The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Non-monotone Sequential Submodular Maximization

Shaojie Tang', Jing Yuan 2

'Naveen Jindal School of Management, University of Texas at Dallas
2 Department of Computer Science and Engineering, University of North Texas
shaojie.tang @utdallas.edu, jing.yuan @unt.edu

Abstract

In this paper, we study a fundamental problem in submodu-
lar optimization known as sequential submodular maximiza-
tion. The primary objective of this problem is to select and
rank a sequence of items to optimize a group of submodu-
lar functions. The existing research on this problem has pre-
dominantly concentrated on the monotone setting, assuming
that the submodular functions are non-decreasing. Howev-
er, in various real-world scenarios, like diversity-aware rec-
ommendation systems, adding items to an existing set might
negatively impact the overall utility. In response, we propose
to study this problem with non-monotone submodular func-
tions and develop approximation algorithms for both flexible
and fixed length constraints, as well as a special case with
identical utility functions. The empirical evaluations further
validate the effectiveness of our proposed algorithms in the
domain of video recommendations.

Introduction

Submodular optimization is a central problem in machine
learning with various applications in a wide range of field-
s, including data summarization (Lin and Bilmes 2011), s-
parse reconstruction (Das and Kempe 2011), active learn-
ing (Golovin and Krause 2011; Tang and Yuan 2022), and
viral marketing (Tang and Yuan 2020). These formulations
aim to select a subset of items that maximizes a submodular
function. However, in many real-world applications, the ob-
jective is not only to select items but also to rank them in a
specific order (Azar and Gamzu 2011; Tschiatschek, Singla,
and Krause 2017; Tang and Yuan 2021b). This motivates
the study of sequential submodular maximization (Asadpour
et al. 2022; Zhang, Tatti, and Gionis 2022), a fundamental
problem in submodular optimization. This problem involves
selecting and ranking a group of k items from a ground set
V. The goal is to maximize the weighted summation of k
submodular functions, denoted as fi, -, fi : 2¥ — RT,
where each function f; takes the first j items from the rank-
ing sequence as input. Formally, the objective is to find a

feasible sequence m = {my,--- ,m} over items in V that

maximizes the value of F'(7) &f e A fi(my)) where

STy}

Copyright (©) 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A; denotes the weight of function j and 7 def {m1,---

15284

denotes the first j items of 7.

This problem, which captures the position-bias in item s-
election, has a wide range of applications, including sequen-
tial active learning and recommendation systems (Zhang,
Tatti, and Gionis 2022). For instance, it can be applied to
tackle challenges in ranking products on online retail plat-
forms (Asadpour et al. 2022). Platforms like Amazon and
Airbnb face the task of not only selecting a subset of prod-
ucts or rooms to showcase but also arranging them in a
vertical list format to provide customers with an organized
and customer-friendly browsing experience. Shoppers scroll
through this list, depending on their level of patience, and
may potentially make a purchase from the products dis-
played. The platform’s objective is to optimize the selec-
tion and ranking of products to maximize the likelihood of a
purchase. Interestingly, these applications can be framed as
a problem of sequential submodular maximization. In this
context, the parameters in F'(7) can be interpreted as fol-
lows: We denote the set of products as V, the window size
of displayed products as k, A; represents the proportion of
customers with a specific patience level j (e.g., a customer
with patience level j is willing to view the first j product-
s m(;1). The function f;(m(;) denotes the likelihood of pur-
chase for customers with a patience level of j after seeing the
first j products 7(;). Typically, f; is described as a submod-
ular function. In this case, F'(7) captures the expected prob-
ability of purchase when a customer is shown a sequence of
products 7.

While previous research on sequential submodular max-
imization has primarily focused on the monotone set-
ting, where submodular functions are assumed to be non-
decreasing, the non-monotonicity of submodular function-
s becomes more apparent in many real-world scenarios,
including feature selection (Das and Kempe 2008), maxi-
mum cut (Gotovos, Karbasi, and Krause 2015), profit max-
imization (Tang and Yuan 2021a), and data summariza-
tion (Mirzasoleiman, Badanidiyuru, and Karbasi 2016). One
such example involves designing a diversity-aware recom-
mendation system for a vast assortment of products spanning
different categories (Lin and Bilmes 2010; Mirzasoleiman,
Badanidiyuru, and Karbasi 2016; Amanatidis et al. 2020;
Carbonell and Goldstein 1998). The system’s primary goal
is to generate a sequence of products that not only have high
ratings but also effectively represent the entire collection. To

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

address this tradeoff, a commonly adopted objective func-
tion is submodular but not monotone. More details about
this application can be found in the experiment section. This
highlights the need to develop algorithms that can handle
non-monotone submodular functions efficiently.

Here are the main contributions of this paper: 1. We are
the first to explore the sequential submodular maximization
problem with non-monotone submodular functions. We in-
vestigate two variants: one with a flexible length constraint,
where the goal is to find a sequence of items with a length of
at most k, and another with a fixed length constraint, where
the aim is to find a sequence of items with an exact length
of k. 2. For the flexible length constraint, we introduce ef-
ficient constant-factor algorithms. In the case of the fixed
length constraint, we develop an algorithm with an approxi-
mation ratio dependent on the ratio k/n, where n is the size
of the ground set. When all £ utility functions are identical,
we provide constant-factor approximation algorithms.

Additional Related Work. The traditional non-
monotone submodular optimization, where the objective
is to select a set of items to maximize a non-monotone
submodular function, has been extensively studied in the
literature (Gharan and Vondrak 2011; Buchbinder et al.
2014). The best-known result for this problem, subject to a
cardinality constraint, is a 0.385-approximation algorithm
(Buchbinder and Feldman 2019). It is crucial to emphasize
that our work differs from this traditional setting. Instead
of aiming to find a set of items where the order does not
matter, our goal is to find a sequence of items to maximize
a group of submodular functions. It will become evident
later that their problem can be seen as a special case of our
setting. The focus on sequences introduces a new dimension
of complexity in comparison to the traditional set-based
approaches. However, we draw inspiration from previous
studies (Amanatidis et al. 2020; Tang 2021) and incorporate
a sampling technique to tackle the challenges arising from
non-monotonicity. While there are other studies that have
explored position bias in submodular optimization (Tschi-
atschek, Singla, and Krause 2017; Alaei, Makhdoumi, and
Malekian 2010), our problem formulation significantly
differs from theirs.

Preliminaries and Problem Statement

Notations. We first introduce some useful notations.

Throughout the remainder of this paper, we denote the set

{1,2,...,m} as [m] for any positive integer m. Given a

function f, we use f(i | S) to denote the marginal utility of
def

addingito S,ie., f(i | S) = f(SU{i}) — f(S). We say a
function f is submodular if and only if f(i | X) > f(i | Y)
for any two sets X and Y such that X C Y and any item
i ¢Y.Letw = {m,---,m} be a sequence of items, we
define the operation 7 &1 as the concatenation of ¢ to m, that
. . def .

is,m®i = {my, -, M, i}

Now we are ready to introduce our research problem.
Given k non-monotone submodular functions fy,---, fx :
2V — R and non-negative coefficients Ay, - - - , A, the ob-
jective of the Non-Monotone Sequential Submodular Max-
imization (NSM) problem is to find a feasible sequence

15285

7 = {m, - ,7} over items in V that maximizes the

value of F'(w). Here F(m) &ef 2jem A fi(my)) where

£ . .
uh & {my,--+,m;} denotes the first j items of 7. In this

paper, we adopt a non-standard notation, employing 7 to
represent both a sequence of items and the set of items com-
prising this sequence. To simplify notation, define 7; = () if
|| < j where || denotes the number of non-empty items
contained in 7.

In this paper, we consider two types of feasibility con-
straints. The first type, known as NSM with Flexible Length,
imposes a constraint where feasible sequences can contain at
most k items. The second type, known as NSM with Fixed
Length, requires that all feasible sequences contain a fixed
number k of items from V. Both problems have additional
restrictions: the same item cannot appear multiple times in
a feasible sequence, and there should be no empty slots be-
tween two items. These constraints ensure that each item is
considered at most once and maintain the sequential nature
of the sequence.

NSM with Flexible Length

A formal description of NSM with Flexible Length can be
written as follows:

P.1 max, F(7) subject to || < k.

We first provide a negative result by showing that it is
impossible to find a 0.491-approximation algorithm for P.1.
This result can be easily shown by setting Ay = Ao = -+ -,
Ak—1 = 0and Ay = 1 in P.1, thereby reducing the prob-
lem to maximizing a non-monotone submodular function fj,
over a set of at most k items, which does not allow for a
0.491-approximation solution (Gharan and Vondrak 2011).
Thus, we establish the following lemma.

Lemmal It is impossible to achieve 0.491-

approximation for P.1.

a

Algorithm Design. Next, we present the design of our algo-
rithm, referred to as Sampling-Greedy, which builds upon
a simple greedy approach that selects items based on their
marginal utility. However, since our utility function is non-
monotone, employing a straightforward greedy strategy may
result in suboptimal selections with low utility. To address
this challenge, we draw inspiration from (Amanatidis et al.
2020) and introduce a sampling phase to the greedy algo-
rithm, extending its guarantees to the non-monotone setting.
We provide a detailed description of our algorithm below,
which consists of two phases:

1. RANDOM SUBSET SELECTION: We begin by selecting
arandom subset, denoted as R, from the ground set V. Each
item ¢ € V is independently included in R with a probabil-
ity p € [0, 1], where p is a parameter to be optimized later.
This random subset serves as the initial pool of items for
subsequent processing.

2. GREEDY ALGORITHM ON R: We run a greedy algo-
rithm only on R. This algorithm operates iteratively, aug-
menting the current sequence by selecting an item that pro-
vides the greatest incremental utility. To be precise, consid-
er a specific round of the greedy algorithm, let m, whose

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Algorithm 1: Sampling-Greedy
EE=V,r=0t=1,Q={(€E|Ycn. . n
fi{i}) > 0}

2: whilet < k and Q # 0 do

3: consider z = argmax;eq Y jeqs,... 5y A - fi(E | ™)
4. E=F\{z}

5: let @, ~ Bernoulli(p)

6: if &, = 1 then

7 T=m®z,t+—t+1

8: Q={i€cE|Xcq..myNifili|m) >0}

9: endif

10: end while

11: return 7

initial value is (), denote the current solution. Let z €&
arg max;c p [F'(m @ i) — F(m)] denote the item that has the
largest marginal utility on top of 7. If F((x & z) — F(7) >
0, then we append 2z to 7w (i.e., 7 = 7 @ z) and pro-
ceed to the next iteration. Note that F(m & i) — F(r)
Zje{h|+1’__, A fj(@ |), observing that append-
ing ¢ to m only affects the utility of those functions in
{flﬂ'"'l‘l’ -+ fr}. This construction process continues un-
til one of two stopping criteria is met: either the sequence
reaches a length of min{k, |R|}, or the marginal utility of
the remaining items becomes non-positive. This ensures that
further additions would not contribute positively to the over-
all utility.

In order to facilitate analysis, we present an alternative ap-
proach to implementing Sampling-Greedy (a detailed de-
scription of this alternative is listed in Algorithm 1). Un-
like the original implementation, where the entire set R is
sampled at the start of the algorithm, our alternative defers
this decision. Instead, we employ a coin toss, with a suc-
cess probability of p, after considering each item. This coin
toss determines whether the item should be added to the so-
lution. It is straightforward to confirm that both versions of
the algorithm produce same output distributions.

Performance Analysis. We next analyze the approxima-
tion ratio of Sampling-Greedy. As in Algorithm 1, we in-
troduce a random variable ® € {0,1}" to denote the out-
come of the coin tosses, e.g., ; € {0,1} represents the
coin toss of item 7.

Let 7* = {n},---, 7} denote the optimal solution of
P.1, where [< k. In the context of a specific run of our
algorithm, where the coin tosses ® is realized and the corre-
sponding sequence returned by our algorithm is denoted as
w(®), we partition the optimal solution 7* into three sets as
follows:

1. Set Ocons.(®): This set contains all items 7* in the opti-
mal sequence 7* that have been considered by our algorithm
before (including when) position j being filled, but were not
picked due to the random coin flip ®. That is,

Ocons. (@) & {r; € n* | 7} was considered by Algorithm 1

during the selection of 7(®) ;) but 7% & m(®)(;},
where 7(®)[;) denotes the first j items of w(®).

15286

2. Set Onot cons.(P): This set consists of all items 7T;»< in7*
that have not been considered during our algorithm before
(including when) position j being filled. That is,

def .
Onot cons.(®) = {m} € m* | w was not considered by

Algorithm 1 during the selection of 7(®);1}.

3. Set Oovipd. (P) = 7 \ (Onot cons. (P) U Ocons.(P)): This
set contains those items w; in 7* that have been added to

m(®) before (including when) position j being filled. That

i, Oovipa. () & {7 € 7* | wF € m(@) ;7).

Let’s consider a specific example to illustrate the afore-
mentioned three sets. Suppose we have an optimal sequence
™ = {a,b,c,d}. And let’s assume that the sequence con-
sidered by our algorithm is {b, ¢, d, e, f, g}, and the final se-
quence picked by our algorithm, based on the coin tosses
D, is m(®) = {c,e, f,g}. For this example, Ogons (P) =
{b, d}, this is because our algorithm considered b (resp. d)
before filling position 2 (resp. 4), but did not pick b (resp.
d); Onot cons.(P) = {a}, this is because our algorithm did
not consider a before filling position 1; Ogyipg.(P) = {c},
this is because our algorithm picked c before filling position
3.

By defining this partition of 7*, we can effectively ana-
lyze the influence of the coin tosses ® (or, equivalently, the
random subset R in the original implementation of our al-
gorithm) on the resultant sequence and its connection to the
optimal solution.

To simplify notation, we drop the random variable ® from
7(®), Ocons.(P), Onot cons.(P) and Ogyipg. (P) if it is clear
from the context.

Before analyzing the performance of our algorithm, we
introduce some additional notations. Recall that we define
m; = 0 if j > |x|. Given a random output 7 from our algo-
rithm and an optimal solution 7*, we define F'(r W 7*) =
> e A - filmy Ua;)) as the utility of the “union” of
and 7*. Here, ;) (resp. 7'('['}]) denotes all items from 7 (resp.
7*) that are placed up to position j. Intuitively, 7 7* can be
interpreted as a virtual sequence where both 7; and 7 are
added to position j forall j € [k]. Similarly, we define F'(m
ﬂ—;vlpd.) = Zje[k])\j . fj (W[j] @] (W[kj] N Oovlpd.)) as the utility
of the union of 7 and Ogylpg. € 7*. Furthermore, we define
F(mWmgons) = Zje[k] Aj-fi (W[j] U (77[*]‘] M Ocons.)) as the
utility of the union of 7 and Ocons. € 7*. Finally, we define
F(m W moot cons.) = e Ad -+ fi (51 Y (7 1 Onot cons.)
as the utility of the union of 7 and Ong cons. € 7*.

Throughout this section, all expectations are taken over
the coin tosses ®. We first provide two technical lemmas.

Lemma 2 Let p € [0, 1] denote the sampling probability of
each item, T denote the output from our algorithm, and 7*
denote the optimal solution, we have

1

2+) E[F(m)] > E[F(r 7] (1)

Proof: By the definition of Ogylpg., all items from 7"[*3‘] N
Oovipd. must appear in ;) for all j € [k]. Hence, mry; U

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

(m
i (7T[j] U (77[*3‘] N Oovipd.) U
U (77*‘ N Ocons.))
= fj(1Y (N Ohot cons.) U
Therefore, F(m & 71'*) = Yjem N - film Uy =
Zje[k] Ajo (7r[j] U (77[?] N Oovlpd.) U (77[*j] N Onot cons.) U
(WE}] N Ocons.)) = Zje[k])\j : fj (7T[j] U (77[*j] N Onot cons.) U
(7r[*ﬂ N Ogons.)) where the second equality is by the fact that
Ocons.» Onot cons. and Ogyipg. is a partition of 7*, and the third
equality is by equality (2).
For simplicity, let F/(7 & ot cons, W Teons.) = D_jepu] A -
fi(m U (N Onot cons.) U (ﬂf‘j] N Ocons.)), the above e-

quality mdlcates that F(mW ™) = F(TWTot cons. Y Teons.)-
It follows that

E[F(m W n™)]

i M Oovipd.) = ;). It follows that for all j € [k],

(7"[;‘] N Onot cons.)

(7T[*]-] N Ocons.))-)

=]E[F(Tl’)] + E[F(Tr © 7Trﬁwﬁot cons.)]
+E[F(m W 7") — F(m W Tt gons.)]
- E[F(ﬂ-)] + E[F(Tr W Mot cons.) F(r)]
+E[F(m ¥ ot cons. ¥ Teons.) — £(& ooy cons)}

F(r)

where the second equality is by the observation that F' (7r)
) = F(7 ¥ Tt cons. ¥ Teons.)-
Observe that

—F(ry 7"':;ot cons.)
(W[*j] N Ocons.))

* *
F(7T &J 7TFIOI cons. L-H 7TCOT‘IS.)

= Z Aj o fi (7T[j] U (er] N Onot cons.) U

jelk]
_ Z \j fj i Y (ﬂ Onot cons.))
JE[K]
< Z A+ fi(mp U (WE;] N Ocons.))

=D N il
JEK]

F(m)

where the inequality is by the assumption that f; is sub-
modular for all j € [k], and the observations that 7;; C
w[j]U(wE“j]ﬁOnot cons.)» and ﬂ'E;] NOcons. does not overlap with

jelk]
= F(m ¥ meons.) —

) U (m [*j] N Onot cons.)- Here 71'[*] N Ocons. does not overlap

with 7 U(7f T NOnot cons.) is because Ogons.NOnot cons. = 0

(this is by the definitions of these two sets) and Ogons. N =

() (this is due to the fact that any item that is considered but

not picked by our algorithm must not appear in 7, noting

that each item can be considered only once).
This, together with (3), implies that

E[F(rWn™)] < E[F(7)] + E[F (7 W Thot cons.) — F ()]
+E[F (7 W meons.) — F()].

C))

To prove this lemma, it suffices to show that p - E[F (7 &
) — F(m)] < E[F(r)] and
E[F (7 W ot cons.) — £'(m)] < E[F(7)]. &)

The proofs for these two inequalities are provided in the
technical report (Tang and Yuan 2023). [J

*

7TCOT‘IS.

15287

Lemma 3 Let p € [0,1] denote the sampling probability
of each item, T denote the output from our algorithm, and
7 denote the optimal solution, we have E[F(r ¥ ©*)] >

(1=p)- F(x").
Proof: We begin by presenting a result that links random
sampling to submodular maximization.

Lemma 4 (Lemma 2.2 of (Buchbinder et al. 2014)). Con-
sider a submodular set function f : 2V — R. Let X be a
subset of V, and let X (p) denote a sampled subset obtained
by including each item of X independently with a probabil-
ity of at most p (not necessarily independent). The expected
value of f(X (p)) is at least (1 — p) times the value of f(0).
In other words, E[f(X (p))] > (1 — p) f (D).

We define hj : 2 — Ras follows: h;(T) = f;(TUry)).
It can be easily verified that h; is a submodular function,
and h;(0) = fj(wf‘j]). By applying the above lemma to
the function h; and considering that the items in 7f; are
chosen with a probability of at most p, we can conclude

that: E[; () U)] = E[hy ()] > (1 - p) - by (0) =
(L=p)- fj(x];) forall j € [K].

The following chain proves this lemma: E[F (7 W 7%)] =
E[Eje[k: Aj - il U W[J])] = de[k]/\ E[f;(m U
Tl = ZJG OR'E (p)-fi(m) = (1=p) e s -
filnt) = (1 p) - F(x). O

Lemmas 2 and 3 imply the following main theorem.

Theorem 1 Let p € [0,1] be the sampling probability of
each item, T be the output from our algorithm, and 7 denote

the optimal solution, we have E[F ()] > p2(11)+117) F(m*).
V31
2

Corollary 1 Let p =
F(m*).

Remark 1: For the case when all utility functions f; are
monotone and submodular, Algorithm 1, by setting p = 1,
can achieve an improved approximation ratio of 1/2. This
is because if p = 1, then Ogons. = (), observing that when
p = 1, all considered items must be added to the solution.
It follows that inequality (4) is reduced to E[F(m W 7*)] <
E[F(m)] + E[F (7 W Tt cons.) — F(m)]. This can be rewrit-
ten as E[F(r W 7*)] < E[F(m W 7 cons.)]- This, togeth-
er with inequality (5), implies that E[F(7)] > E[F (7 W
7*)]/2. Moreover, if f; are monotone, it is easy to verify
that E[F (7 & 7*)] > F(n*). It follows that E[F'(7)] >
E[F(rWn*)]/2 > F(7*)/2.

Remark 2: When all utility functions are homogeneous
(i.e.,3f : f; = fforallj € [k]), Algorithm 1 becomes inde-
pendent of the specific values of A;. This is because in Line 3
of Algorithm 1, finding ~ that maximizes Z;?:t Aj-fiGi | m)
is equivalent to maximizing f(¢ | =), assuming f; = f
for all j € [k]. Thus, the selection of z becomes indepen-
dent of);, showcasing the algorithm’s robustness against
the knowledge of ;. In the context of recommendation sys-
tems, where \; represents the distribution of customers’ pa-
tience levels, which may only be estimated approximately or
remain unknown, our algorithm consistently delivers high-
quality solutions.

, we have E[F(m)] > 0.134 -

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

NSM with Fixed Length

We next study the case with fixed length constraints. A for-
mal description of NSM with Fixed Length can be written
as follows:

P.2 max, F(m) subject to |7| = k.

By setting Ay = Ao = -+ ;= Ap—1 = O and)\
in P.2, our problem reduces to maximizing a non-monotone
submodular function fj, over a set of exactly k items, which
does not admit a 0.491-approximation solution (Gharan and

Vondrédk 2011). Hence, we establish the following lemma.
0.491-

LemmaS$5 It is impossible to achieve

approximation for P.2.

a

Approximation Algorithms for P.2

The basic idea of our algorithm is to first apply Algorithm 1
to calculate a sequence 7 with a maximum size of k, then, if
required, we supplement 7 with additional backup items to
ensure that it reaches a size of exactly k.

We provide a detailed description of our algorithm below:

1. Apply Algorithm 1 to calculate a sequence 7 with a max-

imum size of k.

If |7| = k, then return 7 as the final output. Otherwise,
randomly select k— || items B from the set V'\r, and ap-
pend them to 7 in an arbitrary order. The resulting modi-
fied set 7 is then returned as the final output 772,

2.

Note that problem P.1 is a relaxed problem of P.2, observ-
ing that any feasible solution of P.2 is also a feasible solution
of P.1. As a consequence, we have the following lemma.

Lemma 6 Let m* and 7w° denote the optimal solution of P.1
and P.2 respectively, we have F(n*) > F(m°).

Now we are ready to present the performance bound of
our algorithm. The proof of this theorem is moved to the
technical report (Tang and Yuan 2023).

Theorem 2 Let P2 denote the solution returned from our

algorithm, we have Eg_p[F (mP?)] > (1_%)‘;32(11;;1)) -F(m°)

where the expectation is taken over the random coin tosses
® (phase 1) and the random backup set B (phase 2).

If wesetp = f L in the first phase, we have the follow-
ing corollary.

f

Corollary 2 Letp = , we have Eg p[F(7P?)] > (1 —

ky.0.134 - F(7°).

The above corollary implies that when the size constraint
k remains relatively small compared to the overall number
of items n, our algorithm is capable of achieving a good ap-
proximation of the optimal result. This observation is partic-
ularly relevant in scenarios such as recommendation systems
where k is often much smaller than n.

Constant-Factor Approximation Algorithm for
Homogeneous Functions
Next, we will examine an important special case of P.2,

where we assume that all utility functions are homoge-
neous. This means that there exists a submodular function

15288

f 2V — R such that f; = f forall j € [k]. A formal
description of this special case is listed in below.

’P.Z maxx Y ;e As - [(7)) subject to || = k. ‘

Next, we present constant-factor approximation algo-
rithms for this special case, which represents an improve-
ment over the general case where we can only achieve an
approximation ratio based on k/n.

We consider two cases: when k& < n/2 and when k >
n/2. The case when k < n/2 is straightforward, as one can
directly apply our algorithm developed for the general case
(as presented in the previous section) to achieve a constant-
factor approximation. This is because when k < n/2, we
have 1—k/n > 1/2. This, together with Corollary 2, implies
the following corollary.

\/‘;’2_1, we have

) where m° is the optimal so-

Corollary 3 Assume k < n/2, let p =
Eg p[F(77%)] 2 ®3* - F(n°
lution of P.2.

The rest of this section focuses on the case when k > n/2.
For the sake of simplicity, let’s assume that n is an even
number. Considering the optimal solution 7°, we can parti-
tion its utility F'(7°) into two parts: F/(1°) = 3. 21 Aj -
F) + 2jeqaqa,m iy A - f((y)). Here, the ﬁrst part
represents the utility obtained from the first n/2 function-
s, while the second part represents the utility obtained from
the remaining k& — n/2 functions. We can further divide the
analysis into two subcases based on the relationship between
the utilities from these two parts. Intuitively, if the first part
dominates the overall utility, it suffices to find a sequence
that maximizes the utility from the first part. Otherwise, if
the second part contributes significantly to the overall utili-
ty, our focus is on finding a solution maximizes the second
part. Although we initially have no information about the re-
lationship between the two parts of the utility, given that 7°
is unknown, we can make a guess regarding this relation and
consider both possibilities. We can evaluate the performance
of each case and choose the one that yields the best overall
utility as the final output.

The Case When Zje[%] Aj ~f(7rfj]) > Zje{%+17___ K} E
f(ﬂ'[(;]) We first study the case when Zje[%] Aj .f(w[‘}]) >
Zje{%+17,,, s A - f(y), that is, the first n/2 functions
contributes more than half of the total utility. In this scenario,
our objective is to find a sequence that maximizes the utility

from the first part (a formal description of this problem is
listed in P.2a).

P2amax~ >,

(z) As - f(mg)) subject to || = k.

2

Let 7@ denote the optimal solution of P.2a, we have

DN S = Y0 N S F(m°)

j€ [2] JG n]

>

(6)

where the first inequality is because 7° is a feasible solution
of P.2a and the assumption that 7 is an optimal solution of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

P.2a, and the second inequality is by the fact that F'(7°) =
Zje[%] Aj - f(Wf}]) + Zje{g+1,---,k} Aj - f(ij]) and the
assumption that Zje[g] Aj - f(ﬁ[oﬂ) > Zje{%—kl,m,k}
! (Wf}])-

Now we are ready to present our algorithm. It is easy to
verify that if we replace the constraint |7| = k in P.2a by
|| = %, it does not affect the value of the optimal solution.
This is because those items placed after position n/2 do not
affect the utility of the first n/2 functions anyway. A formal
description of this variant is listed in P.2b.

A

) subject to || =

P2b maxrx 3 c(n, (2] Aj - fmy

Let 7 denote the optimal solution of P.2b, we have

SNt =D N f(x

jelz] j€lz]

where the equality is because, as previously discussed, P.2a
and P.2b share the same value of the optimal solution, and
the inequality is by inequality (6).

We can utilize our algorithm designed for the general case
to solve P.2b and derive a solution denoted as 7. Consider-
ing that the size constraint in P.2b is Z, we can substitute

27

5 into Corollary 2 and conclude that 7 provides a %—
approximation solution for P.2b, that is,
0.134
DN flag) = = Y A Fapy). @
jelz]

jelz]

However, m might not be a feasible solution for the origi-
nal problem P.2a, as its size might be less than k. To ensure
feasibility, we can append an arbitrary set of k — 5 items
from V' \ 7 to 7 to obtain the final solution 7. This step en-
sures that the solution satisfies the size constraint and makes
it feasible for P.2a. More importantly, this step does not af-
fect the utility of 7, given that any items placed after posi-
tion n/2 do not affect the utility of the first n/2 functions.
As a result, we achieve a 0-134_approximation for P.2, that
is, F() 2 S e A - F) = e Ay - Fmg) =
%'Zje[’—g] Aj ~f(7rf’j]) > 0132, F(7°) where the equality
is because, as previously discussed, any items placed after
position n/2 do not affect the utility of the first n/2 func-
tions, the second inequality by inequality (8) and the third
inequality is by inequality (7). This leads to the following
lemma.

Lemma 7 There exists a 2132

-approximation solution for

P2, assuming Zje[%] Aj - f(Wf}]) = Zje{%+17”wk} Aj
f(ﬂ[oj])~
The Case When ZJE[Aj - fmly) < Zje{ Bt kAN

f(m? For this case, we manage to design an algorithm
(4]

that achieves an approximation ratio of %434. We move this
part to the technical report (Tang and Yuan 2023).

15289

Putting It All Together Recall that we develop %134
approximation algorithms for the case when Zj elz] A

f(W[(;‘]) =z Zje{%-&-l,m,k} Aj - f(”f}]) and Zje[g] Aj -
f(mg) < Zje{%+l,~- k3 As-f () respectively. Although
we lack prior knowledge of the optimal solution, selecting
the superior solution between the aforementloned options

guarantees achieving an approximation ratio of 2134 1 4,

Experimental Evaluation

We conduct experiments on real-world datasets to evaluate
the impact of user type distributions in the context of video
recommendation. Suppose we are dealing with a large video
library, denoted as V/, containing videos spanning multiple
categories, each categorized as potentially overlapping sub-
sets, namely Cy,Co,...,C),, C V. When a user provides
a set of category preferences, our platform’s objective is to
generate a sequence of videos, denoted as 7, from those
specified categories that maximizes the expected user en-
gagement ;0 Aj- f(m;)). Recall that k denotes the max-

imum window s1ze of dlsplayed videos, and \; represents
the proportion of users with a specific patience level 7 who
are willing to view the first j videos 7[;1. Denote by U the s-
pace of user types, each user type u € U is specified by a pair
(4, f;(-)). The user considers the first j videos in the list and
obtains utility f;(7;1). The platform lacks precise knowl-
edge of the user’s exact type but is aware of the type distri-
bution D. We consider a common characterization of f;(-)
as a submodular function. Each video s has a rating p, and
we denote by wg: € [0, 1] some measure of the percentage of
similarity between any two videos s and ¢. In introducing our
function f;(-), we adopt the approach outlined in (Amana-
tidis et al. 2020). We start by considering the auxiliary objec-
tive g] (71—[.7]) = ZSEﬂ'[j] ZtEV Wst =1 Zseﬂ'[j] ZtEﬂ'[j]
for some n > 1 (Mirzasoleiman, Badanidiyuru, and Kar-
basi 2016). This objective takes inspiration from maximal
marginal relevance (Carbonell and Goldstein 1998), empha-
sizing coverage while penalizing similarity. To balance be-
tween highly-rated videos and those representing the entire
collection, we employ the submodular function f;(7;)) =

ZsEﬂ[]p9+6g]()fOI'OzB>O

Datasets. We evaluate our algorithms and benchmarks on
the latest MovieLens dataset (Harper and Konstan 2015),
consisting of 62,423 movies, of which 13,816 have both
user-generated tags and ratings. Similarities, represented as
wgy, are computed from these tags using pairwise minimum
tag vectors with more details forthcoming.

Algorithms and Parameters. We compare our proposed
sampling-based greedy algorithms (labeled as SG) against
two baselines, namely, COVDIV and QUALITY, under both
flexible length and fixed length settings. COVDIV iteratively
selects an item with the largest marginal utility in g; (7)),
i.e., the marginal relevance inspired objective, until no more
items with positive marginal utility can be found. COVDI-
V returns a sequence of items ranked in the same order as
they are selected. QUALITY is a simple ranking method
that orders individual items in non-increasing quality. Here
quality can be measured by average ratings or scores pre-

Wst,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

@) NSM with Flexible Length (|rT| < k)

1.25
2z
£ 1.00
2
Q075
Q N
3 N
(7
g 050 \
2
000 A T N 0 N 0 o N N 0 .
o o & o 5 o % o G o
\)\A«O@ W W W W W W2 WP W W W
mmm SG mes COVDIV === QUALITY
x10° b) NSM with Fixed Length (|rt| = k)
125
2z
£ 1.00
Q075 s
° K
2 0.50 \:0:
£ ANS
025 \':4 III
0.0 ";r\ T e o Y o o o o o o 6
o @ N 3 N % o & o
&«0?“ N N R LN SN NN \«\L‘ W
mmm SG mes COVDIV === QUALITY

Figure 1: SG achieves superior utility among all three algorithms under various user type distributions.

dicted by the recommender systems. Due to space limita-
tion and the results being similar for these metrics, we re-
port the results with average rating metric for QUALITY.
For user type distribution D, we use the normal mass func-
tion that approximates the normal distribution N (u, 02) to
set the values for \;, j € [k]. We explore the impact of us-
er type distribution on the performance of the algorithms
by varying the value of p and o. Each movie, denoted as
i, is linked to a tag vector t* € [0, 1]128, Within this vector,
each component represents the relevance score for an indi-
vidual tag. We employ a widely accepted model to quanti-
fy the similarity w;; between two videos, 7 and j, defined

as wi; = /312 (min{t], ¢/})? (Amanatidis et al. 2020).
This metric calculates the L2 norm of the element-wise min-
imum between ¢* and t/. We set = 35 and adjust the pa-
rameters ¢ and (3 to ensure that the two components in f;(-)
are roughly equal in magnitude. In each experimental set,
we perform 100 rounds and present the average results as
follows.

Experimental Results. We measure the performance of
the algorithms in terms of their expected utility with re-
spect to various user type distributions. As shown in Fig-
ure 1, we test under a uniform user type distribution where
Aj = 1/k,j € [k], labeled as UNIFORM on the z-axis.
We also report the results under the approximated normal
distribution with varying mean, u, labeled as M- on the
z-axis. In order to distinguish these two types of distribu-
tions, we add hatches on the bars for the uniform distri-
bution. In our experiments, we set k¥ = 500. Figure 1(a)
and (b) show the results for NSM with flexible length, i.e.,
|| < k, and that for NSM with fixed length, i.e., |7| = k, re-
spectively. It shows in Figure 1(a) that SG outperforms the
benchmarks under all tested user type distributions. While
the benchmarks yield an expected utility of 7.29 x 10° and
6.75 x 10° respectively under the uniform distribution, SG
yields an expected utility over 1.04 x 10°, a 43% increase.
Under the approximated normal distribution, the increase of

15290

1 indicates a higher number of videos viewed by average
users, leading to an increase in the expected utility for the
algorithms. QUALITY always returns a sequence of size k
as adding more videos always increases the sum of ratings.
However, our objective function is non-monotone, similar
videos added by QUALITY result in a lower expected utili-
ty as p further increases. SG and COVDIV only add items
with positive marginal utility. In our experiments, SG re-
turns a sequence of around 400 videos, and COVDIV returns
around 200 videos. As p further increases, their overall ex-
pected utility converge since most users will view all the
videos listed. We observe that SG outperforms both bench-
marks under all test settings. While QUALITY solely con-
siders the ratings of the items, COVDIV only considers their
capability of representing the whole collection. SG shows a
superior balance between the two. This result validates the
superiority of our proposed algorithm over the benchmarks.
Figure 1(b) illustrates the results for NSM with fixed length,
which means all three algorithms return a sequence of 500
videos. The results for QUALITY remain the same. We ob-
serve that under the uniform distribution, SG yields a lower
expected utility while COVDIV yields a higher one, com-
pared with the case of flexible length. We also observe that
under approximated normal distribution, the expected utility
of SG starts to decrease as u goes over 400, due to the nega-
tive contribution from the lastly added videos. The expected
utility of COVDIV peaks at ;4 = 250, and then declines. The
reason is that for 200 < u < 250, the increase in the total
rating is enough to compensate for the negative contribution
from g;(-), which does not hold any more as yx further in-
creases. Notably, SG outperforms the others, underscoring
our method’s advantage.

Acknowledgements

This work was supported in part by CAHSI-Google institu-
tional Research Program.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

References

Alaei, S.; Makhdoumi, A.; and Malekian, A. 2010. Max-
imizing sequence-submodular functions and its application
to online advertising. arXiv preprint arXiv:1009.4153.
Amanatidis, G.; Fusco, F.; Lazos, P.; Leonardi, S.; and Reif-
fenhiuser, R. 2020. Fast Adaptive Non-Monotone Submod-
ular Maximization Subject to a Knapsack Constraint. In Ad-
vances in neural information processing systems.
Asadpour, A.; Niazadeh, R.; Saberi, A.; and Shameli, A.
2022. Sequential Submodular Maximization and Applica-
tions to Ranking an Assortment of Products. Operations
Research.

Azar, Y.; and Gamzu, 1. 2011. Ranking with submodu-
lar valuations. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, 1070-1079.
SIAM.

Buchbinder, N.; and Feldman, M. 2019. Constrained
submodular maximization via a nonsymmetric technique.
Mathematics of Operations Research, 44(3): 988-1005.
Buchbinder, N.; Feldman, M.; Naor, J.; and Schwartz,
R. 2014. Submodular maximization with cardinality
constraints. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms, 1433-1452.
SIAM.

Carbonell, J.; and Goldstein, J. 1998. The use of MMR,
diversity-based reranking for reordering documents and pro-
ducing summaries. In Proceedings of the 21st annual inter-
national ACM SIGIR conference on Research and develop-
ment in information retrieval, 335-336.

Das, A.; and Kempe, D. 2008. Algorithms for subset se-
lection in linear regression. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, 45-54.
Das, A.; and Kempe, D. 2011. Submodular meets spectral:
greedy algorithms for subset selection, sparse approxima-
tion and dictionary selection. In Proceedings of the 28th In-
ternational Conference on International Conference on Ma-
chine Learning, 1057-1064.

Gharan, S. O.; and Vondrék, J. 2011. Submodular max-
imization by simulated annealing. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete
Algorithms, 1098-1116. STAM.

Golovin, D.; and Krause, A. 2011. Adaptive submodulari-
ty: Theory and applications in active learning and stochastic
optimization. Journal of Artificial Intelligence Research, 42:
427-486.

Gotovos, A.; Karbasi, A.; and Krause, A. 2015. Non-
monotone adaptive submodular maximization. In Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence.

Harper, F. M.; and Konstan, J. A. 2015. The movielens
datasets: History and context. Acm transactions on inter-
active intelligent systems (tiis), 5(4): 1-19.

Lin, H.; and Bilmes, J. 2010. Multi-document summariza-
tion via budgeted maximization of submodular functions. In
Human Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association for
Computational Linguistics, 912-920.

15291

Lin, H.; and Bilmes, J. 2011. A class of submodular func-
tions for document summarization. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, 510-520.

Mirzasoleiman, B.; Badanidiyuru, A.; and Karbasi, A. 2016.
Fast Constrained Submodular Maximization: Personalized
Data Summarization. In /ICML, 1358-1367.

Tang, S. 2021. Beyond pointwise submodularity: Non-
monotone adaptive submodular maximization in linear time.
Theoretical Computer Science, 850: 249-261.

Tang, S.; and Yuan, J. 2020. Influence maximization with
partial feedback. Operations Research Letters, 48(1): 24—
28.

Tang, S.; and Yuan, J. 2021a. Adaptive Regularized Sub-
modular Maximization. In 32nd International Symposium
on Algorithms and Computation (ISAAC 2021). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik.

Tang, S.; and Yuan, J. 2021b. Cascade Submodular Maxi-
mization: Question Selection and Sequencing in Online Per-
sonality Quiz. Production and Operations Management,
30(7): 2143-2161.

Tang, S.; and Yuan, J. 2022. Optimal Sampling Gaps for
Adaptive Submodular Maximization. In AAAL

Tang, S.; and Yuan, J. 2023. Non-monotone Sequential Sub-
modular Maximization. arXiv preprint arXiv:2308.08641.
Tschiatschek, S.; Singla, A.; and Krause, A. 2017. Selecting
sequences of items via submodular maximization. In Thirty-
First AAAI Conference on Artificial Intelligence.

Zhang, G.; Tatti, N.; and Gionis, A. 2022. Ranking with sub-
modular functions on a budget. Data mining and knowledge
discovery, 36(3): 1197-1218.

