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Abstract

The ability of humans to understand the world in terms of
cause and effect relationships, as well as their ability to com-
press information into abstract concepts, are two hallmark
features of human intelligence. These two topics have been
studied in tandem under the theory of causal abstractions, but
it is an open problem how to best leverage abstraction theory
in real-world causal inference tasks, where the true model
is not known, and limited data is available in most practical
settings. In this paper, we focus on a family of causal abstrac-
tions constructed by clustering variables and their domains,
redefining abstractions to be amenable to individual causal
distributions. We show that such abstractions can be learned
in practice using Neural Causal Models, allowing us to utilize
the deep learning toolkit to solve causal tasks (identification,
estimation, sampling) at different levels of abstraction gran-
ularity. Finally, we show how representation learning can be
used to learn abstractions, which we apply in our experiments
to scale causal inferences to high dimensional settings such as
with image data.

1 Introduction
Humans understand the world around them through the use
of abstract notions. Biologists can study the function of the
liver without understanding the interactions between its sub-
atomic particles studied by physicists. Economists find it
more practical to consider macro-level behavior through con-
cepts like aggregate supply and demand rather than studying
the purchasing behavior of individuals. At home, we choose
to interpret the object in the television as a dog or a car as op-
posed to a collection of photons or pixels. Humans are highly
capable of learning through interacting with the environment
and understanding cause and effect between different con-
cepts. Understanding causality is considered a hallmark of
human intelligence and allows humans to plan a course of
action, determine blame and responsibility, and generalize
across environments. It follows that the ability to abstract
concepts and study them causally is a key ability expected
from modern intelligent systems.

AI systems are built on a foundation of generative models,
which are representations of the underlying processes from
which data is collected. Standard generative models simply
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model some joint density of a set of variables of interest,
while causal generative models further model distributions
involving causal interventions and counterfactual relations.
In this paper, we study the problem of learning a causal
generative model from data. One major challenge is that data
is often provided in complex low level forms (e.g., pixels),
while it would be more useful in applications to focus on
higher level concepts (e.g., dog or car). We would therefore
like to learn a more abstract causal generative model at a
higher level of granularity, while guaranteeing that the queries
from the coarser model match the ground truth.

To formalize this problem, we build on the semantics of
a class of generative models called structural causal models
(SCMs) (Pearl 2000). An SCMM∗ describes a collection of
mechanisms and distribution over unobserved factors. Each
SCM induces three qualitatively different sets of distributions
related to the human concepts of “seeing” (called observa-
tional), “doing” (interventional), and “imagining” (counter-
factual), collectively known as the Ladder of Causation or the
Pearl Causal Hierarchy (PCH) (Pearl and Mackenzie 2018;
Bareinboim et al. 2022). The PCH is a containment hierar-
chy in which each of these distribution sets can be put into
increasingly refined layers, where observational distributions
go in layer 1 (L1), interventional in layer 2 (L2), and counter-
factual in layer 3 (L3). In typical tasks of causal inference, the
goal is to obtain a quantity from a higher layer when given
data only from lower layers (e.g. inferring interventional
quantities from observational data). Still, it is understood
that this is generally impossible without additional assump-
tions since higher layers are underdetermined by lower layers
(Bareinboim et al. 2022; Ibeling and Icard 2020).

Generative models can often be implemented in practice as
neural networks. Deep learning models have achieved promis-
ing success in a variety of applications such as computer vi-
sion (Krizhevsky, Sutskever, and Hinton 2012), speech recog-
nition (Graves and Jaitly 2014), and game playing (Mnih et al.
2013). Many of these successes are attributed to representa-
tion learning (Bengio, Courville, and Vincent 2013), in which
the learned representation can be thought of as an abstraction
of the data. Further, there has also been growing interest in the
idea of incorporating causality into deep models1. Our work

1Many successful approaches have been developed to estimate
causal effects from observational data under backdoor or ignorability
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leverages one such model, the Neural Causal Model (NCM),
which incorporates the same causal assumptions encoded in
a causal diagram to identify and estimate interventional and
counterfactual distributions (Xia et al. 2021; Xia, Pan, and
Bareinboim 2023). Despite the soundness of this approach in
theory, current NCM-based methods face challenges when
applied to complex real-world settings for various reasons:
(1) optimization is difficult when scaled to high dimensions,
(2) unprocessed data can come in complicated forms (e.g.
images, text, etc.), and (3) the causal diagram is difficult to
fully specify in some high-dimensional settings. In this work,
we address these challenges by studying how representation
learning and causal reasoning are related to each other and by
building on this understanding to develop a neural framework
for causal abstraction learning.

Existing works that study causal abstractions set a solid
foundation by defining various mathematical notions of ab-
stractions (Rubenstein et al. 2017; Beckers and Halpern 2019;
Beckers, Eberhardt, and Halpern 2019). Such definitions are
declarative; that is, if the lower and higher level models are
given, one can use the definition to decide whether the higher
level model is indeed an abstraction of the lower level one.
However, neither models are available in practice, and one
would want to use limited lower level data to learn a higher
level causal abstraction. We will expand on the current gen-
eration of causal abstractions in two ways. First, given that
the true SCM is almost never available in practice, nor en-
tirely learnable from data, we introduce a relaxed notion of
abstractions that applies on the layers of the PCH. Second,
we develop algorithms to systematically obtain abstractions
in practice given some structural information about the data,
which can then be used for downstream inferential tasks such
as causal identification, estimation, and sampling.

Fig. 1 summarizes the general problem tackled by this
paper. The ground truth model ML (left) is defined over
low level variables VL (e.g., pixels), while it may be prac-
tical to work in their high level abstract counterparts VH

(e.g., dog or car).ML induces distributions from the three
layers of the PCH (i.e. L∗

1, L∗
2, L∗

3), defined over VL. In
this work, we introduce a new type of abstraction func-
tion τ that maps distributions over VL to ones over VH

(i.e. τ(L∗
1), τ(L∗

2), τ(L∗
3)). Furthermore,ML is unobserved,

and only limited data is given (e.g., observational data from
L∗
1). The goal is to learn a high-level SCM M̂H (right) over

the high-level variables VH that encodes the given causal
constraints (GC in the figure) and matchesML on the avail-
able data across τ (e.g. L̂1 = τ(L∗

1)). Then, we investigate
when and how the resulting model M̂H can be used as a
surrogate, allowing one to make interventional and counter-
factual inferences about the higher layers ofML through the
higher layers of M̂H .

More specifically, our contributions are as follows: In

conditions (Shalit, Johansson, and Sontag 2017; Louizos et al. 2017;
Li and Fu 2017; Johansson, Shalit, and Sontag 2016; Yao et al. 2018;
Yoon, Jordon, and van der Schaar 2018; Kallus 2020; Shi, Blei, and
Veitch 2019; Du et al. 2020; Guo et al. 2020), and also to answer
causal queries through neural-parameterized SCMs (Kocaoglu et al.
2018; Goudet et al. 2018).

Figure 1: Overview of this paper. High-level SCM M̂H (right)
is trained on available data to serve as an abstract proxy of
the true, unobserved, low-level SCMML (left).

Sec. 2, we define a new class of abstractions based on clusters
of variables (intervariable) and their domains (intravariable).
Building on this new class, we define a notion of abstraction
consistency on the layers of the PCH. We then show how
to systematically construct an abstraction consistent with all
three layers of the PCH and then relate these abstractions to
existing definitions. In Sec. 3, we show how to leverage NCM
machinery to perform interventional (layer 2) and counter-
factual (layer 3) inferences across these abstractions when
the true SCM is unavailable. In Sec. 4, we introduce a vari-
ant of the NCM that learns representations of each variable
and encodes causal assumptions on the representation level,
allowing us to learn abstractions even in settings where the
assumption of the availability of clusters is relaxed. Experi-
ments in Sec. 5 corroborate with the theory. All appendices,
including the proofs, experimental details, further discussion,
and examples, can be found in the full technical report (Xia
and Bareinboim 2023).

1.1 Preliminaries
We now introduce the notation and definitions used through-
out the paper. We use uppercase letters (X) to denote ran-
dom variables and lowercase letters (x) to denote correspond-
ing values. Similarly, bold uppercase (X) and lowercase (x)
letters denote sets of random variables and values respec-
tively. We use DX to denote the domain of X and DX =
DX1
×· · ·×DXk

for the domain of X = {X1, . . . , Xk}. We
denote P (X = x) (often shortened to P (x)) as the probabil-
ity of X taking the values x under the distribution P (X).

We utilize the basic semantic framework of structural
causal models (SCMs), as defined in (Pearl 2000, Ch. 7).
An SCM M consists of endogenous variables V, exoge-
nous variables U with distribution P (U), and mechanisms
F . F contains functions fVi (for all Vi ∈ V) that map en-
dogenous parents PaVi

and exogenous parents UVi
to Vi.

EachM induces a causal diagram G, where every Vi ∈ V
is a vertex, there is a directed arrow (Vj → Vi) for every
Vi ∈ V and Vj ∈ PaVi

, and there is a dashed-bidirected ar-
row (Vj L9999K Vi) for every pair Vi, Vj ∈ V such that UVi

and UVj
are not independent (Markovianity is not assumed).
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Our treatment is constrained to recursive SCMs, which im-
plies acyclic causal diagrams, with finite discrete domains
over endogenous variables V.

Counterfactual quantities can be computed from SCMM
as follows:

Definition 1 (Layer 3 Valuation). An SCMM induces layer
L3(M), a set of distributions over V, each with the form
P (Y∗) = P (Y1[x1],Y2[x2],...) such that

PM(y1[x1],y2[x2], . . . ) =∫
DU

1
[
Y1[x1](u) = y1,Y2[x2](u) = y2, . . .

]
dP (u) (1)

where Yi[xi](u) is evaluated under Fxi
:= {fVj

:Vj ∈ V \
Xi}∪ {fX ← x :X ∈ Xi}. L2 is the subset of L3 for which
all xi are equal, and L1 is the subset for which all Xi = ∅. ■

Each Yi corresponds to a set of variables in a world where
the original mechanisms fX are replaced with constants xi

for each X ∈ Xi; this is also known as the mutilation pro-
cedure. This procedure corresponds to interventions, and we
use subscripts to denote the intervening variables (e.g. Yx)
or subscripts with brackets when the variables are indexed
(e.g. Y1[x1]). For instance, P (yx, y

′
x′) is the probability of

the joint counterfactual event Y = y had X been x and
Y = y′ had X been x′.

We use the notation Li(M) to denote the set of Li dis-
tributions from M. We use Z to denote a set of quanti-
ties from Layer 2 (i.e. Z = {P (Vzk

)}ℓk=1), and Z(M)
denotes those same quantities induced by SCM M (i.e.
Z(M) = {PM(Vzk

)}ℓk=1).
This work utilizes Neural Causal Models (NCMs) for prac-

tical implementations, as follows:

Definition 2 (G-Constrained Neural Causal Model (G-NCM)
(Xia et al. 2021, Def. 7)). Given a causal diagram G, a
G-constrained Neural Causal Model (G-NCM) M̂(θ) over
V with parameters θ = {θVi : Vi ∈ V} is an SCM
⟨Û,V, F̂ , P (Û)⟩ such that (1) Û = {ÛC : C ∈ C(G)},
where C(G) is the set of all maximal cliques over bidi-
rected edges of G; (2) F̂ = {f̂Vi

: Vi ∈ V}, where each
f̂Vi is a feedforward neural net parameterized by θVi ∈ θ

mapping UVi
∪ PaVi

to Vi for UVi
= {ÛC : ÛC ∈

Û s.t. Vi ∈ C} and PaVi
= PaG(Vi); (3) P (Û) is defined

s.t. Û ∼ Unif(0, 1) for each Û ∈ Û. ■

In words, a G-NCM is an SCM in which the exogenous
variables Û are fixed, and the mechanisms F̂ are trainable
neural nets, whose inputs are determined by the graph G.

2 Abstractions of the Pearl Causal Hierarchy
The discussion of abstractions begins with defining causal
variables. In many established causal inference tasks, it is
typically assumed that there is a well-specified and known set
of endogenous variables of interest V, and nature is modeled
by a collection of mechanisms that assign values to each of
these variables. However, in practice, the definition of V may
not always be clear. In particular, the variables of interest may

not align with the features of the data. For example, in an eco-
nomic system, perhaps data on each individual consumer is
collected, but the variable of interest is an aggregate measure
like gross domestic product (GDP). In image data, perhaps
the pixel values are collected, but the variables of interest are
related to the objects of the image, not the individual pixels.

Acknowledging that the data is not always provided in the
best choice of granularity, the causal abstraction literature
typically defines two sets of variables, VL and VH , which
describe the lower level and higher level settings, respectively.
They are typically modeled by corresponding causal models
ML andMH , respectively.

In this section, we study on the distinction between low
level variables VL (e.g. pixels) and their higher level coun-
terparts VH (e.g. image) from the perspective of individual
distributions of the PCH. We consider nature’s underlying
SCMML defined over VL, and the goal is to reason about
the higher level variables VH given data on VL

2. See the
full technical report (Xia and Bareinboim 2023) for detailed
examples of every definition.

2.1 Constructive Abstraction Functions
The connection between VH and VL can be described
through a mapping between their domains, τ : DVL

→ DVH
.

Here, we consider a family of abstraction functions where τ
is based on clusters of the variables and values of VL:
Definition 3 (Inter/Intravariable Clusterings). LetM be an
SCM over variables V.
1. A set C is said to be an intervariable clustering of V if

C = {C1,C2, . . .Cn} is a partition of a subset of V.
C is further considered admissible w.r.t. M if for any
Ci ∈ C and any V ∈ Ci, no descendent of V outside
of Ci is an ancestor of any variable in Ci. That is, there
exists a topological ordering of the clusters of C relative
to the functions ofM.

2. A set D is said to be an intravariable clustering of variables
V w.r.t. C if D = {DCi

: Ci ∈ C}, where DCi
=

{D1
Ci

,D2
Ci

, . . . ,Dmi

Ci
} is a partition (of size mi) of the

domains of the variables in Ci, DCi
(recall that DCi

is the Cartesian product DV1
× DV2

× · · · × DVk
for

Ci = {V1, V2, . . . , Vk}, so elements ofDj
Ci

take the form
of tuples of the value settings of Ci). ■

In words, intervariable clusters partition the low level vari-
ables to describe each high level variable as a collection
of low level variables. Intravariable clusters then describe
the domains of these high level variables by partitioning the
corresponding value spaces of these intervariable clusters.
Example 1. Consider a study on the effects of certain food
dishes on body mass index (BMI), inspired by nutrition stud-
ies like Gamba et al. (2014). Data is collected on individuals
eating at restaurants, including the restaurant (R), dish or-
dered (D), the amount of carbohydrates (C), fat (F ), and
protein (P ) in the dish, and the BMI of the customer (B).
That is, VL = {R,D,C, F, P,B}. One food scientist argues

2For concreteness, we assume that ML is an SCM, but the
underlying generative model can be left implicit as explained in
Appendix D.1.
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that any nutritional impact of the food on BMI could be ab-
stracted based on how many calories are in each dish. One
may then be tempted to cluster the variables C, F , and P
together into one variable, named calories, labeled Z. This is
an example of intervariable clustering.

To denote this formally, we may choose C = {C1 =
{B},C2 = {C,F, P},C3 = {D}} as the intervariable clus-
ters. In this case, B and D are placed in their own clusters, C1

and C3, respectively. C, F , and P are all clustered together
into C2. R is not included and is abstracted away, which may
be desirable if R is not relevant to the study. Collectively,
C1, C2, and C3 form a partition of the subset of VL without
R. Each of the clusters of C will correspond to a high level
variable of VH . In this case, for example, let Z denote the
high level variable corresponding to cluster C2, interpreted
as calories. This is shown at the top of Fig. 2 (red).

The domain of C2 contains every tuple of C, F , and P , but
the domain of Z can be simplified. After all, the computation
of calories can be specified as Z = 4C + 9F + 4P , which
means that two sets of values, (c1, f1, p1), (c2, f2, p2) are
considered equivalent if 4c1 +9f1 +4p1 = 4c2 +9f2 +4p2.
This clustering of domain values is an example of intravari-
able clustering, shown at the bottom of Fig. 2 (blue). More
formally, the intervariable clusters would be denoted D =
{DC1

,DC2
,DC3

}, where each DCi
is a partition of DCi

. In
the case of DC2

, we may define DC2
= {D1

C2
,D2

C2
, . . . },

where each Dj
C2

is a collection of tuples (c, f, p) ∈ DC2
cor-

responding to some specific value 4c+9f +4p. In Fig. 2 for
example,D1

C2
= {(c, f, p) : 4c+9f +4p = 200, (c, f, p) ∈

DC2
}. Each of the intravariable clusters correspond to a do-

main value of the high level variable. For example, D1
C2

corresponds to a value of Z = 200. ■

For the remainder of this paper, we consider settings where
the intervariable clusters are admissible. Collectively, given
an intervariable clustering C and intravariable clustering D
of VL, an abstraction function τ can be defined as follows.
Definition 4 (Constructive Abstraction Function). A function
τ : DVL

→ DVH
is said to be a constructive abstraction

function w.r.t. inter/intravariable clusters C and D iff
1. There exists a bijective mapping between VH and C such

that each VH,i ∈ VH corresponds to Ci ∈ C;
2. For each VH,i ∈ VH , there exists a bijective mapping

between DVH,i
and DCi

such that each vjH,i ∈ DVH,i

corresponds to Dj
Ci
∈ DCi ; and

3. τ is composed of subfunctions τCi for each Ci ∈ C
such that vH = τ(vL) = (τCi(ci) : Ci ∈ C), where
τCi(ci) = vjH,i if and only if ci ∈ Dj

Ci
. We also apply

the same notation for any WL ⊆ VL such that WL is
a union of clusters in C (i.e. τ(wL) = (τCi

(ci) : Ci ∈
C,Ci ⊆WL)). ■

In words, through the subfunction τCi
, each low level clus-

ter Ci ∈ C maps to a single high level variable VH,i ∈ VH ,
and the value ci ∈ DCi maps to a corresponding high level
value vjH,i ∈ DVH,i

. Specifically, τCi(ci) maps to vjH,i if ci
is in the intravariable cluster Dj

Ci
. Then, the overall function

τ is simply composed of the subfunctions τCi
. Intuitively, τ

Figure 2: Example of a constructive abstraction function τ
w.r.t. corresponding inter/intravariable clusters. Top (inter-
variable): The low-level variables, dish (D) and BMI (B),
are in their own clusters while restaurant (R) is abstracted
away. Carbohydrates (C), fat (F ), and protein (P ) are clus-
tered together and are mapped to a single variable, calories
(Z). Bottom (intravariable): The intravariable clustering for
C2 = {C,F, P} is shown. Calories Z can be computed from
C,F, P using the formula Z = 4C + 9F + 4P . This means
that the domain is partitioned such that two different values,
(c1, f1, p1), (c2, f2, p2) are in the same intravariable cluster
if 4c1 + 9f1 + 4p1 = 4c2 + 9f2 + 4p2.

is a constructive abstraction function if it maps VL to VH

by first grouping the variables by their corresponding inter-
variable cluster in C (red maps to yellow in Fig. 2 (top)),
followed by assigning each cluster a value based on which
intravariable cluster they belong in D (blue maps to green in
Fig. 2 (bottom)). As a result, VH can be interpreted such that
VH = C and DVH,i

= DCi
for each VH,i ∈ VH .

Note that the relationship between VL and VH modeled
by τ is not causal. Rather, the contents of VL constitute VH

3.
Intuitively, two variables of VL are mapped to the same inter-
variable cluster if they constitute the same high level variable
(e.g. two pixels of the same dog), and two values are mapped
to the same intravariable cluster if, from a higher level per-
spective, they are functionally identical (e.g. same image of
the dog but rotated or cropped). In this sense, intravariable
clustering can be thought of as invariances in the data.

This paper will focus on abstractions based on construc-
tive abstraction functions τ created from intervariable and
intravariable clusters. This is in contrast with the previous
works on causal abstractions discussed in App. B, which
leave the functional form of τ implicit. One benefit of mak-
ing τ concrete is that it allows for a rigorous definition of
equivalence between the distributions of a low level model
and that of a high level model, as will be elaborated next.

2.2 Layer-Specific Abstractions
Ultimately, we would like to study causal properties of VL

through their higher level counterparts VH . A sensible goal
is, therefore, to learn an SCMMH over VH , which can then
be queried for causal inference tasks. Still, even if VH and

3The distinction between causal and constitutional relationships
is important and is explained in detail in Appendix D.1.
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VL are connected through some function τ , this alone does
not imply thatMH is an abstraction ofML. This is the case
since the distributions over VH induced by MH may not
have any clear connection with the distributions over VL.

When two SCMs are defined over the same space of vari-
ables, one can verify that they are similar if they induce
the same distributions. For example, an SCM M′ is L2-
consistent with M if L2(M′) = L2(M), that is, M and
M′ match in every interventional distribution (Bareinboim
et al. 2022; Xia et al. 2021). However, when two SCMs are
defined over different variable spaces, comparing their distri-
butions is no longer well-defined. Hence, a different notion
of consistency is needed to compare an SCM over VL with
another over VH through τ .

We first note that not all low-level quantities have cor-
responding high-level counterparts due to the clusters. To
define the low level counterfactual quantities that have high
level counterparts through τ , first denote YL,∗ as a set of
counterfactual variables over VL. That is,

YL,∗ =
(
YL,1[xL,1],YL,2[xL,2], . . .

)
, (2)

where each YL,i[xL,i] corresponds to the potential outcomes
of the variables YL,i under the intervention XL,i = xL,i.
Each YL,i and XL,i must be unions of clusters from C
(i.e. YL,i =

⋃
C∈C′ C for some C′ ⊆ C) such that

τ(YL,i) and τ(XL,i) are well-defined (i.e. τ(YL,i) =(∧
C∈C′ τC(C)

)
). For the high-level counterpart, denote

YH,∗ = τ(YL,∗) (3)

=
(
τ(YL,1[τ(xL,1)]), τ(YL,2[τ(xL,2)]), . . .

)
. (4)

For any value yH,∗ ∈ DYH,∗ , denote
DYL,∗(yH,∗) = {yL,∗ ∈ DYL,∗ : τ(yL,∗) = yH,∗}, (5)

that is, the set of all values yL,∗ such that τ(yL,∗) = yH,∗.
We can now define a notion of consistency relating low

level counterfactual quantities to high level counterparts.
Definition 5 (Q-τ Consistency). Let ML and MH be
SCMs defined over variables VL and VH , respectively. Let
τ : DVL

→ DVH
be a constructive abstraction function

w.r.t. clusters C and D. Let
Q =

∑
yL,∗∈DYL,∗ (yH,∗)

P (YL,∗ = yL,∗) (6)

be a low-level Layer 3 quantity of interest (for some yH,∗ ∈
DYH,∗ ), as expressed in Eq. 2, and let

τ(Q) = P (YH,∗ = yH,∗) (7)
be its high level counterpart, as expressed in Eq. 4. We say
thatMH is Q-τ consistent withML if∑

yL,∗∈DYL,∗ (yH,∗)

PML(YL,∗ = yL,∗)

= PMH (YH,∗ = yH,∗),

(8)

that is, the value of Q induced byML is equal to the value
of τ(Q) induced byMH

4. Furthermore, ifMH is Q-τ con-
sistent withML for all Q ∈ Li(ML) of the form of Eq. 6,
thenMH is said to be Li-τ consistent withML. ■

4Note that the equality in Eq. 8 is consistent with the push-
forward measure through τ .

Def. 5 defines the formal connection between quantities
of ML and MH . Intuitively, MH can only be viewed as
an abstraction of ML for the quantities in which they are
τ -consistent. Note that the definition naturally applies to the
L2 case (i.e. all xL,i are identical) and the L1 case (i.e. all
XL,i = ∅). It turns out that whenMH is Q-τ consistent with
ML on all three layers of the PCH (i.e.L3-τ consistent), then
MH can be considered an abstraction ofML on the SCM-
level, which coincides with the definition of constructive
τ -abstractions from Beckers and Halpern (2019, Def. 3.19),
shown below.
Proposition 1 (Abstraction Connection). Let τ : DVL

→
DVH

be a constructive abstraction function (Def. 4).MH is
L3-τ consistent (Def. 5) withML if and only if there exists
SCMsM′

L andM′
H s.t. L3(M′

L) = L3(ML), L3(M′
H) =

L3(MH), andM′
H is a constructive τ -abstraction ofM′

L.
■

All proofs are provided in Appendix A. This proposition
provides the connection between the abstractions defined in
this work and established definitions from previous works5.

2.3 Algorithmic Abstraction Construction
With the abstraction function τ defined, the notion of Q-τ
consistency allows for comparisons of distributions between
the low level modelML and the abstractionMH . Still, it
would be desirable to be able to systematically constructMH

givenML and τ such thatMH is Q-τ consistent withML

for as many queries Q as possible. Moving in this direction,
we first note that as a subtlety, for some cases ofML, there
are certain choices of C and D (and corresponding τ ) for
which Q-τ consistency (for some queries Q) is impossible
to achieve in any choice ofMH . This phenomenon can be
described formally by the following condition.
Definition 6 (Abstract Invariance Condition (AIC)). Let
ML = ⟨UL,VL,FL, P (UL)⟩ be an SCM. Let τ : DVL

→
DVH

be a constructive abstraction function relative to C and
D. The SCMML is said to satisfy the abstract invariance
condition (AIC) with respect to τ if, for all v1,v2 ∈ DVL

such that τ(v1) = τ(v2), all u ∈ DUL
, and all Ci ∈ C, the

following holds:

τCi

((
fL
V (pa

(1)
V ,uV ) : V ∈ Ci

))
= τCi

((
fL
V (pa

(2)
V ,uV ) : V ∈ Ci

))
,

(9)

where pa
(1)
V and pa

(2)
V are the values corresponding to v1

and v2. Then, p̃aV is used to denote any arbitrary value
s.t. τ(p̃aV ) = τ(pa

(1)
V ) = τ(pa

(2)
V ). ■

In words, the AIC enforces that if two low level values
v1,v2 ∈ DVL

map to the same high level value (i.e. τ(v1) =
τ(v2)), then for each cluster Ci ∈ C, the functions of those

5Note that one subtlety of this result is that it is not MH that
is directly a constructive τ -abstraction of ML, but rather their L3-
equivalent counterparts, M′

H and M′
L. Indeed, the definition of

constructive τ -abstractions is stronger than L3-τ consistency (see
proof for more details), but in tasks where we are only concerned
with the layers of the PCH, this distinction is inconsequential.
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clusters should map to the same value regardless of UL

(i.e. the outputs of fL
V (pa

(1)
V ,uV ) for each V ∈ Ci should

map to the same result as the outputs of fL
V (pa

(2)
V ,uV ) when

passed through τCi ). Intuitively, this implies that two values
in the same intravariable cluster have the same functional
effect in the higher level setting.

It turns out that the AIC describes precisely when an ap-
propriateMH exists as an abstraction of the low level model
ML, as shown by the following result.
Proposition 2 (Abstraction Conditions). For any SCMML

and constructive abstraction function τ relative to C and D,
there exists an SCMMH over variables VH = τ(VL) such
that MH is L3-τ consistent with ML if and only if there
existsM′

L such that L3(ML) = L3(M′
L) andM′

L satisfies
the abstract invariance condition with respect to τ . ■

This critical property guarantees the existence of a high-
level SCMMH such that L3-τ consistency holds, so we will
assume that the AIC holds for the rest of this work. Still, see
App. D.2 for further discussion on its implications and for
relaxations in cases where L3-τ consistency is not required.

With the notion of abstractions well-defined, we study how
MH can be obtained fromML. Interestingly, when given the
admissible clusterings C and D, the procedure for recovering
τ and convertingML toMH can be done as shown in Alg. 1.
Intuitively, one can obtain an abstractionMH ofML by first
constructing the abstraction function τ using the clusterings
C and D (lines 2-3), followed by designing the functions of
MH to wrap the original functions ofML with τ (lines 4-6).
This can be verified using the following result.
Proposition 3. Let τ and MH be the function and SCM
obtained from running Alg. 1 on inputsML, C, and D. Then,
MH is L3-τ consistent withML. ■

Alg. 1 can be used to systematically obtain an abstraction
MH of the low-level modelML, so long asML is provided
alongside the clusters C and D. SinceML is almost never
available in practice, the following sections show how this
requirement can be relaxed.

3 Inferences Across Abstractions
As demonstrated by Alg. 1, converting a low level model
ML to a high level model MH is somewhat immediate
when given full observability of the underlying SCMML.
However, in real applications, it is rarely the case that the full
specification ofML is known. Typically, one will only be
given partial information ofML in the form of data, such
as samples of the observational distribution P (VL). The
question we investigate in this section is: is it still possible to
“learn” someMH given the observed data?

We first note the impossibility result described by the
Causal Hierarchy Theorem (CHT) (Bareinboim et al. 2022,
Thm. 1), which states that a model trained to match another
SCM on lower layers of the causal hierarchy (e.g. L1) will
likely not match on higher layers (e.g. L2 or L3). Naturally,
the same is true when it comes to inferring causal quantities
across abstractions. One may be tempted to believe thatMH

can be learned given L1 data fromML by instantiating some
expressive parametric model M̂H on VH , and then training

Algorithm 1: ConstructingMH fromML.
Input : SCMML = ⟨UL,VL,FL, P (UL)⟩,

admissible inter/intravariable clusters C and
D satisfying abstract invariance condition

Output : SCMMH and τ : DVH
→ DVL

s.t.MH

is L3-τ consistent withML

1 UH ←UL, P (UH)← P (UL)
2 VH ← C,DVH

← D
3 τ ← AbsFunc(C,D) // from Def. 4
4 for Ci ∈ C do
5 fH

i ← τ
(
fL
V (p̃aV ,uV ) : V ∈ Ci

)
6 FH ← {fH

i : Ci ∈ C}
7 return τ ,MH = ⟨UH ,VH ,FH , P (UH)⟩

M̂H on P (VH) = P (τ(VL)) such that M̂H is L1-τ consis-
tent withML. Unfortunately, such a model M̂H will fail to
generalize because even under perfect training, M̂H is not
guaranteed to be L2-τ (or L3-τ ) consistent withML. This
means that any causal quantities induced by M̂H will likely
bear no relationship with causal quantities induced byML.
We show this in the next result.
Proposition 4 (Abstract Causal Hierarchy Theorem (Infor-
mal)). Given constructive abstraction function τ : DVH

→
DVL

, even if MH is Li-τ consistent with ML, MH will
almost never be Lj-τ consistent withML for j > i. ■

In words, matching across abstractions on lower layers
does not guarantee the same will hold for higher layers. The
consequence of this result is that causal assumptions will be
necessary to make progress. Given this necessity, one type of
assumption prevalent throughout causal inference literature is
the availability of a causal diagram (Pearl 1995), a graphical
structure that qualitatively describes the functional relation-
ships between variables. This assumption is a weaker require-
ment than assuming the availability of the entire SCM, since
it does not require full detail of the generating mechanisms
and exogenous distributions. Still, it has been shown that
having the causal diagram allows certain inferences across
layers, determined through the causal identification problem
(Pearl 2000; Bareinboim and Pearl 2016).

In the context of abstractions however, specifying the
causal diagram for the true modelML requires describing
the relationships between every low-level variable in VL.
This is still unrealistic in many practical settings since there
are typically too many low-level variables (e.g. 128 × 128
pixels in an image) to expect a description of the relation-
ship between every pair, and many of these relationships
may not even be well-defined in a causal manner. Instead,
it may be more reasonable to specify a causal diagram over
VH (or intervariable clusters C). When |VH | ≪ |VL|, the
amount of information required is reduced, and the causal
relationships between variables may be more clear given that
the higher-level variables tend to be more explainable. The
causal diagram over VH can be viewed as a graphical ab-
straction of the causal diagram over VL. The relationship can
be formalized through the concept of cluster causal diagrams
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(C-DAGs), introduced in Anand et al. (2023).
Definition 7 (Cluster Causal Diagram (C-DAG) (Anand et al.
2023, Def. 1)). Given a causal diagram G = ⟨V,E⟩ and an
admissible clustering C = {C1, . . . ,Ck} of V, construct a
graph GC = ⟨C,EC⟩ over C with a set of edges EC defined
as follows:
1. A directed edge Ci → Cj is in EC if there exists some

Vi ∈ Ci and Vj ∈ Cj such that Vi → Vj is an edge in E.
2. A dashed bidirected edge Ci ↔ Cj is in EC if there

exists some Vi ∈ Ci and Vj ∈ Cj such that Vi ↔ Vj is
an edge in E. ■

In words, the nodes of the C-DAG GC simply correspond
to the clusters of C, and edges connect clusters Ci and Cj

if they connect some Vi ∈ Ci and Vj ∈ Cj in the original
causal diagram G. Interestingly, the C-DAG definition aligns
with the concept of intervariable clusters, providing a way for
encoding constraints in the smaller space of VH . Following
the nutrition study in Ex. 1, Fig. 3 shows the corresponding
causal diagram G (left) and the simpler C-DAG GC (right).
With the constraints of GC, we now introduce a notion of iden-
tification across abstractions to determine precisely which
queries can be inferred.
Definition 8 (Abstract Identification). Let τ : DVH

→ DVL

be a constructive abstraction function. Consider C-DAG GC,
and let Z = {P (VL[zk])}ℓk=1 be a collection of available
interventional (or observational if Zk = ∅) distributions over
VL. Let ΩL and ΩH be the space of SCMs defined over
VL and VH , respectively, and let ΩL(GC) and ΩH(GC) be
their corresponding subsets that induce C-DAG GC. We say
that query Q is τ -ID from GC and Z iff for every ML ∈
ΩL(GC),MH ∈ ΩH(GC) such thatMH is Z-τ consistent
withML,MH is also Q-τ consistent withML. ■

This definition establishes a notion of identification be-
tween two different spaces of SCMs, ΩL and ΩH , that are
connected through τ . In words, τ -identifiability implies that
in every pair of SCMs ML over VL and MH over VH ,
“matching” in graph GC and data Z implies a match in query
Q. SinceML andMH are defined over different spaces of
variables, the term “match” has some nuance. Specifically,
“matching” in GC implies that GC is a C-DAG forML and is
a causal diagram forMH . “Matching” in Z (resp. Q) implies
thatMH is Z-τ consistent (resp. Q-τ consistent) withML.
On the other hand, τ -nonidentifiability implies that there ex-
ist a pair of modelsML over VL andMH over VH such
thatML andMH match in both GC and Z yet still do not
match in Q. This means that despite the constraints added
through the C-DAG GC, there are still queries that cannot be
inferred across τ due to nonidentifiability. This is more acute
when there is a large amount of unobserved confounding.

The definition of τ -ID provides rigorous semantics to an-
swer whether a query can be inferred across abstractions.
The next step is to establish an approach to determine τ -ID
when given the available data and graph. For this purpose,
one fundamental result is that the notion of τ -ID is actually
equivalent to classical identification in the higher level space.
Theorem 1 (Dual Abstract ID). Q is τ -ID from GC and Z if
and only if τ(Q) is ID from GC and τ(Z). ■

R

D
C

F

P

B
DH Z BH

Figure 3: The causal diagram G over variables VL for the
nutrition study in Ex. 1 is on the left. Clusters C = {DH =
{D}, Z = {C,F, P}, BH = {B}} are outlined in blue. The
corresponding C-DAG GC is on the right.

Algorithm 2: NeuralAbstractID – Identifying and
estimating queries across abstractions using NCMs.

Input : query Q, L2 datasets Z(ML), C-DAG GC,
and admissible inter/intravariable clusters C
and D satisfying AIC

Output : Q(ML) if identifiable, FAIL otherwise.

1 VH ← C,DVH
← D

2 τ ← AbsFunc(C,D) // from Def. 4

3 M̂ ← NCM(VH , GC) // from Def. 2

4 θ∗
min←argminθ τ(Q)(M̂(θ)) s.t.
τ(Z)(M̂(θ))=τ(Z(ML))

5 θ∗
max←argmaxθ τ(Q)(M̂(θ)) s.t.
τ(Z)(M̂(θ))=τ(Z(ML))

6 if τ(Q)(M̂(θ∗
min)) ≠ τ(Q)(M̂(θ∗

max)) then
7 return FAIL
8 else
9 return τ(Q)(M̂(θ∗

min)) // choose min or
max arbitrarily

This result is powerful since it implies that inferences can
be made about the low level space by using existing results
in the high level space. Notably, since our goal is to learn a
higher level SCMMH to make inferences aboutML, we
can build on the machinery of Neural Causal Models (NCMs)
(Xia et al. 2021). NCMs allow one to take the graph GC as
an inductive bias (a GC-NCM as described in Def. 2), and
they can leverage gradient methods to fit any SCM within
the constrained space. Indeed, identification in NCMs can
be shown to be equivalent to classical identification when
considering models of the same granularity (Xia, Pan, and
Bareinboim 2023, Thm. 3). When combined with Thm. 1,
this implies the following result.

Corollary 1 (Abstract ID with NCMs). Q is τ -ID from GC
and Z iff τ(Q) is Neural-ID from Ω̂(GC) and τ(Z). Moreover,
if it is ID, then Q can be computed by computing τ(Q) by
definition from any GC-NCM M̂ that is τ(Z)-consistent. ■

In words, determining τ -ID is equivalent to determining
neural identification (identification in the space of NCMs) on
the space of VH . Further, to compute Q in the identifiable
case, τ(Q) can be queried from any GC-NCM M̂ that is
τ(Z)-consistent. Corol. 1 implies that we can perform causal
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identification and estimation across abstractions using the
NeuralID algorithm (Xia, Pan, and Bareinboim 2023, Alg. 1)
on the high level space. This procedure is shown in Alg. 2.
First, τ is constructed as described in Def. 4 given the clusters.
Then, a GC-NCM is constructed over high-level variables
VH . Two parameterizations of the NCM are created. Both
are optimized to fit the transformed data τ(Z), but one is
optimized to maximize the transformed query τ(Q) while the
other is optimized to minimize it. If both parameterizations
return the same result, then it must be the true value of the
query; otherwise, the query is not identifiable.

To implement this algorithm in practice, we leverage the
GAN-NCM introduced in Xia, Pan, and Bareinboim (2023);
see details in App. C. Alg. 2 is sound and complete for solving
the abstract identification problem, as shown below.
Corollary 2 (Soundness and Completeness). LetML be the
low-level SCM, C and D be inter/intravariable clusters of
VL, GC be a C-DAG, Q be a query, and Q̂ be the result from
running Alg. 2 with inputs Z(ML) > 0, C, D, GC, and Q.
Then, Q is τ -ID from GC and Z if and only if Q̂ is not FAIL.
Moreover, if Q̂ is not FAIL, then Q̂ = Q(ML). ■

While Alg. 2 solves the abstract ID problem, the conse-
quences of the results in this section are more general. No-
tably, if Q is indeed τ -ID (which can be verified through
Alg. 2), the algorithm produces a neural model M̂ that serves
as a proxy SCM that is Q-τ consistent with the true model
ML. Such a model could serve as a generative model of the
distribution Q, which has many uses. The samples generated
from such a model could be used to estimate the query, or,
in more complex settings such as with image data, it may be
desirable to simply have novel generated samples consistent
with the causal invariances embedded in the system.

4 Representations in Learning Abstractions
In many applications, the choice of intervariable clusters C
is natural and can be made in tandem when deciding the
assumptions of the C-DAG GC6. However, fully specifying
the intravariable clusters D is quite challenging when working
with high-dimensional data like image data. Doing so would
require an enumeration of every possible image along with
some label designating each one to a cluster. In this section,
we investigate the problem of learning abstractions when the
intravariable clusters D are left unspecified.

While coarser clusters tend to be better in practice due to
the dimensionality reduction, the theory in this paper can be
applied for any choice of D so long as the AIC (Def. 6) holds.
Hence, a possible constraint when learning D is to find a set
of clusters such that the AIC is not violated. To this effect,
the following result can be leveraged.
Proposition 5. ML is guaranteed to satisfy the AIC w.r.t. τ
iff DCi

= DCi
for all Ci ∈ C. ■

In other words, this means that Alg. 2 can be applied in
any case where τCi

is a bijective mapping between DCi
and

DVH,i
. Also implied by this result is that, without additional

6Still, see App. D.1 for best practices on how to choose or learn
intervariable clusters.

Figure 4: Example comparison between (b) the GC-NCM and
(c) GC-RNCM, with GC shown in (a). Functions of the NCM
directly output values of the lower level variables (grouped
by clusters in C), while functions of the RNCM output values
of their higher level counterparts, mapped by τ̂ .

information, one cannot choose any coarser clustering with-
out potentially violating the AIC7. While this choice of D
does not reduce the size of the abstracted space, this means
that we are not restricted to the original space of VL and can
choose any VH with the same cardinality. In practice, this
means that we can choose the option for VH that is the most
beneficial for our task. Leveraging this insight, we introduce
the representational NCM.
Definition 9 (Representational NCM (RNCM)). A represen-
tational NCM (RNCM) is a tuple ⟨τ̂ , M̂⟩, where τ̂(vL;θτ )
is a function parameterized by θτ mapping from VL to
VH , and M̂ is an NCM defined over VH . A GC-constrained
RNCM (GC-RNCM) is an RNCM ⟨τ̂ , M̂⟩ such that τ̂ is com-
posed of subfunctions τ̂Ci for each Ci ∈ C (each with its
own parameters θτCi

), and M̂ is a GC-NCM. ■

In an RNCM, the abstraction function τ̂ is a trainable pa-
rameterized function, and the NCM M̂ is trained over the
resulting space mapped by τ̂ . Fig. 4 shows an example il-
lustrating the difference between the RNCM and a standard
NCM. Training can be done in a two step procedure, where
first τ̂ is trained to map to an optimal task-specific space, and
then M̂ can be trained on τ̂(VL) (e.g. through Alg. 2). To
enforce bijectivity between DCi and DVH,i

, as suggested by
Prop. 5, one can train τ̂ in an autoencoder-like setup (Kramer
1991; Kingma and Welling 2014) with a reconstruction loss.
τ̂ can be thought of as a function mapping to a representation
space, making this approach amenable to the wide devel-
opments of the representation learning literature (Bengio,
Courville, and Vincent 2013). We empirically demonstrate
this approach below in the experiment of Sec. 5.2.

5 Experiments
In this section, we empirically evaluate the effects of utiliz-
ing abstractions in causal inference tasks. Details of data-
generating models and architectures can be found in Ap-
pendix C. Implementation code is publicly available at
https://github.com/CausalAILab/NeuralCausalAbstractions.

7In many cases, there may be additional information in the form
of invariances (e.g. rotational invariance in image data). In such
cases, this information can be leveraged to learn coarser clusters.
See Appendix D.3 for more details.
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Figure 5: Colored MNIST results. Samples from various causal queries (top) are collected from competing approaches (left).

5.1 Nutritional Study
We perform the toy study on nutrition depicted in Ex. 1. Since
a BMI of 25 or over is considered overweight, the goal is to
identify and estimate the query Q = P (BD=d ≥ 25) (the
causal effect of diet on weight) using Alg. 2. R and D are 32-
dimensional one-hot vectors, and the others are real-valued,
so the query may be difficult to answer given such high-
dimensional variables. Instead, it may be more effective to
work in an abstract space with the proposed intervariable clus-
ters C = {DH = {D}, Z = {C,F, P}, BH = {B}}. The
original graph G and corresponding C-DAG GC are shown in
Fig. 3. We are also given intravariable clusters D such that all
values of DH , Z, and BH are clustered into binary categories.
Specifically, DH = 1 denotes unhealthy dishes, Z = 1 de-
notes high calorie count, and BH = 1 denotes an overweight
BMI (≥ 25). We compare the effectiveness identifying and
estimating Q with NCMs in both the original setting under
VL, and in the abstracted setting of VH computed using the
constructive abstraction function τ defined on C and D. The
results are shown in Fig. 6. Since Q is identifiable, the gap
between the max and min queries computed in Alg. 2 are
expected to be as small as possible. As shown in Fig. 6a,
the proposed approach converges quickly while others fail to
close the gap. Fig. 6b also shows that the proposed approach
can estimate Q with significantly lower error.

5.2 Colored MNIST Digits
We evaluate the RNCM in a high-dimensional image dataset
of colorized MNIST (Deng 2012) digits. Each image (I) has
a corresponding digit (D) and color (C) label, and their rela-
tionships are shown in the C-DAG GC in Fig. 7a. Color and
digit are highly correlated (e.g. 0s are typically red, while 5s
are cyan), as shown in Fig. 7b. We evaluate three approaches
in the task of sampling images from causal queries. The
first approach is a naïve conditional GAN that does not take
causality into account. The second is a standard GAN-NCM
as described in Xia, Pan, and Bareinboim (2023). The third
is our approach described in Sec. 4, a representational NCM
also implemented as a GAN, called GAN-RNCM.

Samples of the results are shown in Fig. 5. All models
are capable of producing digit images, as shown in the first
column. The second column illustrates P (I | D = 0), the
images conditioned on digit = 0. Many red 0s are expected
since most 0s are red in the dataset. The third column il-
lustrates the interventional query P (ID=0), the images with

(a) Gaps between max and min
query across 1000 training itera-
tions when running Alg. 2.

(b) Mean absolute error (MAE)
v. dataset size (in log-log scale)
for query estimation.

Figure 6: Results of the nutrition experiment. Our approach
(blue) is compared with a GAN-NCM trained on raw data
(red) and one trained on normalized data (yellow).

C

D I

(a) GC for Colored MNIST.

(b) Image samples. Digits are
highly correlated with the corre-
sponding gradient color.

Figure 7: Colored MNIST Experimental Setup

digits forced to be 0 through intervention. As interventions
ignore spurious correlations, 0s of all colors are expected.
Finally, the fourth column illustrates the counterfactual query
P (ID=0 | D = 5), indicating what the digits would have
looked like had they been 0, given that they were originally
5. Since 5s tend to be cyan, the samples are expected to be 0s
that retain the cyan color of the 5s. In all cases, GAN-RNCM
produces results close to the expected, while the other ap-
proaches have difficulty disentangling color from digit.

6 Conclusions
Through the notions of inter/intravariable clusters and Q-τ
consistency, we introduced a new family of abstractions al-
lowing analysis on individual PCH distributions. We proved
that ID across abstractions is equivalent to classical ID
(Thm. 1) and provided a sound and complete algorithm to
perform such inferences (Alg. 2). We provided a relaxation
of intravariable clusters leveraging representation learning
through the RNCM (Def. 9). Finally, we demonstrated empir-
ically that abstractions are vital in high-dimensional settings.
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