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Abstract

The ability of humans to understand the world in terms of
cause and effect relationships, as well as their ability to com-
press information into abstract concepts, are two hallmark
features of human intelligence. These two topics have been
studied in tandem under the theory of causal abstractions, but
itis an open problem how to best leverage abstraction theory
in real-world causal inference tasks, where the true model
is not known, and limited data is available in most practical
settings. In this paper, we focus on a family of causal abstrac-
tions constructed by clustering variables and their domains,
redefining abstractions to be amenable to individual causal
distributions. We show that such abstractions can be learned
in practice using Neural Causal Models, allowing us to utilize
the deep learning toolkit to solve causal tasks (identification,
estimation, sampling) at different levels of abstraction gran-
ularity. Finally, we show how representation learning can be
used to learn abstractions, which we apply in our experiments
to scale causal inferences to high dimensional settings such as
with image data.

1 Introduction

Humans understand the world around them through the use
of abstract notions. Biologists can study the function of the
liver without understanding the interactions between its sub-
atomic particles studied by physicists. Economists find it
more practical to consider macro-level behavior through con-
cepts like aggregate supply and demand rather than studying
the purchasing behavior of individuals. At home, we choose
to interpret the object in the television as a dog or a car as op-
posed to a collection of photons or pixels. Humans are highly
capable of learning through interacting with the environment
and understanding cause and effect between different con-
cepts. Understanding causality is considered a hallmark of
human intelligence and allows humans to plan a course of
action, determine blame and responsibility, and generalize
across environments. It follows that the ability to abstract
concepts and study them causally is a key ability expected
from modern intelligent systems.

Al systems are built on a foundation of generative models,
which are representations of the underlying processes from
which data is collected. Standard generative models simply
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model some joint density of a set of variables of interest,
while causal generative models further model distributions
involving causal interventions and counterfactual relations.
In this paper, we study the problem of learning a causal
generative model from data. One major challenge is that data
is often provided in complex low level forms (e.g., pixels),
while it would be more useful in applications to focus on
higher level concepts (e.g., dog or car). We would therefore
like to learn a more abstract causal generative model at a
higher level of granularity, while guaranteeing that the queries
from the coarser model match the ground truth.

To formalize this problem, we build on the semantics of
a class of generative models called structural causal models
(SCMs) (Pearl 2000). An SCM M* describes a collection of
mechanisms and distribution over unobserved factors. Each
SCM induces three qualitatively different sets of distributions
related to the human concepts of “seeing” (called observa-
tional), “doing” (interventional), and “imagining” (counter-
factual), collectively known as the Ladder of Causation or the
Pearl Causal Hierarchy (PCH) (Pearl and Mackenzie 2018;
Bareinboim et al. 2022). The PCH is a containment hierar-
chy in which each of these distribution sets can be put into
increasingly refined layers, where observational distributions
go in layer 1 (L), interventional in layer 2 (L3), and counter-
factual in layer 3 (L3). In typical tasks of causal inference, the
goal is to obtain a quantity from a higher layer when given
data only from lower layers (e.g. inferring interventional
quantities from observational data). Still, it is understood
that this is generally impossible without additional assump-
tions since higher layers are underdetermined by lower layers
(Bareinboim et al. 2022; Ibeling and Icard 2020).

Generative models can often be implemented in practice as
neural networks. Deep learning models have achieved promis-
ing success in a variety of applications such as computer vi-
sion (Krizhevsky, Sutskever, and Hinton 2012), speech recog-
nition (Graves and Jaitly 2014), and game playing (Mnih et al.
2013). Many of these successes are attributed to representa-
tion learning (Bengio, Courville, and Vincent 2013), in which
the learned representation can be thought of as an abstraction
of the data. Further, there has also been growing interest in the
idea of incorporating causality into deep models'. Our work

"Many successful approaches have been developed to estimate
causal effects from observational data under backdoor or ignorability
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leverages one such model, the Neural Causal Model (NCM),
which incorporates the same causal assumptions encoded in
a causal diagram to identify and estimate interventional and
counterfactual distributions (Xia et al. 2021; Xia, Pan, and
Bareinboim 2023). Despite the soundness of this approach in
theory, current NCM-based methods face challenges when
applied to complex real-world settings for various reasons:
(1) optimization is difficult when scaled to high dimensions,
(2) unprocessed data can come in complicated forms (e.g.
images, text, etc.), and (3) the causal diagram is difficult to
fully specify in some high-dimensional settings. In this work,
we address these challenges by studying how representation
learning and causal reasoning are related to each other and by
building on this understanding to develop a neural framework
for causal abstraction learning.

Existing works that study causal abstractions set a solid
foundation by defining various mathematical notions of ab-
stractions (Rubenstein et al. 2017; Beckers and Halpern 2019;
Beckers, Eberhardt, and Halpern 2019). Such definitions are
declarative; that is, if the lower and higher level models are
given, one can use the definition to decide whether the higher
level model is indeed an abstraction of the lower level one.
However, neither models are available in practice, and one
would want to use limited lower level data to learn a higher
level causal abstraction. We will expand on the current gen-
eration of causal abstractions in two ways. First, given that
the true SCM is almost never available in practice, nor en-
tirely learnable from data, we introduce a relaxed notion of
abstractions that applies on the layers of the PCH. Second,
we develop algorithms to systematically obtain abstractions
in practice given some structural information about the data,
which can then be used for downstream inferential tasks such
as causal identification, estimation, and sampling.

Fig. 1 summarizes the general problem tackled by this
paper. The ground truth model M, (left) is defined over
low level variables V, (e.g., pixels), while it may be prac-
tical to work in their high level abstract counterparts V i
(e.g., dog or car). M, induces distributions from the three
layers of the PCH (i.e. £}, L5, £3), defined over V. In
this work, we introduce a new type of abstraction func-
tion 7 that maps distributions over V, to ones over Vg
(.e. 7(LY),7(L5), 7(LE)). Furthermore, M, is unobserved,
and only limited data is given (e.g., observational data from
L7). The goal is to learn a high-level SCM M (right) over
the high-level variables V  that encodes the given causal
constraints (Gc in the figure) and matches My, on the avail-

able data across 7 (e.g. El = 7(L})). Then, we investigate

when and how the resulting model My can be used as a
surrogate, allowing one to make interventional and counter-
factual inferences about the higher layers of M, through the

higher layers of M, H.
More specifically, our contributions are as follows: In

conditions (Shalit, Johansson, and Sontag 2017; Louizos et al. 2017;
Li and Fu 2017; Johansson, Shalit, and Sontag 2016; Yao et al. 2018;
Yoon, Jordon, and van der Schaar 2018; Kallus 2020; Shi, Blei, and
Veitch 2019; Du et al. 2020; Guo et al. 2020), and also to answer
causal queries through neural-parameterized SCMs (Kocaoglu et al.
2018; Goudet et al. 2018).
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Figure 1: Overview of this paper. High-level SCM M, 7 (right)
is trained on available data to serve as an abstract proxy of
the true, unobserved, low-level SCM M, (left).

Sec. 2, we define a new class of abstractions based on clusters
of variables (intervariable) and their domains (intravariable).
Building on this new class, we define a notion of abstraction
consistency on the layers of the PCH. We then show how
to systematically construct an abstraction consistent with all
three layers of the PCH and then relate these abstractions to
existing definitions. In Sec. 3, we show how to leverage NCM
machinery to perform interventional (layer 2) and counter-
factual (layer 3) inferences across these abstractions when
the true SCM is unavailable. In Sec. 4, we introduce a vari-
ant of the NCM that learns representations of each variable
and encodes causal assumptions on the representation level,
allowing us to learn abstractions even in settings where the
assumption of the availability of clusters is relaxed. Experi-
ments in Sec. 5 corroborate with the theory. All appendices,
including the proofs, experimental details, further discussion,
and examples, can be found in the full technical report (Xia
and Bareinboim 2023).

1.1 Preliminaries

We now introduce the notation and definitions used through-
out the paper. We use uppercase letters (X) to denote ran-
dom variables and lowercase letters (x) to denote correspond-
ing values. Similarly, bold uppercase (X) and lowercase (x)
letters denote sets of random variables and values respec-
tively. We use Dx to denote the domain of X and Dx =
Dx, x---x Dy, forthe domain of X = {X3,..., X\ }. We
denote P(X = x) (often shortened to P(x)) as the probabil-
ity of X taking the values x under the distribution P(X).
We utilize the basic semantic framework of structural
causal models (SCMs), as defined in (Pearl 2000, Ch. 7).
An SCM M consists of endogenous variables V, exoge-
nous variables U with distribution P(U), and mechanisms
F. F contains functions fy, (for all V; € V) that map en-
dogenous parents Pay, and exogenous parents Uy, to V;.
Each M induces a causal diagram G, where every V; € V
is a vertex, there is a directed arrow (V; — V;) for every
Vi € V and V; € Pay;, and there is a dashed-bidirected ar-
row (V; «----+ V;) for every pair V;, V; € V such that Uy,
and Uy, are not independent (Markovianity is not assumed).
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Our treatment is constrained to recursive SCMs, which im-
plies acyclic causal diagrams, with finite discrete domains
over endogenous variables V.

Counterfactual quantities can be computed from SCM M
as follows:

Definition 1 (Layer 3 Valuation). An SCM M induces layer
L3(M), a set of distributions over V, each with the form
P(Y*) = P(Yl[xl] R Y2[xQ]7”_) such that

PM (Y1) Yo - ) =
/ 1[Y 1) (W) = 1, Yoy (W) = ya.... | dP(u) (1)
Du

where Y, (u) is evaluated under F, :={fv,: V; € V'\
X tU{fx < x:X € X;}. Ly is the subset of L3 forwhlch
all x; are equal, and £; is the subset for which all X; = (). B

Each Y; corresponds to a set of variables in a world where
the original mechanisms fx are replaced with constants x;
for each X € X; this is also known as the mutilation pro-
cedure. This procedure corresponds to interventions, and we
use subscripts to denote the intervening variables (e.g. Yx)
or subscripts with brackets when the variables are indexed
(e.g. Yq[x,]). For instance, P(y.,¥,,) is the probability of
the joint counterfactual event ¥ = y had X been z and
Y =4’ had X been 2.

We use the notation £;(M) to denote the set of £; dis-
tributions from M. We use Z to denote a set of quanti-
ties from Layer 2 (i.e. Z = {P(V,,)}._,), and Z(M)
denotes those same quantities induced by SCM M (i.e.
Z(M) = (PM(V,,)}i)).

This work utilizes Neural Causal Models (NCMs) for prac-
tical implementations, as follows:

Definition 2 (G-Constrained Neural Causal Model (G-NCM)
(Xia et al. 2021, Def. 7)). Given a causal diagram G, a
G-constrained Neural Causal Model (G-NCM) M () over
V_with parameters 6 = = {0y, : V; € V}is an SCM
(U,V,F, P(U)> such that (1) U = {Uc : C € C(G)},
where (C(g) is the set of all maximal cliques over bidi-
rected edges of G; (2) F = { fv Vi € V}, where each
fV is a feedforward neural net parameterlzed by 9\/ €0
mapplng Uy, U Pay, to V; for Uy, = {Uc : Uc €
Us.t. V; € C}and Pay, = Pag(V;); (3) P(U) is defined
s.t. U ~ Unif(0, 1) for each U € U. [

In words, a G-NCM is an SCM in which the exogenous

variables U are fixed, and the mechanisms ]? are trainable
neural nets, whose inputs are determined by the graph G.

2 Abstractions of the Pearl Causal Hierarchy

The discussion of abstractions begins with defining causal
variables. In many established causal inference tasks, it is
typically assumed that there is a well-specified and known set
of endogenous variables of interest V, and nature is modeled
by a collection of mechanisms that assign values to each of
these variables. However, in practice, the definition of V may
not always be clear. In particular, the variables of interest may
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not align with the features of the data. For example, in an eco-
nomic system, perhaps data on each individual consumer is
collected, but the variable of interest is an aggregate measure
like gross domestic product (GDP). In image data, perhaps
the pixel values are collected, but the variables of interest are
related to the objects of the image, not the individual pixels.

Acknowledging that the data is not always provided in the
best choice of granularity, the causal abstraction literature
typically defines two sets of variables, V1, and V g, which
describe the lower level and higher level settings, respectively.
They are typically modeled by corresponding causal models
My, and Mg, respectively.

In this section, we study on the distinction between low
level variables V1, (e.g. pixels) and their higher level coun-
terparts Vg (e.g. image) from the perspective of individual
distributions of the PCH. We consider nature’s underlying
SCM M, defined over V1, and the goal is to reason about
the higher level variables V7 given data on V2. See the
full technical report (Xia and Bareinboim 2023) for detailed
examples of every definition.

2.1 Constructive Abstraction Functions

The connection between Vg and V[ can be described
through a mapping between their domains, 7 : Dy, — Dv,.
Here, we consider a family of abstraction functions where 7
is based on clusters of the variables and values of V .:

Definition 3 (Inter/Intravariable Clusterings). Let M be an
SCM over variables V.

1. A set C is said to be an intervariable clustering of V if
= {C1,Cs,...C,} is a partition of a subset of V.
C is further considered admissible w.r.t. M if for any
C; € Cand any V € C;, no descendent of V' outside
of C; is an ancestor of any variable in C;. That is, there
exists a topological ordering of the clusters of C relative

to the functions of M.

2. A set D is said to be an intravariable clustering of variables
V wrt. Cif D = {Dg, : C; € C}, where D¢, =
{D¢, D, -, D&} is a partition (of size m;) of the
domains of the variables in C;, D¢, (recall that D¢,

is the Cartesian product Dy, x Dy, X eee X Dy, for
C, ={W,Va,...,Vi},soelements ofDéi take the form
of tuples of the value settings of C;). |

In words, intervariable clusters partition the low level vari-
ables to describe each high level variable as a collection
of low level variables. Intravariable clusters then describe
the domains of these high level variables by partitioning the
corresponding value spaces of these intervariable clusters.

Example 1. Consider a study on the effects of certain food
dishes on body mass index (BMI), inspired by nutrition stud-
ies like Gamba et al. (2014). Data is collected on individuals
eating at restaurants, including the restaurant (R), dish or-
dered (D), the amount of carbohydrates (C), fat (F'), and
protein (P) in the dish, and the BMI of the customer (B).
Thatis, Vi = {R, D, C, F, P, B}. One food scientist argues

For concreteness, we assume that My is an SCM, but the
underlying generative model can be left implicit as explained in
Appendix D.1.
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that any nutritional impact of the food on BMI could be ab-
stracted based on how many calories are in each dish. One
may then be tempted to cluster the variables C, F', and P
together into one variable, named calories, labeled Z. This is
an example of intervariable clustering.

To denote this formally, we may choose C = {C; =
{B},Cy = {C, F,P},C3s = {D}} as the intervariable clus-
ters. In this case, B and D are placed in their own clusters, C
and Cg, respectively. C, F', and P are all clustered together
into C,. R is not included and is abstracted away, which may
be desirable if R is not relevant to the study. Collectively,
C1, Cy, and C3 form a partition of the subset of V ;, without
R. Each of the clusters of C will correspond to a high level
variable of V. In this case, for example, let Z denote the
high level variable corresponding to cluster Cs, interpreted
as calories. This is shown at the top of Fig. 2 (red).

The domain of C; contains every tuple of C, F', and P, but
the domain of Z can be simplified. After all, the computation
of calories can be specified as Z = 4C + 9F + 4P, which
means that two sets of values, (c1, f1,p1), (co, fo,p2) are
considered equivalent if 4¢; + 9 f1 +4p1 = 4co + 9 f2 + 4po.
This clustering of domain values is an example of intravari-
able clustering, shown at the bottom of Fig. 2 (blue). More
formally, the intervariable clusters would be denoted D =
{D¢,,De,, De, }, where each D, is a partition of Dg,. In
the case of Dc,, we may define D¢, = {Dg,,Dg, - -},

where each DJC is a collection of tuples (¢, f,p) € D¢, cor-
responding to some specific value 4c + 9 f + 4p. In Fig. 2 for
example, D¢, = {(c, f,p) : 4dc+9f +4p = 200, (¢, f,p) €
Dg, }. Each of the intravariable clusters correspond to a do-
main value of the high level variable. For example, D%}Z
corresponds to a value of Z = 200.

For the remainder of this paper, we consider settings where
the intervariable clusters are admissible. Collectively, given
an intervariable clustering C and intravariable clustering D
of V1, an abstraction function 7 can be defined as follows.

Definition 4 (Constructive Abstraction Function). A function
7 : Dy, — Dy is said to be a constructive abstraction
function w.r.t. inter/intravariable clusters C and I iff

1. There exists a bijective mapping between V g and C such
that each Vi ; € Vi corresponds to C; € C;
2. For each Vg,; € Vg, there exists a bijective mapping

between Dy, ; and D¢, such that each v;h € Dy,

corresponds to D € D, ; and

3. 7 is composed of subfunctlons Tc, for each C; € C
such that vy = 7(vy) = (7¢;(c;) : C; € C), where
70, (ci) = vH if and only if ¢; € D . We also apply
the same notation for any Wy, C 'V such that Wy, is
a union of clusters in C (i.e. 7(wr) = (7¢,(c;) : C; €
C,C; CTWp).

In words, through the subfunction 7¢,, each low level clus-
ter C, € C maps to a single high level variable Vi, € Vg,
and the value ¢; € D¢, maps to a corresponding hlgh level
value vy, ; € Dy, ,. Specifically, 7¢, (c;) maps to vy, ; if ¢;

is in the intravariable cluster DJ . Then, the overall function
T is simply composed of the subfunctlons Tc,. Intuitively, 7
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Figure 2: Example of a constructive abstraction function 7
w.r.t. corresponding inter/intravariable clusters. Top (inter-
variable): The low-level variables, dish (D) and BMI (B),
are in their own clusters while restaurant (R) is abstracted
away. Carbohydrates (C), fat (F'), and protein (P) are clus-
tered together and are mapped to a single variable, calories
(Z). Bottom (intravariable): The intravariable clustering for
Cy = {C, F, P} is shown. Calories Z can be computed from
C, F, P using the formula Z = 4C + 9F + 4P. This means
that the domain is partitioned such that two different values,
(c1, f1,p1), (ca, fo, p2) are in the same intravariable cluster
if 401 + 9f1 + 4p1 = 402 + 9f2 + 4]?2

is a constructive abstraction function if it maps Vi to Vg
by first grouping the variables by their corresponding inter-
variable cluster in C (red maps to yellow in Fig. 2 (top)),
followed by assigning each cluster a value based on which
intravariable cluster they belong in D (blue maps to green in
Fig. 2 (bottom)). As a result, Vg7 can be interpreted such that
Vg =Cand DVH,z = ]D)Ci for each VH,i eVy.

Note that the relationship between V1, and V i modeled
by 7 is not causal. Rather, the contents of V', constitute V .
Intuitively, two variables of V1, are mapped to the same inter-
variable cluster if they constitute the same high level variable
(e.g. two pixels of the same dog), and two values are mapped
to the same intravariable cluster if, from a higher level per-
spective, they are functionally identical (e.g. same image of
the dog but rotated or cropped). In this sense, intravariable
clustering can be thought of as invariances in the data.

This paper will focus on abstractions based on construc-
tive abstraction functions 7 created from intervariable and
intravariable clusters. This is in contrast with the previous
works on causal abstractions discussed in App. B, which
leave the functional form of 7 implicit. One benefit of mak-
ing 7 concrete is that it allows for a rigorous definition of
equivalence between the distributions of a low level model
and that of a high level model, as will be elaborated next.

2.2 Layer-Specific Abstractions

Ultimately, we would like to study causal properties of V,
through their higher level counterparts V g. A sensible goal
is, therefore, to learn an SCM M g over V g, which can then
be queried for causal inference tasks. Still, even if V z and

3The distinction between causal and constitutional relationships
is important and is explained in detail in Appendix D.1.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

V1, are connected through some function 7, this alone does
not imply that M g is an abstraction of M. This is the case
since the distributions over V g induced by My may not
have any clear connection with the distributions over V..

When two SCMs are defined over the same space of vari-
ables, one can verify that they are similar if they induce
the same distributions. For example, an SCM M’ is Lo-
consistent with M if Lo(M') = Lo(M), that is, M and
M’ match in every interventional distribution (Bareinboim
et al. 2022; Xia et al. 2021). However, when two SCMs are
defined over different variable spaces, comparing their distri-
butions is no longer well-defined. Hence, a different notion
of consistency is needed to compare an SCM over V1, with
another over V y through 7.

We first note that not all low-level quantities have cor-
responding high-level counterparts due to the clusters. To
define the low level counterfactual quantities that have high
level counterparts through 7, first denote Y, , as a set of
counterfactual variables over V. That is,

Yio= (Yoo Yooxoal ) s @)
where each Y ;i ,] corresponds to the potential outcomes
of the variables Y, ; under the intervention Xy, ; = xr, ;.
Each Y ; and X ; must be unions of clusters from C
(e Yr; = Ugee C for some C' C C) such that
7(Yr,) and 7(X;) are well-defined (i.e. 7(YL,;) =
(Acee 7c(C))). For the high-level counterpart, denote

YH,* = T(YL,*) (3)

=(T(Yoiprea ) T(Yeopreea))---) - @
For any value y i « € Dy, ,, denote

Dy,.(yus) ={yrs € Dy,. :7(yrs) =Yus}, )
that is, the set of all values y, . such that 7(yr ) = ¥«

We can now define a notion of consistency relating low
level counterfactual quantities to high level counterparts.

Definition 5 (Q-7 Consistency). Let My and My be
SCMs defined over variables Vi, and V g, respectively. Let
7 : Dy, — Dy, be a constructive abstraction function
w.r.t. clusters C and . Let

Q=

yL.«€Dy  (yH,»)

P(YL:«=YLx) (6)

be a low-level Layer 3 quantity of interest (for some y s« €
Dy, ), as expressed in Eq. 2, and let

T(Q)=P(Yu«=yns) (M
be its high level counterpart, as expressed in Eq. 4. We say
that M g is Q-7 consistent with M, if

2. PME(Y L. =yL.)
YL,*EDYL,*(YH,*) (®)
= PMH(YH,* = YH,*)v

that is, the value of ) induced by M is equal to the value
of 7(Q) induced by M z*. Furthermore, if My is Q-7 con-
sistent with M, for all Q € £;(M,) of the form of Eq. 6,
then M g is said to be £;-7 consistent with M. [ |

“Note that the equality in Eq. 8 is consistent with the push-
forward measure through 7.
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Def. 5 defines the formal connection between quantities
of My and M. Intuitively, Mg can only be viewed as
an abstraction of M, for the quantities in which they are
T-consistent. Note that the definition naturally applies to the
Ly case (i.e. all x, ; are identical) and the £; case (i.e. all
Xri= (). It turns out that when M 7 is Q-7 consistent with
M, on all three layers of the PCH (i.e. L3-7 consistent), then
M g can be considered an abstraction of My, on the SCM-
level, which coincides with the definition of constructive
T-abstractions from Beckers and Halpern (2019, Def. 3.19),
shown below.

Proposition 1 (Abstraction Connection). Let 7 : Dy, —
D~y be a constructive abstraction function (Def. 4). My is
Ls-T consistent (Def. 5) with M, if and only if there exists
SCMs M, and My s.t. L3(M}) = L3(ML), L3(My) =
L3(Muy), and M’y is a constructive T-abstraction of M.

]

All proofs are provided in Appendix A. This proposition
provides the connection between the abstractions defined in
this work and established definitions from previous works>.

2.3 Algorithmic Abstraction Construction

With the abstraction function 7 defined, the notion of Q-7
consistency allows for comparisons of distributions between
the low level model M, and the abstraction M g . Still, it
would be desirable to be able to systematically construct M g
given M, and 7 such that M g is Q-7 consistent with M,
for as many queries () as possible. Moving in this direction,
we first note that as a subtlety, for some cases of M, there
are certain choices of C and D (and corresponding 7) for
which Q-7 consistency (for some queries ) is impossible
to achieve in any choice of M g. This phenomenon can be
described formally by the following condition.

Definition 6 (Abstract Invariance Condition (AIC)). Let
My = <UL1VL7]:L3 P(UL)> be an SCM. Let 7 : DVL —
Dy, be a constructive abstraction function relative to C and
D. The SCM M, is said to satisfy the abstract invariance
condition (AIC) with respect to 7 if, for all vi,vs € Dy,
such that 7(v1) = 7(v2), allu € Dy,, and all C; € C, the
following holds:

TC, ((fé(pag),uv) Ve Cz))

=T1¢, ((f‘g(pag),uv) Ve CZ>) ,

where pa§/1 ) and pa§/2 ) are the values corresponding to v

and v,. Then, pa, is used to denote any arbitrary value

©))

st.7(pay) = r(pal’)) = 7(pal?). n

In words, the AIC enforces that if two low level values
v1,Vy € Dy, map to the same high level value (i.e. 7(v1) =
7(v2)), then for each cluster C; € C, the functions of those

>Note that one subtlety of this result is that it is not Mg that
is directly a constructive T-abstraction of M r,, but rather their L£3-
equivalent counterparts, M’ and M. Indeed, the definition of
constructive T-abstractions is stronger than £3-7 consistency (see
proof for more details), but in tasks where we are only concerned
with the layers of the PCH, this distinction is inconsequential.
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clusters should map to the same value regardless of Uy,
(i.e. the outputs of f&(pa%}) ,uy ) for each V € C; should

map to the same result as the outputs of f (pa§/2 )7 uy ) when

passed through 7¢,). Intuitively, this implies that two values
in the same intravariable cluster have the same functional
effect in the higher level setting.

It turns out that the AIC describes precisely when an ap-
propriate My exists as an abstraction of the low level model
M, as shown by the following result.

Proposition 2 (Abstraction Conditions). For any SCM M,
and constructive abstraction function T relative to C and D,
there exists an SCM M g over variables Vg = 7(V 1) such
that My is L3-T consistent with M, if and only if there
exists M such that L3(M ) = L3(M?) and M}, satisfies
the abstract invariance condition with respect to T. |

This critical property guarantees the existence of a high-
level SCM M g such that L3-7 consistency holds, so we will
assume that the AIC holds for the rest of this work. Still, see
App. D.2 for further discussion on its implications and for
relaxations in cases where L£3-7 consistency is not required.

With the notion of abstractions well-defined, we study how
Mz can be obtained from M .. Interestingly, when given the
admissible clusterings C and D, the procedure for recovering
7 and converting M, to M g can be done as shown in Alg. 1.
Intuitively, one can obtain an abstraction M g of M, by first
constructing the abstraction function 7 using the clusterings
C and D (lines 2-3), followed by designing the functions of
My to wrap the original functions of M, with 7 (lines 4-6).
This can be verified using the following result.

Proposition 3. Let 7 and My be the function and SCM
obtained from running Alg. 1 on inputs My, C, and D. Then,
My is L3-T consistent with M,. [ |

Alg. 1 can be used to systematically obtain an abstraction
My of the low-level model M, so long as M, is provided
alongside the clusters C and ID. Since M, is almost never
available in practice, the following sections show how this
requirement can be relaxed.

3 Inferences Across Abstractions

As demonstrated by Alg. 1, converting a low level model
My, to a high level model My is somewhat immediate
when given full observability of the underlying SCM M.
However, in real applications, it is rarely the case that the full
specification of M, is known. Typically, one will only be
given partial information of M, in the form of data, such
as samples of the observational distribution P(V ). The
question we investigate in this section is: is it still possible to
“learn” some M g given the observed data?

We first note the impossibility result described by the
Causal Hierarchy Theorem (CHT) (Bareinboim et al. 2022,
Thm. 1), which states that a model trained to match another
SCM on lower layers of the causal hierarchy (e.g. £;) will
likely not match on higher layers (e.g. L5 or L£3). Naturally,
the same is true when it comes to inferring causal quantities
across abstractions. One may be tempted to believe that M g
can be learned given £, data from M ;, by instantiating some

expressive parametric model My on Vg, and then training
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Algorithm 1: Constructing M g from M.
Input : SCM ML = <UL7 VL, .FL, P(UL)>,
admissible inter/intravariable clusters C and
D satisfying abstract invariance condition
Output: SCM My and 7 : Dy, — Dy, s.t. My
is L£3-7 consistent with M,
1 Ug «+ UL,P(UH) — P(UL)
2 Vg (C,DVH +~ D
3 7 < AbsFunc(C,D)
4 for C; € Cdo
5 L fHer (fxe(ﬁév»uv) Ve Ci)

6 Fu <+ {ff:C,eC}
7 return 7, My = (Uy, Vg, Fu, P(Ug))

// from Def. 4

My on P(Vg) = P(r(VL)) such that My is £1-7 consis-
tent with M . Unfortunately, such a model My will fail to

generalize because even under perfect training, M is not
guaranteed to be Lo-7 (or L3-7) consistent with M. This

means that any causal quantities induced by My will likely
bear no relationship with causal quantities induced by M.
We show this in the next result.

Proposition 4 (Abstract Causal Hierarchy Theorem (Infor-
mal)). Given constructive abstraction function T : Dy, —
Dv,, even if My is L;-1 consistent with My, My will
almost never be L ;-1 consistent with M, for j > 1i. |

In words, matching across abstractions on lower layers
does not guarantee the same will hold for higher layers. The
consequence of this result is that causal assumptions will be
necessary to make progress. Given this necessity, one type of
assumption prevalent throughout causal inference literature is
the availability of a causal diagram (Pearl 1995), a graphical
structure that qualitatively describes the functional relation-
ships between variables. This assumption is a weaker require-
ment than assuming the availability of the entire SCM, since
it does not require full detail of the generating mechanisms
and exogenous distributions. Still, it has been shown that
having the causal diagram allows certain inferences across
layers, determined through the causal identification problem
(Pearl 2000; Bareinboim and Pearl 2016).

In the context of abstractions however, specifying the
causal diagram for the true model My, requires describing
the relationships between every low-level variable in V.
This is still unrealistic in many practical settings since there
are typically too many low-level variables (e.g. 128 x 128
pixels in an image) to expect a description of the relation-
ship between every pair, and many of these relationships
may not even be well-defined in a causal manner. Instead,
it may be more reasonable to specify a causal diagram over
Vi (or intervariable clusters C). When |V | < [V |, the
amount of information required is reduced, and the causal
relationships between variables may be more clear given that
the higher-level variables tend to be more explainable. The
causal diagram over Vg can be viewed as a graphical ab-
straction of the causal diagram over V.. The relationship can
be formalized through the concept of cluster causal diagrams
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(C-DAGs), introduced in Anand et al. (2023).

Definition 7 (Cluster Causal Diagram (C-DAG) (Anand et al.
2023, Def. 1)). Given a causal diagram G = (V, E) and an
admissible clustering C = {Cy, ..., Cy} of V, construct a
graph G¢c = (C, E¢) over C with a set of edges E¢ defined
as follows:

1. A directed edge C; — C; is in E if there exists some
Vi € C;and V; € C; such that V; — Vj is an edge in E.
2. A dashed bidirected edge C; <+ C; is in Ec if there
exists some V; € C; and V; € C; such that V; <+ Vj is
an edge in E. |

In words, the nodes of the C-DAG G¢ simply correspond
to the clusters of C, and edges connect clusters C; and C;
if they connect some V; € C; and V; € C; in the original
causal diagram G. Interestingly, the C-DAG definition aligns
with the concept of intervariable clusters, providing a way for
encoding constraints in the smaller space of V g. Following
the nutrition study in Ex. 1, Fig. 3 shows the corresponding
causal diagram G (left) and the simpler C-DAG G (right).
With the constraints of G¢, we now introduce a notion of iden-
tification across abstractions to determine precisely which
queries can be inferred.

Definition 8 (Abstract Identification). Let 7 : Dy ,, — Dv,
be a constructive abstraction function. Consider C-DAG G¢,
and let Z = {P(Vp[,,])}—, be a collection of available
interventional (or observational if Z;, = ()) distributions over
V. Let Qp and Qg be the space of SCMs defined over
V1, and Vg, respectively, and let Q,(G¢) and Qg (Ge) be
their corresponding subsets that induce C-DAG G¢. We say
that query @ is 7-ID from G¢ and Z iff for every M, €
Qr(Ge), My € Qy(Ge) such that My is Z-7 consistent
with M, My is also Q-7 consistent with M. [ |

This definition establishes a notion of identification be-
tween two different spaces of SCMs, ), and Q, that are
connected through 7. In words, T-identifiability implies that
in every pair of SCMs M, over Vi, and My over Vg,
“matching” in graph G¢ and data Z implies a match in query
Q. Since M, and M g are defined over different spaces of
variables, the term “match” has some nuance. Specifically,
“matching” in G¢ implies that G¢ is a C-DAG for M, and is
a causal diagram for M g. “Matching” in Z (resp. Q) implies
that M g is Z-7 consistent (resp. Q-7 consistent) with M.
On the other hand, 7-nonidentifiability implies that there ex-
ist a pair of models M, over Vi and My over Vg such
that M, and M g match in both G¢ and Z yet still do not
match in @. This means that despite the constraints added
through the C-DAG G, there are still queries that cannot be
inferred across 7 due to nonidentifiability. This is more acute
when there is a large amount of unobserved confounding.

The definition of 7-ID provides rigorous semantics to an-
swer whether a query can be inferred across abstractions.
The next step is to establish an approach to determine 7-ID
when given the available data and graph. For this purpose,
one fundamental result is that the notion of 7-ID is actually
equivalent to classical identification in the higher level space.

Theorem 1 (Dual Abstract ID). Q is 7-ID from G¢ and 7, if
and only if 7(Q) is ID from G¢ and 7(Z). [
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Figure 3: The causal diagram G over variables V1, for the
nutrition study in Ex. 1 is on the left. Clusters C = {Dy =
{D},Z ={C,F,P}, By = {B}} are outlined in blue. The
corresponding C-DAG G is on the right.

Algorithm 2: NeuralAbstractID — Identifying and
estimating queries across abstractions using NCMs.

Input : query Q, Lo datasets Z(M ), C-DAG G,
and admissible inter/intravariable clusters C
and D satisfying AIC

Output: Q(M) if identifiable, FATIL otherwise.

1 Vg« (C7 DVH «~— D
2 7 < AbsFunc(C,D)
3 M+ NCM (Vy, Ge)

4 6y, —argming 7(Q)(M(8)) sit.
7(Z)(M(8)) =7(Z(ML))
5 0%, ¢ argmaxg 7(Q )(M(G))

)
(

// from Def. 4
// from Def. 2

T(Z)(M(G)) T(Z(ML)
6 ifT(Q)(M( IIlll’l)) ( )

7 | return FAIL
8 else

9 Lretum T(Q)(M(e:;’un))

M(6%,.)) then

// choose min or
max arbitrarily

This result is powerful since it implies that inferences can
be made about the low level space by using existing results
in the high level space. Notably, since our goal is to learn a
higher level SCM M g to make inferences about M, we
can build on the machinery of Neural Causal Models (NCMs)
(Xia et al. 2021). NCMs allow one to take the graph G¢ as
an inductive bias (a Gc-NCM as described in Def. 2), and
they can leverage gradient methods to fit any SCM within
the constrained space. Indeed, identification in NCMs can
be shown to be equivalent to classical identification when
considering models of the same granularity (Xia, Pan, and
Bareinboim 2023, Thm. 3). When combined with Thm. 1,
this implies the following result.

Corollary 1 (Abstract ID with NCMs). Q is 7-ID from G¢
and Z. iff 7(Q) is Neural-ID from ﬁ(g@) and 7(Z). Moreover,
if it is ID, then Q can be computed by computing 7(Q) by
definition from any Goc-NCM M that is 7(Z)-consistent. R

In words, determining 7-ID is equivalent to determining
neural identification (identification in the space of NCMs) on
the space of V . Further, to compute () in the identifiable
case, 7(Q) can be queried from any Gc-NCM M that is
7(Z)-consistent. Corol. 1 implies that we can perform causal
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identification and estimation across abstractions using the
NeuralID algorithm (Xia, Pan, and Bareinboim 2023, Alg. 1)
on the high level space. This procedure is shown in Alg. 2.
First, 7 is constructed as described in Def. 4 given the clusters.
Then, a Go-NCM is constructed over high-level variables
V7. Two parameterizations of the NCM are created. Both
are optimized to fit the transformed data 7(Z), but one is
optimized to maximize the transformed query 7(Q) while the
other is optimized to minimize it. If both parameterizations
return the same result, then it must be the true value of the
query; otherwise, the query is not identifiable.

To implement this algorithm in practice, we leverage the
GAN-NCM introduced in Xia, Pan, and Bareinboim (2023);
see details in App. C. Alg. 2 is sound and complete for solving
the abstract identification problem, as shown below.

Corollary 2 (Soundness and Completeness). Let M, be the
low-level SCM, C and D be inter/intravariable clusters of
V1, Gc be a C-DAG, Q be a query, and @ be the result from
running Alg. 2 with inputs Z(Mp) > 0, C, D, G¢, and Q.
Then, Q) is T- IDfrom Gec and 7Z zfand only zfQ is not FATL.
Moreover, if Q) is not FAIL, then Q = Q(My). [ |

While Alg. 2 solves the abstract ID problem, the conse-
quences of the results in this section are more general. No-
tably, if @) is indeed 7-ID (which can be verified through

Alg. 2), the algorithm produces a neural model M that serves
as a proxy SCM that is Q-7 consistent with the true model
M. Such a model could serve as a generative model of the
distribution (), which has many uses. The samples generated
from such a model could be used to estimate the query, or,
in more complex settings such as with image data, it may be
desirable to simply have novel generated samples consistent
with the causal invariances embedded in the system.

4 Representations in Learning Abstractions

In many applications, the choice of intervariable clusters C
is natural and can be made in tandem when deciding the
assumptions of the C-DAG G¢°. However, fully specifying
the intravariable clusters D is quite challenging when working
with high-dimensional data like image data. Doing so would
require an enumeration of every possible image along with
some label designating each one to a cluster. In this section,
we investigate the problem of learning abstractions when the
intravariable clusters D are left unspecified.

While coarser clusters tend to be better in practice due to
the dimensionality reduction, the theory in this paper can be
applied for any choice of D so long as the AIC (Def. 6) holds.
Hence, a possible constraint when learning I is to find a set
of clusters such that the AIC is not violated. To this effect,
the following result can be leveraged.

Proposition 5. M is guaranteed to satisfy the AIC w.rt. T
iff De, = Dg, forall C; € C. |

In other words, this means that Alg. 2 can be applied in
any case where 7¢, is a bijective mapping between D¢, and
Dy, ;- Also implied by this result is that, without additional

8Still, see App. D.1 for best practices on how to choose or learn
intervariable clusters.
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Figure 4: Example comparison between (b) the Go-NCM and
(¢) Gc-RNCM, with G¢ shown in (a). Functions of the NCM
directly output values of the lower level variables (grouped
by clusters in C), while functions of the RNCM output values
of their higher level counterparts, mapped by 7.

information, one cannot choose any coarser clustering with-
out potentially violating the AIC’. While this choice of I
does not reduce the size of the abstracted space, this means
that we are not restricted to the original space of V, and can
choose any V i with the same cardinality. In practice, this
means that we can choose the option for V ; that is the most
beneficial for our task. Leveraging this insight, we introduce
the representational NCM.

Definition 9 (Representational NCM (RNCM)). A represen-
tational NCM (RNCM) is a tuple (7, M ), where T(vp; 0;)
is a function parameterized by 6, mapping from V to
Vg, and M is an NCM defined over V . A G¢-constrained

RNCM (G¢-RNCM) is an RNCM (7, M ) such that 7 is com-
posed of subfunctions 7, for each C; € C (each with its

own parameters OTCi ), and ]\/4\ is a Go-NCM. |

In an RNCM, the abstraction function 7 is a trainable pa-

rameterized function, and the NCM M is trained over the
resulting space mapped by 7. Fig. 4 shows an example il-
lustrating the difference between the RNCM and a standard
NCM. Training can be done in a two step procedure, where
first 7 is trained to map to an optimal task-specific space, and

then M can be trained on 7(V ) (e.g. through Alg. 2). To
enforce bijectivity between D¢, and Dy, ,, as suggested by
Prop. 5, one can train 7 in an autoencoder-like setup (Kramer
1991; Kingma and Welling 2014) with a reconstruction loss.
7 can be thought of as a function mapping to a representation
space, making this approach amenable to the wide devel-
opments of the representation learning literature (Bengio,
Courville, and Vincent 2013). We empirically demonstrate
this approach below in the experiment of Sec. 5.2.

5 Experiments

In this section, we empirically evaluate the effects of utiliz-
ing abstractions in causal inference tasks. Details of data-
generating models and architectures can be found in Ap-
pendix C. Implementation code is publicly available at
https://github.com/Causal AILab/NeuralCausal Abstractions.

"In many cases, there may be additional information in the form
of invariances (e.g. rotational invariance in image data). In such
cases, this information can be leveraged to learn coarser clusters.
See Appendix D.3 for more details.
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Image Samples P(I|D=0)

Conditional GAN \ :-;

GAN-NCM

Ground Truth

P(Ip_o) P(Ip_o | D=5)

Figure 5: Colored MNIST results. Samples from various causal queries (top) are collected from competing approaches (left).

5.1 Nutritional Study

We perform the toy study on nutrition depicted in Ex. 1. Since
a BMI of 25 or over is considered overweight, the goal is to
identify and estimate the query Q = P(Bp—q4 > 25) (the
causal effect of diet on weight) using Alg. 2. R and D are 32-
dimensional one-hot vectors, and the others are real-valued,
so the query may be difficult to answer given such high-
dimensional variables. Instead, it may be more effective to
work in an abstract space with the proposed intervariable clus-
ters C = {Dy = {D},Z = {C,F, P}, By = {B}}. The
original graph G and corresponding C-DAG G are shown in
Fig. 3. We are also given intravariable clusters D such that all
values of Dy, Z, and By are clustered into binary categories.
Specifically, Dy = 1 denotes unhealthy dishes, Z = 1 de-
notes high calorie count, and By = 1 denotes an overweight
BMI (> 25). We compare the effectiveness identifying and
estimating ) with NCMs in both the original setting under
V1, and in the abstracted setting of V ;7 computed using the
constructive abstraction function 7 defined on C and . The
results are shown in Fig. 6. Since () is identifiable, the gap
between the max and min queries computed in Alg. 2 are
expected to be as small as possible. As shown in Fig. 6a,
the proposed approach converges quickly while others fail to
close the gap. Fig. 6b also shows that the proposed approach
can estimate () with significantly lower error.

5.2 Colored MNIST Digits

We evaluate the RNCM in a high-dimensional image dataset
of colorized MNIST (Deng 2012) digits. Each image (/) has
a corresponding digit (D) and color (C) label, and their rela-
tionships are shown in the C-DAG G in Fig. 7a. Color and
digit are highly correlated (e.g. Os are typically red, while 5s
are cyan), as shown in Fig. 7b. We evaluate three approaches
in the task of sampling images from causal queries. The
first approach is a naive conditional GAN that does not take
causality into account. The second is a standard GAN-NCM
as described in Xia, Pan, and Bareinboim (2023). The third
is our approach described in Sec. 4, a representational NCM
also implemented as a GAN, called GAN-RNCM.

Samples of the results are shown in Fig. 5. All models
are capable of producing digit images, as shown in the first
column. The second column illustrates P(I | D = 0), the
images conditioned on digit = 0. Many red Os are expected
since most Os are red in the dataset. The third column il-
lustrates the interventional query P(Ip—), the images with
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Figure 6: Results of the nutrition experiment. Our approach
(blue) is compared with a GAN-NCM trained on raw data
(red) and one trained on normalized data (yellow).
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Figure 7: Colored MNIST Experimental Setup

digits forced to be 0 through intervention. As interventions
ignore spurious correlations, Os of all colors are expected.
Finally, the fourth column illustrates the counterfactual query
P(Ip—o | D = 5), indicating what the digits would have
looked like had they been 0, given that they were originally
5. Since 5s tend to be cyan, the samples are expected to be Os
that retain the cyan color of the Ss. In all cases, GAN-RNCM
produces results close to the expected, while the other ap-
proaches have difficulty disentangling color from digit.

6 Conclusions

Through the notions of inter/intravariable clusters and Q-7
consistency, we introduced a new family of abstractions al-
lowing analysis on individual PCH distributions. We proved
that ID across abstractions is equivalent to classical ID
(Thm. 1) and provided a sound and complete algorithm to
perform such inferences (Alg. 2). We provided a relaxation
of intravariable clusters leveraging representation learning
through the RNCM (Def. 9). Finally, we demonstrated empir-
ically that abstractions are vital in high-dimensional settings.
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