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Abstract

Strategies synthesized using formal methods can be complex
and often require infinite memory, which does not correspond
to the expected behavior when trying to model Multi-Agent
Systems (MAS). To capture such behaviors, natural strategies
are a recently proposed framework striking a balance between
the ability of agents to strategize with memory and the model-
checking complexity, but until now it has been restricted to
fully deterministic settings. For the first time, we consider the
probabilistic temporal logics PATL and PATL* under natural
strategies (NatPATL and NatPATL"*, resp.). As main result
we show that, in stochastic MAS, NatPATL model-checking
is NP-complete when the active coalition is restricted to de-
terministic strategies. We also give a 2NEXPTIME com-
plexity result for NatPATL* with the same restriction. In the
unrestricted case, we give an EXPSPACE complexity for
NatPATL and BEXPSPACE complexity for NatPATL".

Introduction

In the last decade, much attention has been devoted to
the verification of Multi-Agent Systems (MAS). One of the
most important early developments was the Alternating-
time Temporal Logics ATL and ATL* (Alur, Henzinger, and
Kupferman 2002). Since its initial proposal, ATL has been
extended in various directions, considering, for instance,
strategy contexts (Laroussinie and Markey 2015) or adding
imperfect information and epistemic operators (Jamroga
and Bulling 2011). Strategy Logic (SL) (Chatterjee, Hen-
zinger, and Piterman 2010; Mogavero et al. 2014) extends
ATL to treat strategies as first-order variables. The proba-
bilistic logics PATL, PATL* (Chen and Lu 2007), Stochas-
tic Game Logic (Baier et al. 2012), and PSL (Aminof et al.
2019) enhances ATL, ATL*, ATL with strategy contexts, and
SL, resp., to the probabilistic setting. Those logics allow us
to express that a coalition can enforce that the probability of
satisfying their goal meets a specified constraint.

The importance of the aforementioned logics lies in the
uncertainty often faced by MAS, due to the occurrence
of randomization, such as natural events and the behav-
ior of their components (i.e., the agents). While those as-
pects cannot be known with certainty, they can be mea-
sured based on experiments or past observations. Exam-
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ples include, among others, the affluence of users inter-
acting with the system, unknown preference of its agents
modeled with probabilistic distributions, and errors of its
sensorial components. All the aforementioned logics also
have downsides, either complexity-wise or memory-wise.
PSL is undecidable, and is still SEXPSPACE when re-
stricted to memoryless strategies. PATL model checking is
in NP N co-NP but requires infinite-memory strategies.
Stochastic game logic is PSPACE with memoryless de-
terministic strategies, and EXPSPACE with memoryless
probabilistic strategies. These last two results are of interest,
but the memoryless assumption is quite restrictive.

Natural strategies, first defined in (Jamroga, Malvone,
and Murano 2019a), are lists of condition-action pairs with
a bounded memory representation. This definition contrasts
with combinatorial strategies (i.e., functions from histories
to actions), considered typically in the semantics of logics
for MAS, including ATL and ATL*. The motivation for nat-
ural strategies, as argued in (Jamroga, Malvone, and Mu-
rano 2019a), is that combinatorial strategies are not realistic
in the context of human behavior, because of the difficulty
to execute and design complex plans. In particular, systems
that are difficult to use are often ignored by the users, even
if they respect design specifications such as security con-
straints. Artificial agents with limited memory or computa-
tional power cannot use combinatorial strategies either. On
the other end of the spectrum, memoryless strategies that
depend only on the current state cannot provide adequate
solutions to many planning problems.

Natural strategies encompass both bounded memory and
specifications of agents with “simple” strategies, by allow-
ing agents to use some past observations without requir-
ing infinite memory. They aim at capturing the intuitive ap-
proach a human would use when describing strategies. As
a result, these strategies are easier to explain using natural
language. They also intrinsically feature imperfect informa-
tion, since they reason about the sequence of propositional
variables observed in previous states, instead of the states
themselves. Although the systems with whom these agents
interact may be stochastic, the study of natural strategies has
been until now restricted to fully deterministic settings. For
the first time, we consider PATL and PATL* under natu-
ral strategies and investigate their model checking problem
for stochastic MAS. Remarkably, the logics we consider can
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Det.~Strategies ~ Prob.~Strategies

NatPATL,  NP-complete EXPSPACE
NatPATL? 2NEXPTIME 3EXPSPACE
NatPATLgr ~ NP-complete EXPSPACE
NatPATL;, 2NEXPTIME 3EXPSPACE

Table 1: Summary of model checking complexity problems
for NatPATL and NatPATL* with stochastic MAS.

also be seen as an extension of POMDPS to a setting with
multiple agents with bounded memory strategies (Chatter-
jee, Chmelik, and Davies 2016).

Contribution. In this paper, we propose variants of the
probabilistic logics PATL and PATL* with natural strate-
gies (denoted NatPATL and NatPATL*, resp.) and study
their complexity for model checking. We present complex-
ity results for deterministic and, for the first time, proba-
bilistic natural strategies. With respect to the agents’ mem-
ory, we investigate both the memoryless and bounded re-
call settings '. Table 1 summarizes the results of this paper.
The main advantage of the logics proposed is that they en-
able to express and verify the strategic abilities of stochas-
tic MAS in which agents have limited memory and/or com-
putational power, with a reasonably good model checking
complexity. In particular, the model checking of NatPAT Ly
is NP-complete for deterministic natural strategies, and in
EXPSPACE for probabilistic natural strategies.

Related Work

Several works consider the verification of stochastic MAS
with specifications given in probabilistic logics. In par-
ticular, Huang and Luo (2013) study an ATL-like logic
for stochastic MAS when agents play deterministic strate-
gies and have probabilistic knowledge. The model checking
problem has been studied for Probabilistic Alternating-Time
p-Calculus (Song et al. 2019). Huang, Su, and Zhang (2012)
consider the logic Probabilistic ATL* (PATL*) under incom-
plete information and synchronous perfect recall. PATL was
also considered under imperfect information and memory-
less strategies (Belardinelli et al. 2023), and with accumu-
lated costs/rewards (Chen et al. 2013).

Also in the context of MAS, probabilistic logics were
used for the verification of unbounded parameterized sys-
tems (Lomuscio and Pirovano 2020), resource-bounded sys-
tems (Nguyen and Rakib 2019), and under assumptions over
opponents’ strategies (Bulling and Jamroga 2009).

Our work is also related to the research on represen-
tation of strategies with limited memory. This includes
the representation of finite-memory strategies by input/out-
put automata (Vester 2013), decision trees (Brazdil et al.
2015), ATL with bounded memory (Agotnes and Walther
2009), as well as the use of bounded memory as an ap-
proximation of perfect recall (Belardinelli, Lomuscio, and
Malvone 2018). More recently, Deuser and Naumov (2020)
represented strategies as Mealy machines and studied how
bounded recall affects the agents’ abilities to execute plans.

'As usual, we denote no recall with r and recall with R.
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Natural strategies have first been studied in (Jamroga,
Malvone, and Murano 2019a) on multiple deterministic set-
tings: finding winning strategies in concurrent games with
LTL specifications, deciding if a set of strategies defines a
Nash equilibrium, and model checking ATL. This last use
of natural strategies has later been extended to ATL with im-
perfect information (Jamroga, Malvone, and Murano 2019b)
and SL (Belardinelli et al. 2022).

The study of partially observable MDPs (POMDPs) also
considers a variety of strategy representations, as discussed
in (Vlassis, Littman, and Barber 2012). When allowing
infinite-memory strategies, finding an almost-sure winning
strategy with a Biichi or reachability objective requires ex-
ponential time on POMDPs, while finding strategies for
almost-sure parity objectives (Baier, Bertrand, and GroB3er
2008; Chatterjee, Doyen, and Henzinger 2010) and for max-
imizing a reachability objective (Madani, Hanks, and Con-
don 2003) is undecidable. However, when resticting the
memory of the strategies to some fixed bound (Pajarinen
and Peltonen 2011; Junges et al. 2018), the complexity of
threshold reachability becomes ETR-complete (the exis-
tential theory of the reals) with probabilistic strategies and
NP-complete with deterministic strategies (Junges 2020).
The complexity of almost-sure reachability with bounded
memory probabilistic strategies is also NP-complete (Chat-
terjee, Chmelik, and Davies 2016).

Preliminaries

In this paper, we fix finite non-empty sets of agents Ag, ac-
tions Ac, and atomic propositions AP. We write c for a tuple
of actions (¢, )aeag, one for each agent, and such tuples are
called action profiles. Given an action profile cand C' C Ag,
we let cc be the components of agents in C, and c_¢ is
(¢p)vgc. Similarly, we let Ag_ = Ag\ C.

Distributions. Let X be a finite non-empty set. A (proba-
bility) distribution over X is a functiond : X — [0, 1] such
that 3 .\ d(z) = 1. Let Dist(X) be the set of distributions
over X. We write « € d for d(z) > 0. If d(z) = 1 for some
element x € X, then d is a point (a.k.a. Dirac) distribu-
tion. If, for ¢ € I, d; is a distribution over X, then, writing
X = [1,c; X, the product distribution of the d; is the dis-
tribution d : X' — [0, 1] defined by d(x) = ], di(zs).

Markov Chains. A Markov chain M is a tuple (St,p)
where St is a countable non-empty set of states and p €
Dist(St x St) is a distribution. For s, ¢t € St, the values p(s, t)
are called transition probabilities of M. A path is an infinite
sequence of states.

Concurrent Game Structures. A stochastic concurrent
game structure (or simply CGS) G is a tuple (St,L,d,¢)
where (i) St is a finite non-empty set of states; (ii) L :
St x Ag — 24\ {0} is a legality function defining the avail-
able actions for each agent in each state, we write L(s) for
the tuple (L(s, a))qeag; (iii) for each state s € St and each
move ¢ € L(s), the stochastic transition function § gives
the (conditional) probability (s, ¢)(s") of a transition from
state s for all s’ € St if each player a € Ag plays the action
Ca, and remark that 6(s, ¢) € Dist(St); (iv) £ : St — 24P is
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a labelling function.
For each state s € St and joint action ¢ € [],c, L(s,a),

we assume that there is a state s’ € St such that §(s, ¢)(s)
is non-zero, that is, every state has a successive state from a
legal move, formally ¢ € L(s, a).

Example 1 (Secure voting ). Assume a voting system with
two types of agents: voters and coercers, represented by
the disjoint sets V' C Ag and C C Ag, resp. We con-
sider a finite set of receipts, and signatures. The actions
of the voters are scanBallot, enterVote, cnlV ote, conf,
checkSigs, checkrec,, shred,., and noop, which represent
that the agent is scanning the ballot, entering their vote,
canceling it, confirming it, checking its signature s, check-
ing the receipt 7, shredding the receipt r, and doing noth-
ing, resp. On its turn, the coercer can perform the actions
coerce,, request,, punish,, and noop, representing that
she is coercing the voter v, requesting v to vote, punishing
v, and doing nothing, resp.

The CGS has propositions denoting the state of the vot-
ing system. Specifically, they describe whether the voter v
was coerced (coerced,), punished (punished,), requested
to vote (requested,), has a ballot available (hasBallot,),
scanned the ballot (scanned,,), entered the vote which has
the signature s (entVote, ), and has already voted (vot,).
For a signature s, the proposition sigOk, denotes whether
the signature s was checked and corresponds to the one in
the system, while the proposition sigFails denotes that it
was checked but did not correspond. For a receipt r, the
propositions rec, , and shreded, denotes whether r asso-
ciated with voter v and whether r was destroyed (and it’s no
longer visible), resp.

Actions performed by the agents may fail and may not
change the state of the system as intended by them. For in-
stance, the coercer may not succeed (attempting) to coerce a
voter with the action coerce, (and thus, coerced, may not
be true in the next state). Similarly, a voter’s request to shred
her receipt may fail, and the information on the receipt be
still visible. The probability of an action failing is described
by the CGS stochastic transition function.

Plays. A play or path in a CGS G is an infinite sequence m =
sps1 - - - of states such that there exists a sequence cycy - - -
of joint-actions such that ¢; € L(s;) and s;11 € d(s;,¢;)
(i.e., 6(s4,¢;)(Si+1) > 0) for every ¢ > 0. We write m; for
8;, T, for the suffix of 7 starting at position 4. Finite paths
are called histories, and the set of all histories is denoted
Hist. We write last(h) for the last state of a history h and
len(h) for the size of h.

Behavioral Natural Strategies

In this section, we define behavioral® natural strategies over
CGS, based on the definition in (Jamroga, Malvone, and

2Our running example on secure voting is adapted from the case
study from (Jamroga, Kurpiewski, and Malvone 2020, 2022).

3Behavioral strategies define the probability of taking an action
in a state. This is different from mixed strategies, which define the
probability of taking a strategy in a game. The relation of behav-
ioral and mixed strategies is discussed in (Kaneko and Kline 1995).
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Murano 2019a), and use them to provide the semantics of
NatATL*. Natural strategies are conditional plans, repre-
sented through an ordered list of condition-action rules. The
intuition is that the first rule whose condition holds in the
history of the game is selected, and the corresponding ac-
tion is executed. The conditions are regular expressions over
Boolean formulas over AP, denoted Bool (AP) and given by
the following BNF grammar:

pu=pleVel| e where p € AP.

Given a state s € St and a formula ¢ € Bool(AP), we
inductively define the satisfaction value of ¢ in s, denoted
s = ¢, as follows:

sEp iffp € £(s)
SE w1V iff s =1 0rs o
sk iffnot s = ¢

Let Reg(Bool(AP)) be the set of regular expressions
over the conditions Bool(AP), defined with the constructors
-,U, * representing concatenation, nondeterministic choice,
and Kleene iteration, respectively. Given a regular expres-
sion r and the language £(r) of finite words generated by
r, a history h is consistent with r iff there exists a word
b € L(r) such that |h| = |b] and h[i] = b[i], for all
0 < ¢ < |h/|. Intuitively, a history h is consistent with a reg-
ular expression r if the ¢-th epistemic condition in r holds in
the i-th state of h (for any position 7 in h).

A behavioral natural strategy o with recall for an agent
a € Ag is a sequence of pairs (r, Dist(Ac)), where r €
Reg(Bool(AP)) is a regular expression representing recall,
and d(Ac) is a distribution over the actions with d(c) # 0
if ¢ is available for a in last(h) (i.e., for ¢ € L(a, last(h))),
for all histories h consistent with r. The last pair in the se-
quence is required to be (T* d(Ac)), with d(c) = 1 for
some ¢ € L(s,a) and every s € St. A behavioral memory-
less natural strategy is a behavioral natural strategy without
recall: each condition is a Boolean formula (i.e., all regular
expressions have length 1). A strategy o is deterministic if
for all pairs (r,d), we have |{c € Ac | d(c) # 0}|] = 1.
For readability of the examples, given a pair (r, d), we write
(r,¢) if d(c) = 1 for some action ¢ € Ac.

Example 2 (Secure voting, continued). Recall the voting
system introduced in Example 1. The following is a deter-
ministic memoryless natural strategy for the voter v:

1. (hasBallot, N —scanned,,, scanBallot)

2. (—wot, A scanned,,, enterV ote)

3. (-wot, A entVotey s A —(sigOks Vv
sigFails), checkSigs), for each signature s

4. (-wot, A entVote, s A sigFails, cnlV ote), for each s

5. (—wot, A entVote, s A sigOks, conf), for each s

6. (vot, Arec, , A shreded,, shred,), for each receipt r

7. (T, noop)

This strategy specifies that the agent first scans the ballot
in case there is one, and it was not scanned (Pair 1). Oth-
erwise, if the agent has not voted yet and has scanned, she
enters her vote (Pair 2). If the agent did not vote, entered
the vote and did not check the signature, she checks it (3).
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When the signature is checked, the agent chooses to cancel
or confirm the vote, depending on whether the verification
has failed or succeeded (Pairs 4 and 5). If the agent has voted
and there is an unshredded visible receipt, the agent requests
it to be shredded (Pair 6). Finally, if none of the previous
conditions apply, the agent does not do any action (Pair 7).
A behavioral natural strategy with recall for a coercer is:

. (T* . /\vEV —coerced,, dv), where dy is a probability
distribution over the actions for coercing the voters, with
> wev dv(coerce,) =1

(T* - coerced, N\ —requested,, request,), forv € V

. (T* - —requested,™ - (requested, N —wot,)* A
—punished,, punish,), foreachv € V

(T* - =coerced, N —coerced,,d, ), where d,, . is a
probability distribution over the actions for coercing the
voters v and v, with d,, , (coerce, ) +d, , (coerce,)
1, for each pair (v, v’) of distinct voters in V'

. (T*, noop)

This behavioral strategy considers first the situation in
which no voter was already coerced, and the agent chooses
the action to coerce one of them randomly (Pair 1). Next
condition-action pair in the strategy says that if a voter was
coerced, but her vote was not requested, the agent requests
her vote (Pair 2). If the voter was requested (at least once
in the history), but (continually) did not vote and was not
punished, the agent punishes her (Pair 3). Next pair says
that if there are two distinct non-coerced voters, the agent
randomly chooses one to coerce (Pair 4). If none of those
conditions apply, no operation is performed (Pair 5).

Throughout this paper, let p € {r, R} denote whether we
consider memoryless or recall strategies respectively. Let
Strf be the set of behavioral natural strategies for agent a
and Str’ = UgeagStrt.

Let size(o,) denote the number of guarded actions in o,
cond; (o) be the i-th guarded condition on o, cond;(o,)[7]
be the j-th Boolean formula of the guarded condition o,
and act;(c,) be the corresponding probability distribu-
tion on actions. Finally, match(h,o,) is the smallest in-
dex i < size(o,) such that for all 0 < j < |last(h)],
h[j] E cond;(c,)[j]* and act;(0,) € L(a,last(h)). In
other words, match(h, o,) matches the state last(h) with
the first condition in o, that holds in h, and action available
in last(h).

Given a natural strategy o, for agent a and a history
h, we denote by o,(h) the probability distribution of ac-
tions assigned by o, in the last state of h, i.e., o,(h) =

aCtmatch(h,Ua)(Ua) :

Complexity of Natural Strategies. The complexity ¢(o)
of strategy o is the total size of its representation and is de-
noted as follows: ¢(0) := 3, 4, ||, where |r| is the num-
ber of symbols in r, except parentheses.

“Note that, as in (Jamroga, Malvone, and Murano 2019a), we
consider the case in which the condition has the same length of
the history. There is also the case in which the condition is shorter
than the history. This is due to the usage of the Kleene iteration
operator. In the latter case, we need to check a finite number of
times the same Boolean formula in different states of the history.
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Relation to Game Theory. From a game-theoretic point
of view, natural strategies can be encoded as finite-memory
strategies using finite state machines (e.g., finite-state trans-
ducers) that only read the propositional variables holding
in a state (akin to imperfect information). Natural strategies
and finite-state machines are fundamentally different in their
encoding, in particular, the finite state machine may be ex-
ponential in the size of the natural strategy it is associated
with, as proved in Theorem 12 of (Jamroga, Malvone, and
Murano 2019a).

PATL and PATL* with Natural Strategies

Next, we introduce the Probabilistic Alternating-Time Tem-
poral Logics PATL* and PATL with Natural Strategies (de-
noted, NatPATL* and NatPATL, resp).

Definition 1. The syntax of NatPATL* is defined by the
grammar:

pu=pleVe|-p|Xe|Up | (CHr

where p € AP, k € N, C C Ag, d is a rational constant in
[0,1], and <€ {<, <, >, >1.

The intuitive reading of the operators is as follows:
“next” X and “until” U are the standard temporal opera-
tors. ((C)>*1y asserts that there exists a strategy with com-
plexity at most k for the coalition C' to collaboratively en-
force ¢ with a probability in relation > with constant d.
We make use of the usual syntactic sugar Fy := TUyp and
Gy := ~F -y for temporal operators.

A NatPATL* formula of the form ((C)>“¢ is also
called state formula. An important syntactic restriction of
NatPATL*, namely NatPATL, is defined as follows.

Definition 2 (NatPATL syntax). The syntax of NatPATL is
defined by the grammar

pu=pleVel e | (CHr(Xe) | (CHF(pUp)
where p, k, C, d, and < are as above.

Before presenting the semantics, we show how to define
the probability space on outcomes.

Probability Space on Outcomes. An outcome of a strat-
egy profile ¢ = (04)acae and a state s is a play « that
starts in state s and is extended by o, formally 7y = s,
and for every k > len(h) there exists ¢ € (0a(T<k))acAg
such that ;11 € §(m, ¢ ). The set of outcomes of a strat-
egy profile o and state h is denoted Out(o,s). A given
CGS ¢, strategy profile o, and state s induce an infinite-
state Markov chain M, s whose states are the histories in
Out(o,s). and whose transition probabilities are defined
as p(h,hs') = > cacre 0(h)(c) x 6(last(h),c)(s"). The
Markov chain M, , induces a canonical probability space
on its set of infinite paths (Kemeny, Snell, and Knapp 1976),
which can be identified with the set of plays in Out(o, s)
and the corresponding measure is denoted out (o, s). °
Given a coalition strategy oc € [[,co Strf, the set
of possible outcomes of o from a state s € St to be

>This is a classic construction, see for instance (Clarke et al.
2018; Berthon et al. 2020).
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the set outc(oc,s) = {out((cc,0-¢),s) : o_¢c €
[l.c Ar o Strf} of probability measures that the players in
C enforce when they follow the strategy o ¢, namely, for
each a € Ag, player a follows strategy o, in oc. We use
12¢ to range over the measures in outc (o ¢, s) as follows:

Definition 3 (NatPATL and NatPATL* semantics). Given a
setting p € {r, R}, NatPATL and NatPATL* formulas are
interpreted in a stochastic CGS G and a path 7,

G, 7l p iff p € ((mo)
G,m =, iff G, 7 =, @
gaTr':PQO].VSOQ iffg77r):p@10rgaﬂ-):p¢2

G, 7, (C)e  iffJoc € H{a € Strf) : c(a) < k}
acC

st.VugS € outc(oc,m), purs ({1 G, 7' =, }) ad
g.mE, Xp iff G, m>1 =, 0
G, =, 1 Uty iff 3k > 0s.t. G, m>) =, 1) and

Vj S [O,k‘) g,ﬂ'zj ':p wl

Motivating Examples

In this section, we present problems that motivate reason-
ing in stochastic MAS, and we illustrate how NatPATL*-
formulas can be used to express properties on those systems.

Let us start with an example of door access control with a
random robot. This example illustrates a setting in which it
suffices to have deterministic strategies in stochastic CGSs.

Example 3 (Access control). We consider the example il-
lustrated in Figure 1. We are given a set Ag of agents, a
set of square tiles, where a non-controlled robot moves ran-
domly either one tile right, left, up, or down at every time
step. Between every tile, there is either a wall, a door con-
trolled by some agent with actions open and close, or noth-
ing. The robot can cross an empty space, cannot cross a wall,
and can only cross a door if the agent controlling has taken
action open. Given a set of targets represented by atomic
propositions T = {t; € AP, i € {1,n}} labelling some
tiles, and related coalitions {C; C Ag,i € {1,n}}, we use
NatPATL* to state that some coalition C' C Ag has a strat-
egy with memory k£ € N reaching all targets infinitely often
with probability 0.7, formally:

@y'e N\ Fy

t; €T, t;#t;

ey

In the example of Figure 1, where n = 2, the coalition
controls two doors adjacent to the initial state. Even though
the structure is probabilistic, memoryless strategies are suffi-
cient. Opening the left door gives the robot a chance to move
left, which brings it closer to target ¢y, but in this center-
leftmost square, the agents not in the coalition may open the
door leading to the bottom-left square, where they can then
trap the robot: the robot only has probability % to success-
fully reach ¢(, and otherwise may be trapped forever. The
other option available to the coalition in the initial state is to
close the left door, and open all other doors. The robot will
take longer, but has probability 1 to eventually reach target
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t1. Thus, we can reach ¢; with probability 1, but ¢y with only
probability %, and property 1 does not hold.

Going back to Example 1, we now illustrate how

NatPATL* and NatPATL can be used for the formal secu-
rity analysis of voting systems.
Example 4 (Secure voting, continued). A requirement usu-
ally considered for electronic voting systems is voter-
verifiability, which captures the ability of the voter to verify
her vote (Jamroga, Kurpiewski, and Malvone 2022). In our
example, this is represented by the propositions sigOk, and
sigF ails. The NatPATL formula

<<U>>;§O'9F(sigOks V sigFail)

says that the voter v has a strategy of size at most k so that,
at some point and with probability at least 0.9, she obtains
either the positive or the negative outcome of verifying the
signature s.

Another requirement is receipt-freeness, which expresses
that the voters can not gain a receipt to prove that they voted
in a certain way. In our example, the propositions receipt,, ,
and shreded, represent that a receipt 7 is associated with
the voter v and that the information on it was destroyed. The
NatPATL formula:

~(W)ZO°F \/ (receipt, , N —shreded,.)

receipt r

says that there is no strategy of complexity at most k to en-
sure with probability at least 0.5 that, eventually, there will
be an unshredded receipt for her.

Model Checking Complexity

In this section, we look at the complexity of model checking
for different versions of NatPATL.

Definition 4. Given a setting p € {r, R}, a CGS G, state
s € St, and formula ¢ in NatPATLp (NatPATL*p, resp.),
the model checking problem for NatPATLp (NatPATL*p,
resp.) consists in deciding, whether G, s =, ¢.

Theorem 1. Model checking NatPATL, (respectively
NatPATLR) with deterministic natural strategies for the
coalition is in NP.

The main idea is that since we know the memory bound of
every strategy of the coalition, we can guess these strategies,
and polynomially verify their correctness since we only have
to check MDPs with reachability or invariance objectives.

tl ==

=

Figure 1: A robot in a maze, where = and x denote a door
respectively controlled by the coalition or the agents not in
the coalition. Full lines represent walls. g, 1 are two targets.
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Theorem 2. Model checking NatPATL, (respectively
NatPATLR) with deterministic natural strategies for the
coalition is NP-hard.

Proof. We start by showing that NatPATL, with determinis-
tic natural strategies for the coalition extends POMDPs with
memoryless deterministic strategies and almost-sure reach-
ability objective. Indeed, a POMDP represented as a CGS
G = (St,L, 6, ¢) (two states are indistinguishable if they are
labelled by the same propositional variables), a single agent
A, and a set of target states distinguished by some proposi-
tional variable ¢ that holds only in these states, there exists a
strategy almost surely reaching ¢ from an initial state s € St
if and only if the NatPATL, formula (A))ig; (Ft) holds on
G. Indeed, memoryless strategies cannot have a complex-
ity higher than |St|, the number of states in the MDP, and so
available strategies coincide. In Proposition 2 of (Chatterjee,
Chmelik, and Davies 2016), it is shown that finding strate-
gies for POMDPs with memoryless randomized strategies
and almost-sure reachability objective is NP-hard. It uses a
reduction from Lemma 1 of (Chatterjee, KoBler, and Schmid
2013), that only uses deterministic strategies. As such, find-
ing strategies for POMDPs with memoryless determinis-
tic strategies and almost-sure reachability objective is NP-
hard, so it is the model checking NatPATL, with behavioral
natural deterministic strategies for the coalition. O

Theorem 3. Model checking NatPATL} (respectively
NatPATLy) with deterministic natural strategies for the
coalition is in 2NEXPTIME.

Sketch of proof. The idea is similar to Theorem 1, we
guess strategies of bounded size for every coalition, but
we now have to check LTL formulas on MDPs, which
is 2EXPTIME. We also show 2EXPTIME-hardness
with a reduction from LTL on MDPs. This complexity is
not surprising, since classical ATL* has already doubly
exponential complexity (Alur, Henzinger, and Kupferman
2002). 0

Theorem 4. Model checking NatPATL! (respectively
NatPATLY) with deterministic natural strategies for the
coalition is 2EXPTIME-hard.

Proof. We use a reduction from LTL model checking on
MDPs, which is 2EXPTIME-complete. Given an LTL
formula ¢, a threshold d € [0,1] and a CGS G with only
one agent Ag, we say ¢ holds with at least probability d

on G if and only if the NatPATL! formula <<®>>,%1_d(—|<p)
holds on MDP G: this formula states that for any strategy of
the agent (without any complexity bound, since the coalition
is empty), formula —¢ holds with probability at least 1 — d:
this only happens if there is no strategy ensuring ¢ with at

least probability d. O

When considering probabilistic strategies, we follow the
same technique as (Aminof et al. 2019) to reduce the prob-
lem to model checking real arithmetic. Since LTL is sub-
sumed by NatPATL};, we also have a doubly-exponential
blowup. On the other hand, with NatPATLy, we roughly
follow an idea introduced for stochastic game logic (Baier
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et al. 2012) to avoid this blowup. As in the proof of Theo-
rem 1, it is sufficient to consider reachability and invariance
problems, both of which are polynomial. The same holds
for NatPATL}. Next, we consider the model checking of
behavioral strategies. We remark that the 2EXPTIME-
hardness from Theorem 4 also applies to NatPATL, and
NatPATL} with behavioral natural strategies. We now give
model checking algorithms and their complexity.

Theorem 5. Model checking NatPATL) (respectively

NatPATL},) with behavioral natural strategies for the coali-
tion is in 3BEEXPSPACE.

Sketch of proof. Probabilistic Strategy Logic (PSL) with an
additional behavioral natural strategies operator 37** cap-
tures NatPATL, and we show its model checking is in
3EXPSPACE. When translating a NatPATL}, formula
into a PSL formula in a bottom-up manner, assuming for-
mula ¢ can already be translated into some PSL(¢p) with-
out any complexity blowup, the ((C)}*¢ subformulas, can
be translated as 3oVuPc_ o, ag\c—pu(PSL(p)) > d:
a coalition satisfies ¢ iff there exists a natural strategy for
the coalition such that for all strategies of the other agents,
the PSL translation of ¢ holds. To model check the oper-
ator 37*, we modify the proof of Theorem 1 of (Aminof
et al. 2019) showing that model checking PSL with memo-
ryless strategies is in SEXPSPACE. This proof translates
PSL into real arithmetic, and a variable r,, s , represents the
probability for strategy x to take action a in state s. We can
extend this notation to behavioral natural strategies: for a
strategy with complexity %, we replace variables 7, ; o by
Tx,s,a,¢ Where ¢ is the current state of the automata repre-
senting the regular expressions of a behavioral natural strat-

egy:
V A Ava

strategies o, compl(o)<k (r,a)€Ec

is an automaton with current state g[r]. We state that two
probabilities are equal if they are accepted by the same reg-
ular expressions:

/\ aCC(Q[T]v A(r,a)) A acc(q’ [7”], A(T,(l))

(r,a)€oc
= rw,&a,q = Tw,svavql

Both are exponential in the largest &k in the formula, since
there are exponentially many possible automata of size less
or equal to k, and we need to describe at most k£ of them
in every conjunction. Nothing else is changed in the proof
of (Aminof et al. 2019), and thus we have a BEXPSPACE
complexity in the size of the NatPATL}, formula, exponen-
tial in the size of the system and 2EXPSPACE in the
largest complexity k used in the formula. O

Theorem 6. Model checking NatPATL, (respectively

NatPATLg) with behavioral natural strategies for the coali-
tion is in EXPSPACE.

Sketch of proof. The proof is slightly more complicated
than the previous one. We again adapt the proof of The-
orem | of (Aminof et al. 2019). In the proof of The-
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orem 5, we translate our fragment of PSL with nat-
ural strategies to real arithmetic. The only exponential
blowup comes when translating the coalition operator into
I VPP o, ag\C—pu(PSL(¢)) 1 d where ¢ is as-
sumed to be an LTL formula whose atoms are either propo-
sitional variables, or variables representing other formulas
starting with P. This translation constructs a deterministic
Rabin automaton whose size is exponential in the size of the
CGS, double exponential in the size of 1, and uses a num-
ber of quantifiers double exponential in the size of 1. Since
we consider NatPATLg, this LTL formula may only be ei-
ther X¢ or ©Uy’, where ¢ and ¢’ have been inductively
represented as Boolean formulas. Proposition 5.1 and The-
orem 5.2 of (Alur, Henzinger, and Kupferman 2002) show
that such formulas can be polynomially translated to either
reachability or invariance games, which can be done us-
ing an automaton and a number of variables both polyno-
mial in the size of the CGS and . Since model checking
real arithmetic is exponential in the number of quantifiers
of the formula (Ben-Or, Kozen, and Reif 1986; Fitchas, Gal-
ligo, and Morgenstern 1987), we obtain that model checking
NatPATLgy with behavioral natural strategies for the coali-
tion is in EXPSPACE. 0

Expressivity

We now compare the expressive power of NatPATL* to that
of PATL*. We first recall the notions of distinguishing and
expressive powers.

Definition 5 (Distinguishing power and expressive power
(Wang and Dechesne 2009)). Consider two logical systems
Ly and L, with their semantics (denoted |=,, and =,,,
resp.) defined over the same class of models M. We say that
L1 is at least as distinguishing as Lo (written: Lo <y Lq) iff
for every pair of models M, M’ € M, if there exists a for-
mula w3 € Lo such that M =,, @2 and M’ [, @2, then
there is also 1 € Ly with M =r, o1 and M’ }£r, 1.
Moreover, Ly is at least as expressive as Lo (written:
Lo = L7) iff for every o € Lo there exists ¢ € Ly such
that, for every M € M, wehave M =,, @2 iff M =, ¢1.

NatPATL* and PATL* are based on different notions of
strategic ability. As for the deterministic setting with ATL,
each behavioral natural strategy can be translated to a be-
havioral combinatorial one (i.e., mappings from sequences
of states to actions), but not vice versa. Consequently,
PATL* can express that a given coalition has a combina-
torial strategy to achieve their goal, which is not expressible
in NatPATL*. On the other hand, NatATL* allows express-
ing that a winning natural strategy with bounded complexity
does not exist, which cannot be captured in PATL*. Now we
show that NatPATL* allows expressing properties that can-
not be captured in PATL*, and vice versa.

Theorem 7. For both memoryless and recall semantics:

e NatPATL (resp. NatPATL*) and PATL (resp, PATL*)
have incomparable distinguishing power over CGS.

e NatPATL (resp. NatPATL*) and PATL (resp, PATL*)
have incomparable expressive power over CGS.
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Sketch of proof. The proof is obtained by an adjustment of
the proofs of Prop. 8 and 9 in (Belardinelli et al. 2022), com-
paring natural strategies with combinatorial strategies. [

Conclusion

In this work, we have defined multiple variations of PATL
with natural strategies, and studied their model-checking
complexity. We have illustrated with multiple examples the
relevance of the probabilistic setting, which can represent
uncertainty in a very precise way, and the interest in natural
strategies, that are both efficient and much closer to what a
real-world agent is expected to manipulate.

In terms of model checking, the INP-completeness of
NatPATL with deterministic strategies is promising, and
shows we can capture POMDPs with bounded memory
without any significant loss. While the 2NEXPTIME
complexity for NatPATL* with deterministic strategies
is high, we have shown a close lower bound, namely
2EXPTIME-hardness. With probabilistic strategies, the
EXPSPACE membership of NatPATL is quite similar to
the result of (Baier et al. 2012), and the 3BEXPSPACE
membership of NatPATL* is also similar to (Aminof et al.
2019). Since this exponential space blowup comes from the
use of real arithmetic to encode probabilities, any improve-
ment would likely come from the introduction of a totally
new technique. Similarly, the doubly-exponential blowup
between PATL and PATL* comes from the 2EXPTIME-
completeness of LTL model checking on MDPs. We also
keep the 2EXPTIME-hardness from the deterministic
case. To our knowledge, similar works (Baier et al. 2012;
Aminof et al. 2019), do also not give different lower bounds
between deterministic and probabilistic strategies. A possi-
ble approach would be to use a construction from POMDPs,
more precisely either (Junges et al. 2018), showing that syn-
thesis on POMDPs with reachability objectives and bounded
memory is NP-complete for deterministic strategies and
ETR-complete for probabilistic finite-memory strategies
or (Oliehoek 2012), showing that finding a policy maximiz-
ing a reward on a decentralized POMDPs with full mem-
ory is NEXPTIME-complete). Our results on expressiv-
ity mean that there are properties of stochastic MAS with
natural strategies that cannot be equivalently translated to
properties based on combinatorial strategies, and vice versa.

The proof of Theorem 5 shows that we could extend nat-
ural strategies to PSL, but it would be difficult to get a bet-
ter result than our SEXPSPACE complexity. Consider-
ing qualitative PATL* or PSL (i.e. only thresholds > 0 and
1) may yield a better complexity. For the quantitative
setting, i.e., thresholds such as > %, techniques from the
field of probabilistic model checking can be applied, e.g.,
graph analysis, bisimilation minimization, symbolic tech-
niques, and partial-order reduction (Katoen 2016). Another
direction would be to consider epistemic operators. Indeed,
many applications involving agents with a reasonable way
to strategize also have to take into account the knowledge
and beliefs of these agents. As such, we would have to find a
good epistemic framework such that natural strategies keep
the desired balance between expressivity and complexity.
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