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Abstract
We introduce a novel task of 3D visual grounding in monoc-
ular RGB images using language descriptions with both ap-
pearance and geometry information. Specifically, we build
a large-scale dataset, Mono3DRefer, which contains 3D ob-
ject targets with their corresponding geometric text descrip-
tions, generated by ChatGPT and refined manually. To fos-
ter this task, we propose Mono3DVG-TR, an end-to-end
transformer-based network, which takes advantage of both
the appearance and geometry information in text embeddings
for multi-modal learning and 3D object localization. Depth
predictor is designed to explicitly learn geometry features.
The dual text-guided adapter is proposed to refine multiscale
visual and geometry features of the referred object. Based on
depth-text-visual stacking attention, the decoder fuses object-
level geometric cues and visual appearance into a learnable
query. Comprehensive benchmarks and some insightful anal-
yses are provided for Mono3DVG. Extensive comparisons
and ablation studies show that our method significantly out-
performs all baselines. The dataset and code will be released.

Introduction
For intelligent systems and robots, understanding objects
based on language expressions in real 3D scenes is an im-
portant capability for human-machine interaction. Visual
grounding (Deng et al. 2021; Yang et al. 2022; Zhan, Xiong,
and Yuan 2023) has made significant progress in 2D scenes,
but these approaches cannot obtain the true 3D extent of
the objects. Therefore, recent researches (Chen, Chang, and
Nießner 2020; Achlioptas et al. 2020) utilize RGB-D sen-
sors for 3D scanning and build indoor point cloud scenes for
3D visual grounding. The latest work (Lin et al. 2023) fo-
cuses on outdoor service robots and utilizes LiDAR and an
industrial camera to capture point clouds and RGB images
as multimodal visual inputs. However, the practical applica-
tion of these works is limited due to the expensive cost and
device limitations of RGB-D scans and LiDAR scans.

Monocular 3D object detection (Huang et al. 2022a;
Brazil et al. 2023) can obtain the 3D coordinates of all ob-
jects in the scene and only requires RGB images. While this
approach has broad applications, it overlooks the seman-
tic understanding of the 3D space and its objects, making
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it unable to accomplish specific object localization based
on human instructions. To carry out more effective human-
machine interaction on devices equipped with cameras, such
as drones, surveillance systems, intelligent vehicles, and
robots, it is necessary to perform visual grounding using nat-
ural language in monocular RGB images.

In this work, we introduce a task of 3D object localiza-
tion through language descriptions with geometry informa-
tion directly in a single RGB image, termed Mono3DVG
(see Fig. 1). Specifically, we build a large-scale dataset,
Mono3DRefer, which provides 41,140 natural language ex-
pressions of 8,228 objects. Mono3DRefer’s descriptions
contain both appearance and geometry information, gener-
ated by ChatGPT and refined manually. Geometry informa-
tion can provide more precise instructions and identify in-
visible objects. Even if the appearance of an object is the
primary visual perception for humans, they tend to use ge-
ometry information to distinguish objects.

To perform inference based on the language with appear-
ance and geometry information, we propose a novel end-to-
end transformer-based approach, namely Mono3DVG-TR,
which consists of a multi-modal feature encoder, a dual text-
guided adapter, a grounding decoder, and a grounding head.
First, we adopt transformer and CNN to extract textual and
multi-scale visual features. Depth predictor is designed to
explicitly learn geometry features. Second, to refine multi-
scale visual and geometry features of the referred object,
we propose the dual text-guided adapter to perform text-
guided feature learning based on pixel-wise attention. Fi-
nally, a learnable query first aggregates the initial geomet-
ric features, then enhances text-related geometric features by
text embedding and finally collects appearance features from
multiscale visual features. The depth-text-visual stacking at-
tention fuses object-level geometric cues and visual appear-
ance into the query, fully realizing text-guided decoding.

Our contributions can be summarized as follows:

• We introduce a novel task of 3D visual grounding in
monocular RGB images using descriptions with appear-
ance and geometry information, termed Mono3DVG.

• We contribute a large-scale dataset, which contains
41,140 expressions generated by ChatGPT and refined
manually based on the KITTI, named Mono3DRefer.

• We propose an end-to-end transformer-based network,
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of the road, is on the top right of the red car.

Query：

h

w

l
x

y z
h

w

l
x

y z
h

w

l
x

y z

3D Box

h

w

l
x

y z
h

w

l
x

y z

3D Box
Query：

h

w

l
x

y z
h

w

l
x

y z

3D Box
Query： w

h

w

h

w

h

2D Box

x
y
w

h

w

h

2D Box

x
y

Query： w

h

w

h

2D Box

x
y

Figure 1: Introduction for 3D visual grounding in monocular images (Mono3DVG). (a) Mono3DVG aims to localize the true
3D extent of referred objects in an image using language descriptions with geometry information. (b) The counterpart 2D task
does not capture the 3D extent of the referred object. (c) Localizing specific objects is not feasible for monocular 3D object
detection. (d) 3D visual grounding requires laser radars or RGB-D sensors, which greatly limits its application scenarios.

Dataset Publication Expression
Num.

Object
Num.

Scene
Num. Range Exp.

Length Vocab Scene Target

SUN-Spot ICCVW’2019 7,990 3,245 1,948 – 14.04 2,690 Indoor furni.
REVERIE CVPR’2020 21,702 4,140 90 – 18.00 1,600 Indoor furni.
ScanRefrer ECCV’2020 51,583 11,046 704 10m 20.27 4,197 Indoor furni.
Sr3d ECCV’2020 83,572∗ 8,863 1,273 10m – 196 Indoor furni.
Nr3d ECCV’2020 41,503 5,879 642 10m 11.40 6,951 Indoor furni.
SUNRefer CVPR’2021 38,495 7,699 7,699 – 16.30 5,279 Indoor furni.
STRefer arXiv’2023 5,458 3,581 662 30m – – Outdoor human
LifeRefer arXiv’2023 25,380 11,864 3,172 30m – – In/Outdoor human
Mono3DRefer – 41,140 8,228 2,025 102m 53.24 5,271 Outdoor human, vehicle

Table 1: Statistic comparison of visual grounding datasets in the 3D scene, where ’num.’ denotes number, ’exp.’ indicates
expression, and ’furni.’ means furniture. ’*’ represents the unique text data automatically generated and the largest amount.

Mono3DVG-TR, which fully aggregates the appearance
and geometry features in multi-modal embedding.

• We provide sufficient benchmarks based on two-stage
and one-stage methods. Extensive experiments show that
our method significantly outperforms all baselines.

Related Work
2D Visual Grounding
The earlier two-stage approaches (Zhang, Niu, and Chang
2018; Hu et al. 2017; Yu et al. 2018a; Liu et al. 2019b; Yu
et al. 2018b; Chen, Kovvuri, and Nevatia 2017) adopt a pre-
trained detector to generate region proposals and extract vi-
sual features. It obtains the optimal proposal by calculating
scores with vision-language features and sorting. Addition-
ally, NMTree (Liu et al. 2019a) and RvG-Tree (Hong et al.
2022) utilize tree networks by parsing the expression. To
capture objects’ relation, graph neural network is adopted
by Yang, Li, and Yu (2019); Wang et al. (2019); Yang, Li,
and Yu (2020). Recently, the one-stage pipeline has been
widely used due to its low computational cost. Many works
(Chen et al. 2018; Sadhu, Chen, and Nevatia 2019; Yang
et al. 2019, 2020; Huang et al. 2021; Liao et al. 2022) use vi-
sual and text encoders to extract visual and textual features,
and then fuse the multi-modal features to regress box coor-

dinates. They do not depend on the quality of pre-generated
proposals. Du et al. (2022) and Deng et al. (2021) first de-
sign the end-to-end transformer-based network, which has
achieved superior results in terms of both speed and per-
formance. (Li and Sigal 2021; Sun et al. 2022) propose the
multi-task framework to further improve the performance.
(Yang et al. 2022; Ye et al. 2022) focus on adjusting vi-
sual features by multi-modal features. Mauceri, Palmer, and
Heckman (2019) present dataset for 2D visual grounding in
RGB-D images. Qi et al. (2020) study 2D visual grounding
for language-guided navigation in indoor scenes. However,
these works cannot obtain the true 3D coordinates of the ob-
ject in the real world, which greatly limits the application.

Monocular 3D Object Detection
The methods can be summarized into anchor-based,
keypoint-based, and pseudo-depth based methods. The
anchor-based method requires preset 3D anchors and re-
gresses a relative offset. M3D-RPN (Brazil and Liu 2019)
is an end-to-end network that only requires training a 3D
region proposal network. Kinematic3D (Brazil et al. 2020)
improves M3D-RPN by utilizing 3D kinematics to extract
scene dynamics. Furthermore, some researchers predict key
points and then estimate the size and location of 3D bound-
ing boxes, such as SMOKE (Liu, Wu, and Tóth 2020),
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Dataset Language Context Visual Context Label TaskForm Cost Form Cost
SUN-Spot manual 88888 RGB-D 88899 2D bbox 2D Visual Grounding in RGBD
REVERIE manual 88888 pc 88889 2D bbox Localise Remote Object
ScanRefrer manual 88888 pc 88889 3D bbox 3D Visual Grounding
Sr3d templated 89999 pc 88889 3D bbox 3D Visual Grounding
Nr3d manual 88888 pc 88889 3D bbox 3D Visual Grounding
SUNRefer manual 88888 RGB-D 88899 3D bbox 3D Visual Grounding in RGBD
STRefer manual 88888 pc & RGB 88888 3D bbox 3D Visual Grounding in the Wild
LifeRefer manual 88888 pc & RGB 88888 3D bbox 3D Visual Grounding in the Wild
Mono3DRefer ChatGPT+manual 88999 RGB 89999 2D/3D bbox 3D Visual Grounding in RGB

Table 2: The form, cost, and label of the datasets collected in Table 1 and the corresponding tasks. ’pc’ denotes point cloud and
’bbox’ means bounding box.

Step 2: Expression Generation
Step 3: Verification

Step 1: Attribute ExtractionImage Pool

I hope you can play the role of making English sentences. Target object: __, 
about {:.1f} m in height, about {:.1f} m in length, {appearance}, relative to my 
position: {azimuth}, distance from me: __; It is in/on {place}, is {ordinal number}, 
state: __, its orientation is {}, spatial relation: __, case of occlusion: __.  You'll 
generate more concise English descript ions.  Understand the meaning from the 
phrases I have provided, and form one long sentence or several short sentences. 
Please do not add additional extraneous information or description beyond the 
description I have provided. Create descriptions as required.

Prompt template

The second car on the left side of the 
road, positioned less than 10 meters 
away from me, is a gray vehicle 
measuring around 1.6 meters in height 
and 3.7 meters in length. It's parked in 
front of the red car and facing directly 
towards me.

Description

ChatGPT

i) height/length: 1.62/3.75m
ii) orientation: facing me
iii) distance: within 10m
iv) azimuth: about 10° north-west
v) spatial relation: in front of red car

3D spatial attribute
i) appearance: grey
ii) occlusion: no
iii) place: left side of the road
iv) ordinal number: second
v) state: parking

2D visual attribute

geometric informationappearance information

i) height/length: 1.62/3.75m
ii) orientation: facing me
iii) distance: within 10m
iv) azimuth: about 10° north-west
v) spatial relation: in front of red car

3D spatial attribute
i) appearance: grey
ii) occlusion: no
iii) place: left side of the road
iv) ordinal number: second
v) state: parking

2D visual attribute

geometric informationappearance information

Figure 2: Our data collection pipeline: i) 2D visual attributes that provide appearance information and 3D spatial attributes that
provide geometric information of the target are extracted. ii) fill in the prompt template we designed with attributes, and input
the complete prompt into ChatGPT to get descriptions. iii) check whether the description can uniquely identify the object.

FCOS3D (Wang et al. 2021), MonoGRNet (Qin, Wang, and
Lu 2019), and MonoFlex (Zhang, Lu, and Zhou 2021). How-
ever, due to the lack of depth information, pure monocu-
lar approaches have difficulty accurately localizing targets.
Other works (Bao, Xu, and Chen 2020; Ding et al. 2020;
Park et al. 2021; Chen, Dai, and Ding 2022) utilize extra
depth estimators to supplement depth information. However,
existing models only extract spatial relationships and depth
information from visual content. Hence, we propose to ex-
plore the impact of language with geometry attributes on 3D
object detection.

3D Visual Grounding
To handle this task, Scanrefer (Chen, Chang, and Nießner
2020) and Referit3D (Achlioptas et al. 2020) first create
datasets. Similar to the counterpart 2D task, earlier works
adopt the two-stage pipeline which uses a pre-trained detec-
tor to generate object proposals and extract features, such
as PointNet++ (Qi et al. 2017). SAT (Yang et al. 2021)
adopts 2D object semantics as extra input to assist training.
InstanceRefer (Yuan et al. 2021) converts this task into an
instance matching problem. To understand complex and di-

verse descriptions in point clouds directly, Feng et al. (2021)
construct a language scene graph, a 3D proposal relation
graph, and a 3D visual graph. 3DVG-Trans (Zhao et al.
2021), TransRefer3D (He et al. 2021), Multi-View Trans
(Huang et al. 2022b), and LanguageRefer (Roh et al. 2022)
all develop transformer-based architectures. D3Net (Chen
et al. 2022) and 3DJCG (Cai et al. 2022) both develop a uni-
fied framework for dense captioning and visual grounding.
Liu et al. (2021) present a novel task for 3D visual ground-
ing in RGB-D images. The previous works are all in indoor
environments and target furniture as the object. To promote
the application, Lin et al. (2023) introduce the task in large-
scale dynamic outdoor scenes based on online captured 2D
images and 3D point clouds. However, capturing visual data
through LiDAR or the industrial camera is expensive and not
readily available for a wide range of applications. Our work
focuses on the 3D visual grounding in a single image.

Mono3DRefer Dataset
As shown in Table 1 and Table 2, previous SUN-Spot
(Mauceri, Palmer, and Heckman 2019) and REVERIE (Qi
et al. 2020) only focus on 2D bounding boxes in the 3D
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RoBERTa

The second car on the left side of the 
road, positioned less than 10 meters 
away from me,  is  a  gray vehicle 
measuring around 1.6 meters in height. 
It's parked in front of the red car and 
facing directly towards me.
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Figure 3: Overview of the proposed framework. The multi-modal feature encoder first extracts textual, multi-scale visual, and
geometry features. The dual text-guided adapter refines visual and geometry features of referred objects based on pixel-wise
attention. A learnable query fuses geometry cues and visual appearance of the object using depth-text-visual stacking attention
in the grounding decoder. Finally, the grounding head adopts multiple MLPs to predict the 2D and 3D attributes of the target.

scene. Subsequently, ScanRefer (Chen, Chang, and Nießner
2020), Sr3d, Nr3d (Achlioptas et al. 2020), and SUNRefer
(Liu et al. 2021) are built to investigate 3D visual grounding,
but they are limited to indoor static scenes. Although STRe-
fer and LifeRefer (Lin et al. 2023) focus on outdoor dynamic
scenes, they require LiDAR and industrial cameras. To facil-
itate the broad application of 3D visual grounding, we em-
ploy both manually annotated and ChatGPT to annotate a
large-scale dataset based on KITTI (Geiger, Lenz, and Urta-
sun 2012) for Mono3DVG.

Data Annotation
To cover all scenes and reduce inter-frame similarity, we
performed scene clustering on the original KITTI dataset
and sampled 2025 images from each category. The anno-
tation pipeline of Fig. 2 consists of three stages. Step 1: At-
tribute extraction. The attributes of objects are divided into
2D visual attributes (appearance, occlusion, place, ordinal
number, state) and 3D spatial attributes (height/length, ori-
entation, distance, azimuth, spatial relationship). The color
of appearance is preliminarily extracted by the HSV color
recognition method. Occlusion and height/length are di-
rectly obtained from labels of the raw KITTI. Based on the
302 category results of scene clustering, unified rough anno-
tations are performed for the scene place and state of objects
in each category. Distance and azimuth are calculated by the
coordinates of 3D boxes. Spatial relations include i) Hori-
zontal Proximity, ii) Between, and iii) Allocentric such as
far from, next to, between A and B, on the left, and in front.
The judgment model is established based on 3D boxes and
space geometry to preliminarily extract ordinal number, ori-
entation, and spatial relation. Finally, to ensure correctness,
we organize four people to verify and correct 2D and 3D at-
tributes that provide appearance and geometric information.
Step 2: Expression generation. We customize the prompt
template for generating expressions for ChatGPT. Fill in the
template with each attribute of objects and input the com-
plete prompt into ChatGPT to obtain the descriptions. Step
3: Verification. To guarantee the correctness of descriptions,
four persons from our team jointly verify the dataset.

Dataset Statistics
Table 1 summarizes the statistical information of the dataset.
We sample 2025 frames of images from the original KITTI
for Mono3DRefer, containing 41,140 expressions in total
and a vocabulary of 5,271 words. In addition to the Sr3d
generated through templates, Mono3DRefer has a similar
number of expressions as the ScanRefer and Nr3d. For the
range, 10m is the range of the whole scene pre-scanned by
RGB-D sensors, 30m is the approximated perception radius
with annotations for the LiDAR sensor, and 102m is the
distance range of objects with annotations for our dataset.
The average length of expressions generated by ChatGPT
is 53.24 words involving visual appearance and geometry
information. Table 2 shows that the Mono3DVG task has
relatively low language data collection costs and the lowest
visual data collection costs. We provide more detailed statis-
tics and analyses in the supplementary materials.

Methodology
As shown in Fig. 3, we propose an end-to-end transformer-
based framework, Mono3DVG-TR, which consists of four
main modules: 1) the encoder; 2) the adapter; 3) the decoder;
4) the grounding head.

Multi-modal Feature Encoder
We leverage pre-trained RoBERTa-base (Liu et al. 2019c)
and a linear layer to extract the textual embeddings pt ∈
RC×Nt , where Nt is the length of the input sentence. For
the image I ∈ RH×W×3, we utilize a CNN backbone
(i.e., ResNet-50 (He et al. 2016) and an additional convo-
lutional layer) and a linear layer to obtain four level multi-
scale visual features fv ∈ RC×Nv , where C = 256 and
Nv = H

8 ×
W
8 +H

16×
W
16+

H
32×

W
32+

H
64×

W
64 . Following Zhang

et al. (2022), we use the lightweight depth predictor to get
the geometry feature fg ∈ RC×Ng , where Ng = H

16 × W
16 .

Then we design visual encoder and depth encoder to con-
duct global context inference and generate embeddings with
long-term dependencies, denoted as pv ∈ RC×Nv , pg ∈
RC×Ng . The depth encoder is composed of one transformer
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Figure 5: Detail of text-guided visual and depth adapter.

encoder layer to encode geometry embeddings. In Fig. 4(a),
visual encoder replaces multi-head self-attention (MHSA)
with multi-scale deformable attention (MSDA) to avoid ex-
cessive attention computation on multi-scale visual features.
Moreover, we insert an additional multi-head cross-attention
(MHCA) layer between MSDA layer and feed-forward net-
work (FFN), providing textual cues for visual embeddings.

Dual Text-guided Adapter
To exploit the appearance and geometry information in text,
the dual adapter is proposed. In Fig. 5(b), the depth adapter
takes the geometry embedding pg as the query for MHCA
and takes the text embedding pt as the key and value. Then,
a multi-head attention (MHA) layer is used to apply implicit
text-guided self-attention to the geometry features. Original
geometry embedding pg as the value. The refined geometry
feature is denoted as p

′′

g . Visual adapter requires splitting
and concatenating multi-scale visual embeddings pv before

and after MHCA which uses p
1
16
v with the size of H

16 × W
16

as the query. Then, MSDA is used instead of MHA, and the
refined visual feature is denoted as p

′′

v .

Then, we linearly project p
1
16
v and the output of MHCA

in the visual adapter to obtain the original visual feature
map F orig ∈ RC× H

16×
W
16 and the text-related F text ∈

RC× H
16×

W
16 , respectively. To explore the alignment relation-

ship and fine-grained correlation between vision and lan-
guage, we compute the attention score sij ∈ RH

16×
W
16 for

each region (i, j) in the feature map as follows:
F orig = ∥F orig∥2 , F text = ∥F text∥2 , (1)

ac
ij = F c

orig(i, j)⊙ F c
text(i, j), c = 1, 2, . . . , C (2)

sij =
C∑

c=1

ac
ij . (3)

where, ∥·∥2 and ⊙ indicate l2-norm and element-wise prod-
uct respectively. Then, we further model the semantic simi-
larity S

1
16 with the size of H

16 × W
16 between each pixel fea-

ture and the text feature using the Gaussian function:

S
1
16 = α · exp(− (1− sij)

2

2σ2
), (4)

where, α and σ are a scaling factor and standard deviation,
respectively, and both are learnable parameters. We upsam-
ple S

1
16 using bilinear interpolation and downsample S

1
16

using max pooling. Then we concatenate the flattened score
maps to obtain the multi-scale attention score S ∈ RNv :

S = Concat[Up(S
1
16 ),S

1
16 ,Down(S

1
16 ),Down(S

1
16 )].

(5)
Based on pixel-wise attention scores, the visual and ge-

ometry features are focused on the regions relevant to the
textual description. We use the features p

′′

v and p
′′

g and scores
(S

1
16 ∈ RNd is flattened) to perform element-wise multipli-

cation, resulting in adapted features of the referred object:

p̃v = p
′′

v · S, p̃g = p
′′

g · S 1
16 . (6)

Grounding Decoder
As shown in Fig. 3, the n-th decoder layer consists of a block
composed of MHA, MHCA, and MSDA, and an FFN. The
learnable query pq ∈ RC×1 first aggregates the initial ge-
ometric information, then enhances text-related geometric
features by text embedding, and finally collects appearance
features from multi-scale visual features. This depth-text-
visual stacking attention adaptively fuses object-level geo-
metric cues and visual appearance into the query.

Grounding Head
Our grounding head employs multiple MLPs for 2D and 3D
attribute prediction. The output of the decoder, i.e., the learn-
able query, is denoted by p̃q ∈ RC×1. Then, p̃q is separately
fed into a linear layer for predicting the object category, a 3-
layer MLP for the 2D box size (l, r, t, b) and projected 3D
box center (x3D, y3D), a 2-layer MLP for the 3D box size
(h3D, w3D, l3D), a 2-layer MLP for the 3D box orientation
θ, and a 2-layer MLP for the depth dreg . (l, r, t, b) repre-
sents the distances between the four sides of the 2D box and
the projected 3D center point (x3D, y3D). Similar to (Zhang
et al. 2022), the final predicted depth dpred is computed.

Loss Function
We group the category, 2D box size, and projected 3D center
as 2D attributes, and the 3D box size, orientation, and depth
as 3D attributes. The loss for 2D is formulated as:

L2D = λ1Lclass + λ2Llrtb + λ3LGIoU + λ4Lxy3D, (7)

where, λ1∼4 is set to (2, 5, 2, 10) following (Zhang et al.
2022). Lclass is Focal loss (Lin et al. 2017) for predicting
nine categories. Llrtb and Lxy3D adopt the L1 loss. LGIoU

is the GIoU loss (Rezatofighi et al. 2019) that constrains the
2D bounding boxes. The loss for 3D is defined as:

L3D = Lsize3D + Lorien + Ldepth. (8)
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Method Type Unique Multiple Overall Time cost
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 (ms)

CatRand Two-Stage 100 100 24.47 24.43 38.69 38.67 0
Cube R-CNN + Rand Two-Stage 32.76 14.61 13.36 7.21 17.02 8.60 153
Cube R-CNN + Best Two-Stage 35.29 16.67 60.52 32.99 55.77 29.92 153
ZSGNet + backproj One-Stage 9.02 0.29 16.56 2.23 15.14 1.87 31
FAOA + backproj One-Stage 11.96 2.06 13.79 2.12 13.44 2.11 144
ReSC + backproj One-Stage 11.96 0.49 23.69 3.94 21.48 3.29 97
TransVG + backproj Tran.-based 15.78 4.02 21.84 4.16 20.70 4.14 80
Mono3DVG-TR (Ours) Tran.-based 57.65 33.04 65.92 46.85 64.36 44.25 110

Table 3: Comparison with baselines. The underline means performance exceeding our bolded results.

We use the 3D IoU oriented loss (Ma et al. 2021), MultiBin
loss (Chen et al. 2020), and Laplacian aleatoric uncertainty
loss (Chen et al. 2020) as Lsize3D, Lorien, and Ldepth to
optimize the predicted 3D size, orientation, and depth. Fol-
lowing (Zhang et al. 2022), we use Focal loss to supervise
the prediction of the depth map, denoted as Ldmap. Finally,
our overall loss is formulated as:

Loverall = L2D + L3D + Ldmap. (9)

Experiments
Implementation Details. We split our dataset into 29,990,
5,735, and 5,415 expressions for train/val/test sets respec-
tively. We train 60 epochs with a batch size of 10 by AdamW
with 10−4 learning rate and 10−4 weight decay on one GTX
3090 24-GiB GPU. The learning rate decays by a factor of
10 after 40 epochs. The dropout ratio is set to 0.1.

Evaluation metric. Similar to (Chen, Chang, and
Nießner 2020; Liu et al. 2021; Lin et al. 2023), we use the
accuracy with 3D IoU threshold (Acc@0.25 and Acc@0.5)
as our metrics, where the threshold includes 0.25 and 0.5.

Baselines. To explore the difficulty and enable fair com-
parisons, we design several baselines and validate these
methods using a unified standard. Two-stage: 1) CatRand
randomly selects a ground truth box that matches the ob-
ject category as the prediction result. This baseline mea-
sures the difficulty of our task and dataset. 2) (Cube R-CNN
(Brazil et al. 2023) + Rand) randomly selects a bounding
box that matches the object category as the prediction re-
sult from predicted object proposals of Cube R-CNN, the
best monocular 3D object detector. 3) (Cube R-CNN (Brazil
et al. 2023) + Best) selects a bounding box that best matches
the ground truth box from predicted object proposals. This
baseline provides the upper bound on how well the two-stage
approaches work for our task. One-stage: 2DVG backproj
baselines adapt the results of 2D visual grounding to 3D
by using back-projection. We select three SOTA one-stage
methods, i.e., ZSGNet (Sadhu, Chen, and Nevatia 2019),
FAOA (Yang et al. 2019) , ReSC (Yang et al. 2020), and
the transformer-based TransVG (Deng et al. 2021).

To analyze the importance of other information be-
sides the category, we report metrics of these baselines on
’unique’ and ’multiple’ subsets in Table 3. The ’unique’ sub-
set means cases where there is one object that matches the
category, while the ’multiple’ subset contains multiple con-
fused objects with the same category. To analyze the task

difficulty, we report metrics at varying levels of depth d as
near: 0 < d ≤ 15m, medium: 15m < d ≤ 35m, far: 35m
< d ≤ ∞ in Table 4. Considering that occlusion or trunca-
tion of the objects adds challenge to the task, we also show
metrics at varying levels of difficulty as easy: no occlusion
and truncation < 0.15, moderate: no/partial occlusion and
truncation < 0.3, hard: others. For more convincing results,
we show the average of 5 evaluations with different random
seeds for CatRand and Cube R-CNN Rand.

Quantitative Analysis and Task Difficulty
In Table 3, CatRand achieves 100% accuracy on the ’unique’
subset but only 24% on the ’multiple’. Cube R-CNN Rand
also performs better on the ’unique’ subset compared to the
’multiple’. If there is only one car in an image, inputting
the ”car” is sufficient. However, if there are multiple cars,
additional information beyond the category is necessary. The
significant gap between Cube R-CNN Best and CatRand on
the ’unique’ subset indicates tremendous research potential
in monocular 3D object detection. Overall, while our result
is close to the CatRand, there is still room for improvement.

In Table 4, CatRand performs much better on the ’far’
subset compared to ’near’ and ’medium’. Our method and
other baselines show a decreasing performance as the depth
increases. The ’far’ subset contains fewer ambiguous ob-
jects, so CatRand’s random selection of ground truth can
achieve better results. Other methods rely on predicted
bounding boxes. Generally, objects that are farther away
from the camera are more challenging to accurately pre-
dict their depth and 3D extent. Cube R-CNN Best exhibits
excellent results on Acc@0.25. The accuracy gap between
CatRand and our method on the ’far’ subset indicates that
accurately predicting the depth of target objects based on a
single image and natural language is a challenge in our task.

For ’easy-moderate-hard’ subsets, Cube R-CNN Best has
suboptimal results on Acc@0.25, but a lower Acc@0.5, in-
dicating that the best object detector has the ability to detect
occluded or truncated objects, but the accuracy needs to be
improved. Our method fully fuses visual and textual features
to accurately detect occluded and truncated objects, achiev-
ing better results than CatRand.

Our method outperforms all 2DVG backproj baselines by
a significant margin in Tables 3-4. It is inefficient to obtain
accurate 3D bounding boxes from 2D localization results by
back projection. The methods of 2DVG can only predict the
extent of the object in the 2D plane and lack the ability to
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Method Type Near / Easy Medium / Moderate Far / Hard
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

CatRand Two-Stage 31.16/47.29 31.05/47.26 35.49/33.92 35.49/33.92 52.11/30.83 52.11/30.74
Cube R-CNN + Rand Two-Stage 17.40/21.12 11.45/11.41 18.01/17.85 8.15/8.01 14.91/10.56 6.38/5.18
Cube R-CNN + Best Two-Stage 67.76/59.66 41.45/33.05 60.69/60.56 30.35/33.45 34.72/46.25 17.01/22.52
ZSGNet + backproj One-Stage 24.87/21.33 0.59/3.35 16.74/13.87 3.71/0.63 2.15/7.57 0.07/0.84
FAOA + backproj One-Stage 18.03/17.51 0.53/3.43 15.64/12.18 3.95/1.34 4.86/8.83 0.62/0.90
ReSC + backproj One-Stage 33.68/27.90 0.59/5.71 24.03/19.23 6.15/1.97 4.24/14.41 1.25/1.02
TransVG + backproj Tran.-based 29.34/28.88 0.86/6.95 25.05/16.41 8.02/2.75 4.17/12.91 0.97/1.38
Mono3DVG-TR (Ours) Tran.-based 64.74/72.36 53.49/51.80 75.44/69.23 55.48/48.66 45.07/49.01 15.35/29.91

Table 4: Results for ’near’-’medium’-’far’ subsets and ’easy’-’moderate’-’hard’ subsets. The underline means performance
exceeding our bolded results.
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lone black car that measures approximately 1.5 
meters in height. It is currently driving away from 
me towards my north-east direction, and is situated 
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My approximate position is 10 meters away from 
a pedestrian wearing high heels, who is standing 
on the left side of the road. They are facing 
towards the right and positioned next to a bicycle.

The black car, standing at a height of about 1.4 meters, 
is located on the third lane to my left, about 20 meters 
away from me and positioned around 10 degrees 
northwest of me. It is the second car on the lane, facing 
away from me, and currently moving straight ahead.

Figure 6: Qualitative results from baseline methods and our Mono3DVG-TR. Blue, green, and red boxes denote the ground
truth, prediction with IoU higher than 0.5, and prediction with IoU lower than 0.5, respectively.

estimate depth, resulting in inaccurate 3D localization.

Qualitative Analysis
Fig. 6 displays the 3D localization results of Cube R-CNN
Best, ReSC backproj, TransVG backproj, and our proposed
method. Although the approximate range of objects can be
obtained, Cube R-CNN Best fails to provide precise bound-
ing boxes. ReSC backproj and TransVG backproj depend on
the accuracy of 2D boxes and are unable to estimate depth,
thus unable to provide accurate 3D bounding boxes. Our
method includes text-RGB and text-depth two branches to
make full use of the appearance and geometry information
for multi-modal fusion, but there are also some failures. We
provide more detailed analyses in the supplementary.

Ablation Studies
We conduct detailed ablation studies to validate the effec-
tiveness of our proposed network and report the Acc@0.25
and Acc@0.5 overall on the Mono3DRefer test set. In Table
5, we report results of a comprehensive ablation experiment
on the main components. The first row shows the results
by directly using visual and geometry features of the CNN
backbone and depth predictor to decode. The second row
shows a significant improvement with the addition of the en-

Grouning
Decoder

Encoder Adapter Acc0.25 Acc@0.5V. D. V. D.
✓ 47.31 24.38
✓ ✓ ✓ 60.21 38.52
✓ ✓ ✓ ✓ 61.98 40.12
✓ ✓ ✓ ✓ ✓ 64.36 44.25

Table 5: The ablation studies of the proposed components of
our approach. ’V.’ and ’D.’ denote visual and depth.

coder. In the third row, we only utilize the text-guided visual
adapter. After adding the complete adapter, the results can
be improved by approximately 4%-5%. We provide more
detailed analyses of ablation studies in the supplementary.

Conclusion
We introduce the novel task of Mono3DVG, which local-
izes 3D objects in RGB images by descriptions. Notably,
we contribute a large-scale dataset, Mono3DRefer, which is
the first dataset that leverages the ChatGPT to generate de-
scriptions. We also provide a series of benchmarks to facil-
itate future research. Finally, we hope that Mono3DVG can
be widely applied since it does not require strict conditions
such as RGB-D sensors, LiDARs, or industrial cameras.
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