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Abstract

In drug development, molecular optimization is a crucial
challenge that involves generating novel molecules given a
lead molecule as input. The task requires maintaining molec-
ular similarity to the original molecule while simultaneously
optimizing multiple chemical attributes. To aid in this pro-
cess, numerous generative models have been proposed. How-
ever, in practical applications, it is crucial for these models
not only to generate novel molecules with the above con-
straints but also to generate molecules that significantly dif-
fer from any existing patented compounds. In this work, we
present a multi-optimization molecular framework to address
this challenge. Our framework trains a model to prioritize
both enhanced properties and substantial dissimilarity from
patented compounds. By jointly learning continuous repre-
sentations of optimized and patentable molecules, we ensure
that the generated molecules are significantly distant from
any patented compounds while improving chemical proper-
ties. Through empirical evaluation, we demonstrate the supe-
rior performance of our approach compared to state-of-the-art
molecular optimization methods both in chemical property
optimization and patentability.

Introduction
The process of developing a successful drug is a lengthy and
expensive endeavor, typically taking 10 to 15 years and cost-
ing around 1 billion dollars. The early stages of drug devel-
opment involve the discovery, design, and optimization of a
lead compound — a chemical entity with desirable drug-like
properties. Lead optimization aims to improve the lead com-
pound’s properties while maintaining a high degree of sim-
ilarity. To aid in this process, generative models have been
proposed to generate novel molecules with enhanced chem-
ical properties. However, in practical applications, it is cru-
cial for these models not only to prioritize novelty but also
to generate molecules that significantly differ from any ex-
isting patented compounds. This dual requirement ensures
not only chemical improvement but also the potential for
patentability, addressing the challenges of real-world drug
development.

In this work, our primary focus lies in the domain of
molecule optimization while considering the constraint of
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patentability. This task poses significant challenges due to
the unique characteristics of patented molecules. Unlike
molecules with similar chemical enhancements that exhibit
commonalities and tend to cluster together in the embed-
ding space, patented molecules do not necessarily reside
within specific regions. Consequently, traditional gradient-
based algorithms encounter difficulties in effectively opti-
mizing molecules under the patentability constraint.

We propose the Molecular Optimization Model with
Patentability Constraint (MOMP) to tackle patent-
infringement challenges in molecular optimization.
Our model utilizes a generative sequence-to-sequence ar-
chitecture based on the SMILES (Jastrzebski, Leśniak, and
Czarnecki 2016) representation to generate molecules with
enhanced properties. We propose a multi-cycle encoder-
decoder framework. An encoder converts discrete molecules
to continuous representations, which are then translated by
a translator to embedded destination domain with improved
properties. The cycle is completed with a decoder, which
translates the continuous representations back into discrete
molecules, facilitating property enhancement. An additional
cycle is proposed, with a translator trained to convert
representations of molecules with enhanced properties
into molecules possessing both high property values and
low resemblance to patents. We utilize these cycles during
training, while during testing, a discrete source molecule
is encoded, translated for enhanced properties, and then
translated again into an optimized molecule with high
property and high patentability. To ensure patentability, we
employ a molecular attention mechanism using fingerprints
from the domain of patentable molecules. By learning
continuous representations of optimized and patentable
molecules, MOMP effectively balances the enhancement
of molecular properties and significant dissimilarity from
existing patented compounds, enabling the generation
of promising molecules while adhering to patentability
constraints.

We empirically evaluate our proposed model on numer-
ous molecule optimization tasks, demonstrating its ability
to maintain similarity and optimize properties while consid-
ering patent constraints. Our results show that our model
successfully reduces the similarity of optimized molecules
to existing patents while still generating highly optimized
molecules, thus outperforming the state-of-the-art (SOTA)
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models. Additionally, comprehensive ablation experiments
provide detailed insights into the effectiveness of our ap-
proach and its individual components.

The contributions of this work are threefold: (1) We
propose the MOMP algorithm, which effectively addresses
patent-infringement challenges in molecular optimization.
By jointly optimizing molecular properties and patentability,
as measured by the resemblance of molecules to patented
compounds, MOMP ensures the generation of molecules
that are substantially dissimilar from existing patents while
possessing enhanced properties. (2) We integrate the concept
of molecular attention, utilizing fingerprints of patentable
molecules in the optimization process. This attention mech-
anism enables our model to reinforce the patentability con-
straint without compromising the chemical characteristics
of the molecules. (3) We conduct comprehensive empiri-
cal evaluations on two widely used molecule optimization
tasks, showcasing the superiority of our proposed MOMP
model over SOTA baselines. To facilitate further research
and exploration of the problem, we provide the community
with access to our code and data through the following link:
https://github.com/SallyTurutov/MOMP.

Related Work
Several strategies were suggested to address the task of
molecule optimization, each employing unique representa-
tions of molecules. Graph-to-graph optimization methods
aim to optimize the score of molecular graphs by con-
verting one graph representation of a molecule into an-
other. JTVAE (Jin, Barzilay, and Jaakkola 2018) interprets
an input molecule as composed of sub-graphs selected from
a valid component vocabulary and optimizes the property
score predictor based on its latent space. Mol-CG (Maziarka
et al. 2020) extends JTVAE using a cycle-GAN architec-
ture. CORE (Fu, Xiao, and Sun 2020), an enhanced version
of JTVAE, introduces the copy and refine technique to en-
hance molecular optimization. An alternative line of work,
leverages SMILES-based representations for optimization.
SMILES representations have been employed to optimize
molecules, and the UGMMT (Barshatski and Radinsky
2021) reached SOTA results outperforming all SMILES-
based methods and numerous graph-to-graph methods.

Recent advancements focused on going beyond the op-
timization of a single property. IPCA (Barshatski, Nordon,
and Radinsky 2021) generalizes UGMMT for multiple prop-
erty optimization. MIMOSA (Fu et al. 2021), a graph-to-
graph approach, uses GNNs to predict molecular topology
and substructure types for generating new molecules.

Our work differs from the aforementioned lines of work
by focusing not only on molecular optimization but also
on optimization without patent infringement. One of the
only works to address optimization while reducing patent in-
fringement was presented by (Turutov and Radinsky 2023).
The authors propose a patents-loss that can be incorporated
into existing models. The loss function leverages the orig-
inal model’s loss to ensure differentiation from a specific
focal patent. In contrast to this method, our MOMP model
is an end-to-end generative approach tailored for patentable
molecule optimization, yielding superior results.

MOMP Algorithm
The concept of “patent-likeliness” (PL) was introduced by
(Turutov and Radinsky 2023) in order to quantify how simi-
lar a generated molecule m′ is to all existing patents, repre-
sented by Pall. The PL value serves as a measure to ensure
that the generated molecule is significantly different from
existing patents, and is defined using the following equation:

PLPall
(m′) = max

p∈Pall

Sim(m′, p) (1)

where Sim(m′, p) is the Tanimoto similarity of molecule m′

and each patent p in the collection of existing patents Pall.
A molecule m′ is patentable if the PLPall

value associated
with m′ is below a predefined threshold, indicating that it
does not infringe upon any existing patents.

In our framework, we consider different domains of
molecules. Let the domain of molecules be denoted by a
capital Latin letter, e.g, X , a molecule taken from this do-
main by a small Latin letter, x, and their distribution by
p(X). Similarly, we denote by ⟨x⟩ the embedding vector of a
molecule x and a molecule’s property by prop. For example,
if prop is drug-likeness (e.g., QED), then prop(x) is QED
value of x. Given an input molecule m, we aim to generate a
patentable molecule m′ which resembles m and satisfies an
enhanced prop.

Figure 3 illustrates the MOMP architecture. The algo-
rithm operates through multiple optimization paths. At first,
molecules with degraded properties (low prop value) in do-
main A are transformed into molecules with enhanced prop-
erties (high prop value) and high resemblance to patents
(high PL value) in domain B. Subsequently, these molecules
from domain B are further optimized to achieve enhanced
properties (high prop value) and low resemblance to patents
(low PL value) in domain C. The paths are joint by an addi-
tional cycle, in order to keep the optimized molecule similar
to the input molecule going through the path. During opti-
mization, the first path transforms molecules from domain A
to domain B, and then the second path transforms molecules
from domain B to domain C, producing molecules with
both enhanced properties and low resemblance to patents.
Moreover, the optimization path from domain A to domain
C ensures that the optimized molecule in domain C main-
tains similarity to the input molecule in domain A.

Molecule-Embedding Translation Network
The Molecule-Embedding Translation Network (METN)
plays a critical role in the pre-training phase of the
MOMP framework. Initially introduced by (Barshatski and

Algorithm 1 METN Training Algorithm
Input: training set of molecules X

for epoch = 1, 2, . . . , EMETN do
Sample mini-batch x ∈ X
x′ = DeX(EnX(x))
L = CE(x′, x)
Minimize L using Adam optimizer

end for
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Figure 1: The EETN architecture – Each training path originates from an input molecule in a specific domain and concludes
with its optimized counterpart in the same domain. The color of the arrows corresponds to the domain of the input molecules.

Algorithm 2 EETN Training Algorithm
Input: training sets of molecules X,Y and fps fpx, fpy

for epoch = 1, 2, . . . , EEETN do
Sample mini-batches x ∈ X , y ∈ Y
⟨x⟩ = EnX(x)
⟨y′⟩ = TXY (⟨x⟩, fpx)
⟨x′⟩ = TY X(⟨y′⟩, fpx)
x′ = DeX(⟨x′⟩)

⟨y⟩ = EnY (y)
⟨x′⟩ = TY X(⟨y⟩, fpy)
⟨y′⟩ = TXY (⟨x′⟩, fpy)
y′ = DeY (⟨y′⟩)

L = CE(x′, x) + λXY · CE(y′, y)
Minimize L using Adam optimizer

end for

Radinsky 2021), it translates molecules between their dis-
crete SMILES representations and continuous embeddings,
preparing the latent embedding spaces for each domain X
(where X ∈ {A,B,C}) within MOMP.

METN comprises an encoder (EnX ) and a decoder
(DeX ). The encoder converts a molecule’s SMILES rep-
resentation (x ∈ X) into a continuous embedding (⟨x⟩ ∈
⟨X⟩). The decoder reconstructs the continuous embedding
back into its corresponding SMILES representation (x′ ∈
X ′), as described in Algorithm 1. The translation process is
guided by the cross-entropy loss (CE), encouraging the sim-
ilarity between the original molecule x and its reconstructed
version x′. This optimization ensures that the embedding ac-
curately captures essential structural information.

Including METN in the pre-training phase aligns the la-
tent embedding spaces for each domain, allowing for effec-
tive optimization in subsequent MOMP processes. By cap-
turing meaningful features and dependencies of molecular
structures, METN facilitates the generation of high-quality
molecules within their respective domains.

Embedding-Embedding Translation Network
The Embedding-Embedding Translation Network (EETN)
translates continuous molecule embeddings between distinct
domains denoted as X and Y . Working in conjunction with
METN, the EETN facilitates the translation of molecule em-
beddings between these domains.

EETN comprises two inverted translators: TXY and TY X .
The translator TXY converts an embedding of a molecule
from domain X to an embedding of a molecule in domain
Y , while TY X performs the inverse translation from domain
Y to domain X .

During training, a molecule x ∈ X undergoes the fol-
lowing transformations: it is encoded by EnX into its con-
tinuous embedding. This embedding then goes through the
EETN pipeline: TXY translates it to the embedding of do-
main Y , followed by TY X which returns it to the embedding
of domain X . Finally, the embedding is passed back through
METN, specifically DeX , to reconstruct a discrete molecule
x′ ∈ X . Similarly, a molecule y ∈ Y follows the path of
EnY → TY X → TXY → DeY . The process is presented
in Figure 1 and Algorithm 2. The MOMP model simulta-
neously trains TXY and TY X using the double-cycle train-
ing scheme (He et al. 2016). This coupling between the two
translation sequences encourages the distribution of original
and reconstructed molecules to be close, ensuring accurate
translation between the domains X and Y .

The MOMP model utilizes two instances of EETN: one
between domains A and B and another between domains B
and C. This dual EETN setup enhances the model’s ability
to handle translation tasks between multiple domains, while
also considering the patent infringement constraint.

Extended Embedding-Embedding Translation
Network
We propose an extension to the existing Embedding-
Embedding Translation Network (EETN) by incorporating
four additional translators: TXY , TY X , TY Z , and TZY . This
Extended-EETN enhances the translation capabilities be-
tween multiple domains denoted as X , Y , and Z.

The molecule x ∈ X undergoes a sequence of transfor-
mations within the Extended-EETN pipeline. First, it is en-
coded by EnX into its continuous embedding representa-
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Figure 2: The Extended-EETN architecture – Each training path originates from an input molecule in a specific domain and con-
cludes with its optimized counterpart in the same domain. The color of the arrows corresponds to the domain of the molecules.

Algorithm 3 Extended-EETN Training Algorithm
Input: training sets of molecules X,Z and fps fpx, fpz

for epoch = 1, 2, . . . , EExtended−EETN do
Sample mini-batches x ∈ X , z ∈ Z
⟨x⟩ = EnX(x)
⟨y′⟩ = TXY (⟨x⟩, fpx)
⟨z′⟩ = TY Z(⟨y′⟩, fpx)
⟨y′⟩ = TZY (⟨z′⟩, fpx)
⟨x′⟩ = TY X(⟨y′⟩, fpx)
x′ = DeX(⟨x′⟩)

⟨z⟩ = EnZ(z)
⟨y′⟩ = TZY (⟨z⟩, fpz)
⟨x′⟩ = TY X(⟨y′⟩, fpz)
⟨y′⟩ = TXY (⟨x′⟩, fpz)
⟨z′⟩ = TY Z(⟨y′⟩, fpz)
z′ = DeZ(⟨z′⟩)

L = CE(x′, x) + λXZ · CE(z′, z)
Minimize L using Adam optimizer

end for

tion. The translation from domain X to domain Y is per-
formed by TXY , followed by the translation from domain
Y to domain Z using TY Z . Subsequently, the molecule is
translated back from domain Z to domain Y using TZY and
finally returned to its original domain X through TY X . The
resulting embedding is then passed through METN, specifi-
cally DeX , to reconstruct a discrete molecule x′ ∈ X . Sim-
ilarly, a molecule z ∈ Z follows an analogous path within
the Extended-EETN pipeline: EnZ → TZY → TY X →
TXY → TY Z → DeZ . The Extended-EETN is illustrated
in Figure 2 and described in Algorithm 3.

During training, the Extended-EETN model simultane-
ously trains the four translation components, TXY , TY X ,
TY Z , and TZY , using a dual learning paradigm. The transla-
tion tasks from X to Z and from Z to X (primal tasks) and

their corresponding inverse translations (dual tasks) create
an informative feedback loop, promoting effective transla-
tion across multiple domains. This training scheme encour-
ages proximity between the original molecule and its re-
constructed version by imposing cross-entropy constraints
CE(x′, x) and CE(z′, z).

In MOMP, the Extended-EETN enables the translation of
molecule embeddings between domains A, B, and C. This
expands the translation capabilities of MOMP, facilitating
accurate transformations of molecules across these domains.

Molecular Attention
To preserve chemical characteristics and reinforce the
patentability constraint in the MOMP model, we incor-
porate molecular fingerprints. Unlike previous approaches,
that utilized fingerprints to help the model keep similar-
ity to the lead molecule, we suggest to leverage the fin-
gerprints of non-patented molecules. During inference, the
input molecule’s fingerprints are combined with the input
embedding. During training, to prioritize patentability, we
select a molecule (c ∈ C) most similar to x and use its fin-
gerprint (fpc) along the optimization path. To focus on cru-
cial fingerprint information, we employ an attention mech-
anism. The input molecule’s fingerprint undergoes transfor-
mation through a fully-connected layer, followed by a soft-
max layer, generating a weight vector that highlights an es-
sential part of the embedding for optimization. This molecu-
lar attention mechanism ensures efficient optimization while
maintaining chemical characteristics.

MOMP End-to-End Architecture
We propose the MOMP architecture, aiming to optimize
molecules across domains A, B, and C. The model opti-
mizes an input molecule m ∈ A to generate an improved
molecule m′ ∈ C (Figure 3).

The MOMP architecture consists of three key compo-
nents. First, the Molecule-Embedding Translation Networks
(METNs) pre-train encoders and decoders for each do-
main individually, enhancing the latent embedding space
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Figure 3: The MOMP architecture – Each training path originates from an input molecule in a specific domain (A, B, or C)
and concludes with its optimized counterpart in the same domain. The color of the arrows corresponds to the domain of the
input molecules. The cross-entropy (CE) loss function is applied during training to guide the optimization process. Solid arrows
represent the training paths of the EETN, while dotted arrows represent the training paths of the Extended-EETN.

Algorithm 4 End-to-End Training Algorithm
Input: A, B C molecule training sets

Pre-train A,B,C with Algorith 1
for epoch = 1, 2, . . . , EmaxTrain do

Sample mini-batches a ∈ A, b ∈ B and c ∈ C
Find closest ca ∈ C to a and calculate fpa = fp(ca)
Find closest cb ∈ C to b and calculate fpb = fp(cb)
Calculate fpc = fp(c)
Calculate using Algorithm 2 (EETN A ⇄ B – solid

blue and green paths):
LAB = CE(a′, a) + λAB · CE(b′, b)

Calculate using Algorithm 2 (EETN B ⇄ C – solid
yellow and green paths):
LBC = CE(b′, b) + λBC · CE(c′, c)

Calculate using Algorithm 3 (Extended-EETN A ⇄
C – dotted blue and yellow paths):
LAC = CE(a′, a) + λAC · CE(c′, c)

L = LAB + LBC + LAC

Minimize L using Adam optimizer
end for

of molecules. Then, for domain translation, we use the
Embedding-Embedding Translation Network (EETN) to
train translators between A-B and B-C. Finally, an
Extended-EETN includes domain B as an intermediate
step between A and C. By employing this architecture,
we achieve effective translation of molecule embeddings
across multiple domains, facilitating the generation of op-
timized molecules with improved properties while adhering
to patentability constraints.

Training and Inference During MOMP training, we pre-
train each domain using the METN algorithm (Algorithm 1)
to prepare their latent embedding space. Then, we train the
EETNs between domain pairs A and B, and B and C,
alongside the Extended-EETN enabling translation between
domain A and C via domain B (Algorithm 2 and Algo-

rithm 3 respectively). The overall training process is outlined
in Algorithm 4 and presented in Figure 3, incorporating pre-
training and translation training.

During inference, the trained MOMP model transforms an
input molecule m from domain A to an optimized molecule
m′ in domain C through EnA → TAB → TBC → DeC .
Additionally, we use the C-fps attention during training,
while during inference, we utilize the input-fps to empha-
size similarity to the input molecule, ensuring optimized
molecules that are sufficiently similar to the input while
staying distinct from existing patents.

Experimental Setup
We provide implementation details, as well as the datasets
we used and the checkpoints of our trained model.

Implementation Details
Our code and data are available publicly. We employ the
Adam optimizer with a learning rate of 3·10−4, a mini-batch
size of 32, and set maximum epochs EmaxTrain to 12 for
QED and 18 for DRD2. The regularization parameters are
λAB = λBC = λAC = 2. Further implementation details
can be found at: https://github.com/SallyTurutov/MOMP.

Metrics
To evaluate our optimization task, we generate K = 20 out-
put molecules per input using K random seeds. Evaluation
relies on the most similar valid output molecule m′ for each
input m. Input molecules lacking valid outputs are excluded
for accurate metric calculations. Metrics are reported solely
for valid molecules:
• Property: The average desired property score (QED or

DRD2) across all optimized m′ molecules, where each
molecule’s property score falls within the range of [0, 1].

• Patent Likeness (PL) The average PL score
(PLPall

(m′) ∈ [0, 1]) measures the similarity of
the optimized molecule to existing patents. The PL value
of a molecule m′ is calculated using Equation 1.
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MOMP UGMMT JTVAE REINVENT CORE G2G Mol-CG MIMOSA IPCA

Original Original PatentsLoss Original PatentsLoss Original PatentsLoss Original Original Original Original Original
Q

E
D

Property ↑ 0.842 0.855 0.817 0.816 0.808 0.819 0.813 0.883 0.890 0.783 0.783 0.764
PL ↓ 0.436 0.510 0.443 0.487 0.453 0.523 0.492 0.525 0.515 0.485 0.460 0.545

Similarity 0.282 0.365 0.292 0.304 0.248 1.000 1.000 0.362 0.339 0.302 0.821 0.241
Validity 0.914 0.971 0.879 1.000 1.000 0.992 0.991 1.000 1.000 0.998 0.909 0.922
Novelty 1.000 0.997 1.000 0.977 0.999 0.999 1.000 0.980 0.979 0.980 0.355 0.993
Success 0.272 0.118 0.232 0.096 0.156 0.040 0.082 0.090 0.086 0.088 0.125 0.053

D
R

D
2

Property ↑ 0.746 0.824 0.707 0.340 0.106 0.072 0.073 0.770 0.792 0.382 0.089 0.174
PL ↓ 0.584 0.696 0.630 0.577 0.544 0.470 0.456 0.699 0.697 0.643 0.504 0.545

Similarity 0.269 0.283 0.248 0.239 0.133 1.000 1.000 0.345 0.333 0.190 0.077 0.241
Validity 0.981 1.000 0.970 1.000 1.000 0.933 0.934 1.000 0.999 1.000 0.818 0.922
Novelty 0.892 0.787 0.941 0.991 0.999 0.000 0.000 1.000 1.000 0.992 0.418 0.993
Success 0.322 0.147 0.204 0.103 0.000 0.000 0.000 0.127 0.135 0.051 0.032 0.000

Table 1: Performance Comparison of MOMP and Baseline Models for Various Metrics.

• Similarity: The average Tanimoto similarity (Bajusz,
Rácz, and Héberger 2015) over Morgan fingerprints
(Rogers and Hahn 2010) for all (m′,m) pairs, in-
dicating the optimized molecule’s similarity to the
input molecule. The similarity value is denoted as
Sim(m′,m) ∈ [0, 1].

• Validity: The proportion of valid optimized molecules,
determined using the method proposed by Landrum
(2016) for molecule validation.

• Novelty: The proportion of optimized molecules m′ con-
sidered novel, i.e., not present in the training set.

• Optimization Success (Success): The proportion of suc-
cessfully optimized molecules. A molecule m′ is suc-
cessful if it is novel and simultaneously meets criteria
for high similarity to the input molecule (Sim(m′,m) >
λs), high desired property score (prop > λprop), and low
patent likeness score (PL(m′) < λPL). Threshold val-
ues for these criteria are set based on the property being
QED or DRD2: (λs, λprop, λPL) = (0.15, 0.7, 0.4) for
QED and (0.15, 0.7, 0.6) for DRD2

Datasets
We utilized datasets from (Jin et al. 2019). Initially, we par-
titioned training pairs into distinct domain-specific sets. Do-
main A encompasses molecules with low property scores
(QED(a) < 0.78 or DRD2(a) < 0.02), while domains B
and C comprise molecules with high scores (QED(c) >
0.85 or DRD2(c) > 0.75). After identifying eligible
molecules for B and C, we ranked them by Patent Likeness
(PL) values. Half with the lowest PL scores formed domain
C, and the rest constituted domain B. We randomly sampled
molecules from A to match the size of B and C.

The SureChEMBL dataset (Papadatos et al. 2016) focuses
on patent compounds, providing Maximum Common Sub-
structures (MCSs) representing shared core chemical struc-
tures within a patent. The PL score assesses the similarity
between optimized molecules and these MCSs, offering a
pertinent evaluation of patentability.

Baselines
In Section , we present our main results and compare MOMP
against several baseline models, both SMILES and Graph-
based. We evaluate UGMMT, JTVAE, and REINVENT in
both their original versions (Barshatski and Radinsky 2021;
Jin, Barzilay, and Jaakkola 2018; Olivecrona et al. 2017) and
with the incorporation of patents-loss (Turutov and Radin-
sky 2023). For these models, we used their original datasets
for training and testing. The patents-loss function was ap-
plied to these models using all optional variations, and we
report the performance of the models with the patents-loss
function that achieved the best results.

Additionally, we evaluate CORE (Fu, Xiao, and Sun
2020), G2G (Jin et al. 2019) and Mol-CG (Maziarka et al.
2020), using their original datasets for each property. For
MIMOSA (Fu et al. 2021), we optimize both the property
and (1-PL) using its original pre-trained latent space of the
GNNs and original dataset. As for IPCA (Barshatski, Nor-
don, and Radinsky 2021), we use datasets A, B, and C dur-
ing training for both property and (1-PL) optimization.

Experiments and Results
We begin by comparing our model’s ability to optimize suc-
cessful molecules in comparison to SOTA methods (Main
Result Section). Then, we conduct extensive ablation exper-
iments to demonstrate the effect and necessity of key com-
ponents in our model (Ablation Experiments Section).

Main Result: Molecule Optimization
The results of our experiments are summarized in Table 1
provided. We observe across all experiments that MOMP
reaches a significantly higher total success rate. More-
over, the similarity of the generated molecules to the lead
molecules is similar to the results reached by the other opti-
mization algorithms. In terms of property optimization, the
MOMP model achieves relatively high QED and DRD2 val-
ues, while simultaneously achieving the lowest PL value
among models that improved the property. Interestingly,
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MOMP No pre-training No C-fps No Extended-EETN Only A ⇄ C Only A ⇄ B

Q
E

D

Property ↑ 0.842 0.814 0.848 0.829 0.843 0.814
PL ↓ 0.436 0.428 0.459 0.438 0.452 0.408

Similarity 0.282 0.261 0.320 0.302 0.315 0.130
Validity 0.914 0.570 0.984 0.940 0.977 0.879
Novelty 1.000 1.000 1.000 1.000 1.000 1.000
Success 0.272 0.217 0.213 0.260 0.225 0.088

D
R

D
2

Property ↑ 0.746 0.215 0.711 0.746 0.824 0.789
PL ↓ 0.584 0.433 0.593 0.585 0.598 0.619

Similarity 0.269 0.206 0.266 0.257 0.201 0.183
Validity 0.981 0.025 0.977 0.972 1.000 0.950
Novelty 0.892 0.950 0.907 0.886 0.876 0.868
Success 0.322 0.100 0.269 0.301 0.263 0.212

Table 2: Performance Comparison of MOMP and Ablation Experiments for Various Metrics.

when focusing on single-property optimization, we found
that as the QED or DRD2 value increased, so did the PL
score, indicating a higher resemblance to existing patents.
This trend was observed for both QED and DRD2 prop-
erties, suggesting that molecules with higher property val-
ues tend to have greater overlap with existing patented com-
pounds. Nevertheless, our MOMP model was able to achieve
relatively high property results while maintaining a lower PL
score, indicating its effectiveness in balancing property en-
hancement and patentability constraints.

We draw the reader’s attention to the comparison of the
MOMP model with multi-property optimization models:
IPCA and MIMOSA. Those were specifically trained to op-
timize numerous targets: the QED or DRD2 property while
simultaneously minimizing the PL score. Our results indi-
cate that treating the PL score as an additional target reaches
inferior results as compared to a joint optimization as per-
formed in MOMP.

Overall, our empirical evaluation showcases the effective-
ness of the MOMP model in optimizing molecules under
the patentability constraint. It achieves superior property im-
provements while minimizing patent infringement, demon-
strating its potential as a valuable tool in the drug discovery
process.

Ablation Experiments
We conducted ablation experiments on the MOMP model,
and the results are summarized in Table 2.

(1) No Pre-training Experiment: To assess the impact of
pre-training METNs before the end-to-end model training,
we observed that pre-training plays a crucial role in optimiz-
ing molecules for validity. This highlights its significance in
the holistic optimization process.

(2) No C-fingerprints (fps) Experiment: By using the
fps of the input molecule instead of selecting a similar
molecule from domain C, we achieved higher similarity
between input and optimized molecules. However, this ap-
proach showed a trade-off, leading to less effective property
optimization and a smaller decrease in PL values. This un-
derscores the importance of utilizing similar molecules from

domain C for a more balanced prioritization of property im-
provement and adherence to patentability constraints.

(3) No Extended-EETN Experiment: Disabling the
Extended-EETN pathway, which connects domains A and
C, resulted in a noticeable decrease in the similarity between
the input and optimized molecules. This highlights the cru-
cial role of the A ⇄ C pathway in preserving the optimized
molecule’s similarity to the input molecule.

(4) Only A ⇄ C Experiment: Restricting the model to
use only one EETN component, connecting domains A and
C, led to an increase in PL values. This underscores the
necessity of incorporating both EETN components and the
Extended-EETN pathway in MOMP architecture for an ef-
fective balance between similarity preservation and adher-
ence to patentability constraints during optimization.

(5) Only A ⇄ B Experiment: Utilizing only one EETN
component, connecting domains A and B, resulted in a no-
table decrease in similarity. This reduction can be attributed
to the absence of a direct translation path between domains
A and B and the presence of domain C fingerprints (C-fps),
impacting the overall model performance.

Conclusions
In this research, we propose the Molecule Optimization
Model with Patentability Constraint (MOMP), a novel ap-
proach to molecule optimization under patentability con-
straints in drug discovery. MOMP’s multi-stage optimiza-
tion framework enables it to optimize molecules with en-
hanced properties while avoiding infringement on exist-
ing patents. Through empirical evaluation, we demonstrate
the superiority of MOMP over SOTA models, achieving
improved property optimization while ensuring the non-
infringement of existing patents. Our work presents a signif-
icant advancement in the field of molecule optimization, of-
fering a practical and efficient solution to the complex prob-
lem of patent-constrained optimization in drug discovery.
By mitigating patent infringement concerns, MOMP facili-
tates the acceleration of drug development and contributes to
the search for safer and more effective pharmaceutical com-
pounds.
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