effectively applying their sense and
knowledge in musical composition, composers drew semi-
continuous values of expressive dynamics using MIDI con-
trol change messages. We selected control number 1, among
other control change messages, to explicitly represent ex-
pressive dynamics in a consistent manner. The control num-
ber of the control change message corresponds to informa-
tion related to performance controls such as wheels or ped-
als: our dataset utilized control number 1 (CC#1), modula-
tion wheel. Figure 2 shows a graph of CC#1 value with notes
in a sample over time, captured as a screenshot within a dig-
ital audio workstation. The range of CC#1 value spans from
0 to 127, which fluctuates as time-series data in alignment
with melody.

Metadata
In this section, we take a closer look at the definition of the
4 metadata.

Instrument. Our taxonomy of instruments follows that of
Western musical instruments (Kartomi 1990). Based on the
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(a) (b)

(c)

Figure 3: Data distributions of CC#1 values by each meta-
data group of (a) mood, (b) instrument, and (c) track role.

general classification system of Western instruments, MID-
FiLD has 18 different instruments belonging to either bowed
string, woodwind, or brass. Such distribution of instruments
has a meaningful effect on fine-level control of dynamics
because the strength of bowing and blowing can increase or
decrease regardless of the initial velocity of a note, which
corresponds to mere note-level control.

Track role. With reference to ComMU dataset (Lee et al.
2022), track role is a classification of note sequences, based
on its role in a piece of multi-track music. We divide multi-
track into main melody, sub-melody, accompaniment, bass,
pad, and riff, where each group has different note figures
containing its own characteristics of the track.

Mood. Mood is a sentiment which represents the atmo-
sphere of a sample. Based on information about the audio
key (major, minor), tempo, traits of rhythm, and other de-
scriptive guidelines, composers standardize the taxonomy of
different moods based on similar keywords for the atmo-
sphere of each sample. As a result, the mood is classified
into 19 groups, characterizing the melody’s emotion in each
sample.

Min&max CC#1 value. In order to provide additional in-
formation regarding the highest/lowest value of CC#1 while
training, we extract minimum and maximum CC#1 values
as metadata. Since we tokenize the information of metadata,
the CC#1 value range (0-127) is quantized into a discrete
range with a 5-bin size, allowing us to reduce its complexity
and benefit from the regularization effect when preprocess-
ing.

Data Analysis
In this section, we further investigate MID-FiLD with re-
spect to metadata. In particular, we examine relationships
between CC#1 value and metadata (i.e. mood, instrument,
and track role) in terms of data distribution. Distinguishable

Figure 4: Heatmaps illustrating relationships between pairs
of metadata. Each entry denotes the intersection of the aver-
age CC#1 value of the two subsets from two different meta-
data.

data distribution according to metadata is important in gen-
erating diverse music (Lee et al. 2022). Hence, we verify
whether there are observable differences in the data distri-
bution of CC#1 value based on given metadata.

Our dataset contains sufficient labels of metadata includ-
ing mood, instrument, and track role. To demonstrate clear
data distribution by each metadata, we group labels of mood
and instrument into higher-level classes. For mood, we re-
fer to Russell’s 4Q model (Russell 1980), which classifies
emotion into one of the quadrants comprised of valence
and arousal axes. To this end, we assign each of the 19
mood labels to one of the four valence-arousal classes ac-
cording to previous studies for classifying music emotion
(Levy and Sandler 2007; Bischoff et al. 2009; Laurier et al.
2009). Instruments are divided according to the Western in-
strument categories (string(bowed), woodwind, and brass in-
struments). Track roles are analyzed without grouping. To
see details on the grouping of the labels, refer to Appendix
B.2.

Distribution by Each Metadata
We average CC#1 values of each sample. To measure the
significance of differences among data distributions, we con-
ducted Welch’s ANOVA and Games-Howell test as the post
hoc pairwise comparison. Figure 3 illustrates the distribu-
tions of CC#1 mean values of different groups of metadata.
Mood classes show significant differences in distribution
from one another (p < 0.01), where Q2 shows the highest
mean of CC#1 values compared to the other quadrants. This
indicates that MIDI note samples at high arousal and low
valence can induce increased dynamics, duplicating previ-
ous studies that negative arousal is deeply related to sound
intensity (Gomez and Danuser 2007; Hung et al. 2021;
Weninger et al. 2013). Instrument classes also show mean-
ingful pairwise differences in CC#1 values (p < 0.0001),
where the brass class has the highest mean of CC#1 values
(Phillips and Mace 2008). Track role, however, shows sig-
nificant pairwise differences excluding accompaniment vs.
main melody pair (p > 0.1), accompaniment vs. riff pair
(p > 0.1), and bass vs. pad pair (p > 0.5). Meanwhile,
bass and pad share significantly analogous variances in a low
range of CC#1 values due to their similar roles within multi-
track music (Lee et al. 2022).
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Figure 5: Illustration of our input encoding approach for
MID-FiLD. (a) Notes are decomposed into the following
five components: position (start, and end each), pitch, du-
ration, and velocity between repeated bar tokens. (b) For
metadata, each field out of five results in a single token rep-
resentation. (c) For CC#1 values, each occurrence on MIDI
is decomposed to position and value that alternates between
repeated bar tokens.

Relationships Among Metadata
Figure 4 shows the aggregated mean of CC#1 values of each
pair of metadata, normalized to the range of [0,1] for clarity
of presentation.

The value "0" denotes the absence of data for the corre-
sponding intersection of the two groups. First, Q2 has the
highest mean regardless of the instrument, whereas brass
has the highest mean of CC#1 among instruments regard-
less of mood. Woodwind displays the smallest CC#1 regard-
less of track role and mood. Meanwhile, bass and pad have
decreased dynamics compared to other track roles indepen-
dent of instruments and mood. Moreover, the intersection of
accompaniment and Q4 shows the highest mean of CC#1,
while that of accompaniment and Q3 shows the lowest. This
signifies that the dynamics in accompaniment can largely
vary based on mood rather than instrument. Generally, it is
evident that mood, instrument, and track role interact with
one another to some extent in relation to CC#1 value. At
the same time, other explicit tendencies in CC#1 values in
each metadata are observed, suggesting a controllability of
fine-level dynamics through metadata.

Experimental Setup
In this section, we investigate the potential of our dataset
by demonstrating an implementation task on a generative
model through an objective evaluation method. The basic
gist of our generative task is to predict a CC#1-time series
value appropriate for the note sequence and corresponding
metadata of a given sample. The methodologies of our ex-

periments including self-defined evaluation metrics are de-
scribed below in detail.

Implementation
We devised a token-based representation for the input en-
coding process of MID-FiLD, which is a general approach
inspired by Natural Language Processing to handle symbolic
music data. Note sequences and their associated metadata
and CC#1 values are tokenized and encoded into a sequence
of integers based on specific pre-defined mappings. For de-
tails on the input encoding vocabulary, refer to Appendix
C.1.

Input encoding. Figure 5 shows our tokenization strat-
egy, which inherits the methodology of REMI representa-
tion(Huang and Yang 2020). Note sequence representations
are acquired by tokenizing note components into position,
pitch, velocity, and duration. One notable difference be-
tween REMI and our representation is that a new position
end token class has been added. Then the mathematical for-
mulation of the encoded note sequence can be written as fol-
lows:

X = {xB
1 , x

PS
2 , xH

3 , . . . , xD
K−2, x

V
K−1, x

PE

K } (1)

where each B, PS , H , D, V , and PE represents bar (in mu-
sic score), position start, pitch, duration, velocity, and posi-
tion end. Note that K represents the number of tokens in the
encoded note sequence. For meta information, each field is
encoded to a single metadata token mi. Thus simply:

M = {m1,m2, . . . ,m5}. (2)

Similarly, formulation of CC#1 values can be described as

C = {cB1 , cP2 , cV3 , . . . , cPN−1, c
V
N}, (3)

where B, P and V indicate bar, position (of CC#1 value),
and value respectively. N stands for the number of tokens
in the CC#1 value sequence. The tokens for encoding po-
sition in CC#1 sequence share the same embedding space
with those of position in note sequence while sharing the
same resolution rate of 128 per measure. Such traits enable
the model to learn fine-level control through high-resolution
representation.

Problem definition. Our task focuses on generating
proper CC#1 values conditioned by specific metadata and
a given note sequence. We demonstrate our task by using
the vanilla transformer model(Vaswani et al. 2017) with its
encoder and associated auto-regressive decoder. Let (X , Y )
be the input pair of encoder and decoder for our model. We
construct our encoder input X with note sequence directly as
in Eq. (1), and decoder input Y by concatenating the meta-
data token sequence (2) and the CC#1 token sequence (3),
i.e.,

Y = Concat(M,C)

= {m1, . . . ,m5, c
B
1 , c

P
2 , . . . , c

C
N}.

(4)

Now, to learn the sequence of CC#1, the decoder can
be trained by minimizing the following negative auto-
regressive log-likelihood of the sequence Y := {yt}Tt=1,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

226



Figure 6: Overall process of the CC#1 generation task. During training, note information is used as the source of the model, and
CC#1 values with metadata are used as the target of the model. The model updates its parameter using the loss (negative log-
likelihood) between the target sequence (ground truth) and the generated sequence (predicted). By forcing the target sequence
to have a specific initial metadata sequence, the model can generate the CC#1 values conditioned by the note (source) sequence
and metadata.

conditioned by X and M :

Lθ,ϕ(Y ) = −
T∑

t=6

log pθ(yt | y<t, Eϕ(X)), (5)

where Eϕ(·) is the encoder. Note that the index starting from
t = 6 in the summation assures the conditioning on meta-
data M . After the training phase, we can generate the tar-
get CC#1 sequence from given notes X̄ and its metadata
m̄1, . . . , m̄5 by using the following sampling process

ŷt+1 ∼ pθ∗( · | ŷ≤t, Eϕ∗(X̄)), t > 5, (6)
where ŷ1, . . . , ŷ5 is forced as m̄1, . . . , m̄5. While the sam-
pling method can be arbitrarily chosen, we used Top-k sam-
pling (k = 32).

Training & inference. Figure 6 illustrates the complete
pipeline of our task including the training and inference
phase. We divided 4,422 MID-FiLD samples into a ratio of
8:1:1 for training, validation and test sets respectively, leav-
ing about 10% of the data for test performance measure-
ments (i.e., 3, 547 : 443 : 432). The test set is randomly
sampled in a stratified manner to follow the distribution of
the training set with respect to its instruments. During the
training phase, each tokenized input pair (X,Y ) as in Eq. (1)
and (4) is repeatedly delivered to the model, optimizing the
loss (5) until saturation (un-dashed arrows). In the inference
phase, the trained decoder pθ∗ generates the CC#1 values
through conditional auto-regressive sampling as in Eq. (6),
until the EOS token is returned (dashed arrows). The gener-
ated tokens are converted into a time series of CC#1 values
by following the exact inverse process of the input encoding,
and additional linear interpolation is applied to the generated
series for adequate rendering into an expressive song.

Evaluation Metrics
Fidelity. We evaluate the difference between CC#1 val-
ues from the generated sample and those of the ground truth

sample which is drawn by professional composers. Generat-
ing a realistic human-like sample requires a minimal gap be-
tween the generated value and the ground truth value. Gen-
erated CC#1 values of each sample can be treated as semi-
continuous data, where the difference of value (at y-axis)
at each time point (at x-axis) defines fidelity as RMSE score
after interpolation. This assumes that generated CC#1 values
are linearly interpolated before calculating the difference of
values at each time point from the ground truth values. To
remove the model’s uncertainty considering the property of
the metric, we utilize the greedy approach instead of top-k
sampling when measuring the score in this metric.

Controllability. We define the controllability based on
two facets as follows:
• Differences of min. & max.: We calculate the gap be-

tween the minimum (maximum) values in the gener-
ated sample and that in the ground truth sample, which
can be defined as the difference of min. (max.). Such
value indicates how close the model-generated value is
to the intended min/max range. Let set of CC#1 values
in the ground truth sample as Ct = {v1, v2, ...., vn},
and set of CC#1 values in the model-generated sample
as Cg = {v1, v2, ...., vm}. Then, the difference of each
can be defined as follows:

Dmin = |min(Ct)−min(Cg)| (7)

Dmax = |max(Ct)−max(Cg)| (8)

• Mood classification accuracy (4Q, V, A): A signifi-
cant difference of MID-FiLD from earlier datasets in-
volves the inclusion of mood annotations for fine-level
dynamics. Therefore, we further examine the control-
lability of CC#1 values by mood. We conduct a mood
recognition task using a support vector machine (SVM)
to observe whether each sample can be distinguished by
mood classes through a simple model (Hung et al. 2021).
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Model RMSE Difference of min. Difference of max. 4Q V A
w/o Instrument 29.4925(±18.45) 20.4468(±21.43) 25.5463(±21.19) 0.5349 0.7698 0.6744
w/o Track role 31.9308(±18.52) 25.1991(±24.13) 25.7222(±21.08) 0.5222 0.7307 0.6792

w/o Mood 28.8711(±16.79) 22.1713(±22.86) 27.9051(±21.36) 0.4953 0.7313 0.6379
w/o Min&max 36.0331(±19.37) 29.9745(±25.90) 31.5162(±22.64) 0.5319 0.7589 0.6714

w/o Meta 41.5318(±19.34) 33.9167(±27.95) 34.9074(±22.49) 0.4916 0.6882 0.6595
w/ All meta 21.6794(±17.79) 10.9861(±15.29) 17.2546(±19.39) 0.5510 0.8058 0.6553
Ground truth - - - 0.7245 0.8495 0.8056

Table 3: Results of the ablation study excavating the impact of each element in metadata. As we reduce metadata items as
inputs one by one while training, we measure each test sample’s objective metric scores and calculate the mean value of all the
test sample’s scores in each metric. Overall, the more diverse metadata the model trains, the better fidelity and controllability
the predicted result shows. Note that the difference of min/max value spiked when the model trained and predicted without
minimum token and maximum token.

To this end, we extract eight features from a CC#1 se-
quence of each sample. These features are related to
mean, standard deviation, local extremum values, and
second-order gradients of the CC#1 sequence (Please re-
fer to Appendix C.3. for more details). We use 9-fold
cross-validation for training the SVM (C = 10, γ = 1)
following the division ratio of the dataset. 4Q, V, and A
denote the accuracy for classifying 4 quadrants, 2 valence
classes, and 2 arousal classes respectively. The ground
truth denotes the test set.

Results
We conducted an ablation study for objective evaluation,
successively removing items in metadata as a model input.
Table 3 indicates the overall experimental results regarding
fidelity and controllability.

Fidelity
In Table 3, we find the best fidelity (the lowest RMSE score)
in the model with all metadata and the worst in the model
without any. This result is indicated by the statistical sig-
nificance achieved in each score. The gradual increase of
RMSE as the model excepts more items respecting meta-
data indicates that the five metadata have a crucial role in
fidelity. When trained & predicted without min/max token,
RMSE score is noticeably higher compared to other models
(w/o Min&max vs. w/o Track role: p < 0.01), excluding the
model without any metadata (w/o Meta vs. w/o Min&max:
p < 0.0001). Although min/max metadata is mapped from
extracted min/max CC#1 value, we can infer the effects on
fidelity during the inference phase. Track role showed the
largest influence in fidelity.

Controllability
Differences of min. & max. Comprehensively, the less
metadata the model gets, the less controllability the model
shows, which is also validated by statistically significant dif-
ferences among the scores. The model with all metadata gets
the lowest score (w/ All meta vs. w/o Instrument for both
difference scores: p < 0.0001), proving the necessity of
metadata input. On the contrary, the model without meta-
data gets the highest score in the same context (w/o Meta

vs. w/o Min&max: p < 0.05). The model without min/max
meta shows the second lowest (w/o Min&max vs. w/o Track
role for Difference of min.: p < 0.01; w/o Min&max vs.
w/o Mood for Difference of max.: p < 0.05), which demon-
strates that the two tokens have an important role in con-
trolling min/max value. The overall results say that not only
min/max meta but also others have a positive effect on per-
formance in the aspect of min/max controllability.

Mood classification. Across three classification metrics,
the ground truth gets the highest accuracy scores. V scores
are generally higher than the other two metrics, which indi-
cates that determining positive or negative mood from CC#1
values can be relatively easy. In 4Q and V, the model with
all metadata attains the best scores, while the model without
any metadata gets the lowest scores. For classifying arousal,
the model without track role shows the highest score among
the models. Nonetheless, it is clear that the model with-
out mood shows lower scores than the model with all meta
regardless of the metrics. In particular, the model without
mood shows the lowest A score, which is even lower than
that of the model without metadata. This implies that mood
annotation can be useful in estimating the right emotion with
respect to valence and arousal from the fine-level dynamics
in our dataset. Moreover, different tendencies in V and A
scores suggest that metadata other than mood may hinder
the classifier from detecting arousal.

Conclusion

In this paper, we proposed MID-FiLD, a MIDI dataset con-
taining fine-level expressive dynamics produced by domain
experts. It contains not only expressive dynamics informa-
tion along with its associated notes but also metadata that
can be effectively utilized as additional input for gener-
ating expressive dynamics. In addition, we demonstrated
the possibility of explicit generation of expressive dynam-
ics through token-based representation with a deep learning
model. We are confident that exploration of our dataset could
yield significant benefits across diverse models and further
contribute to the field of music generation through appropri-
ate and innovative representations and methodologies.
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