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Abstract

Unsupervised and self-supervised representation learning
has become popular in recent years for learning useful fea-
tures from unlabelled data. Representation learning has been
mostly developed in the neural network literature, and other
models for representation learning are surprisingly unex-
plored. In this work, we introduce and analyze several kernel-
based representation learning approaches: Firstly, we define
two kernel Self-Supervised Learning (SSL) models using con-
trastive loss functions and secondly, a Kernel Autoencoder
(AE) model based on the idea of embedding and reconstruct-
ing data. We argue that the classical representer theorems
for supervised kernel machines are not always applicable for
(self-supervised) representation learning, and present new
representer theorems, which show that the representations
learned by our kernel models can be expressed in terms of ker-
nel matrices. We further derive generalisation error bounds
for representation learning with kernel SSL and AE, and em-
pirically evaluate the performance of these methods in both
small data regimes as well as in comparison with neural net-
work based models.

Introduction

Representation learning builds on the idea that for most data,
there exists a lower dimensional embedding that still retains
most of the information useful for a downstream task (Ben-
gio, Courville, and Vincent 2013). While early works relied
on pre-defined representations, including image descriptors
such as SURF (Bay, Tuytelaars, and Van Gool 2006) or SIFT
(Lowe 1999) as well as bag-of-words approaches, over the
past decade the focus has moved to representations learned
from data itself. Across a wide range of tasks, including im-
age classification and natural language processing (Bengio,
Courville, and Vincent 2013), this approach has proven to
be more powerful than the use of hand-crafted descriptors.
In addition, representation learning has gained increasing
popularity in recent years as it provides a way of taking ad-
vantage of unlabelled data in a partially labelled data setting.
Since the early works, methods for representation learning
have predominantly relied on neural networks and there
has been little focus on other classes of models. This may be
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part of the reason why it is still mostly driven from an exper-
imental perspective. In this work, we focus on the following
two learning paradigms that both fall under the umbrella of
representation learning:

Self-Supervised representation learning using con-
trastive loss functions has been established in recent years
as an important method between supervised and unsuper-
vised learning as it does not require explicit labels but re-
lies on implicit knowledge of what makes samples seman-
tically close to others. Therefore SSL builds on inputs and
inter-sample relations (X, X), where X is often constructed
through data-augmentations of X known to preserve input
semantics such as additive noise or horizontal flip for an
image (Kanazawa, Jacobs, and Chandraker 2016). While the
idea of SSL is not new (Bromley et al. 1993) the main focus
has been on deep SSL models, which have been highly suc-
cessful in domains such as computer vision (Chen et al. 2020;
Jing and Tian 2019) and natural language processing (Misra
and Maaten 2020; Devlin et al. 2019).

Unsupervised representation learning through re-
construction relies only on a set of features X without
having access to the labels. The high level idea is to map the
data to a lower dimensional latent space, and then back to
the features. The model is optimised by minimising the dif-
ference between the input data and the reconstruction. This
has been formalized through principal component analysis
(PCA) (Pearson 1901) and its nonlinear extension Kernel PCA
(Scholkopf, Smola, and Miller 1998). While few approaches
exist in traditional machine learning, the paradigm of repre-
sentation through reconstruction has built the foundation of
alarge number of deep learning methods. Autoencoders (AE)
(Kramer 1991) use a neural network for both the embedding
into the latent space as well as for the reconstruction. The
empirical success of autoencoders has given rise to a large
body of work, developed for task specific regularisation (e.g.
(Yang et al. 2017)), as well as for a wide range of applications
such as image denoising (Buades, Coll, and Morel 2005a),
clustering (Yang et al. 2017) or natural language processing
(Zhang et al. 2022). However, their theoretical understanding
is still limited to analyzing critical points and dynamics in
shallow linear networks (Kunin et al. 2019; Pretorius, Kroon,
and Kamper 2018; Refinetti and Goldt 2022).

An extended version including proofs can be found at
https://arxiv.org/abs/2309.02028
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Kernel representation learning. In spite of the
widespread use of deep learning, other models are still ubiq-
uitous in data science. For instance, decision tree ensembles
are competitive with neural networks in various domains
(Shwartz-Ziv and Armon 2022; Rof3bach 2018; Gu, Kelly, and
Xiu 2020), and are preferred due to interpretability. Another
well established approach is kernel methods, which we will
focus on in this paper. At an algorithmic level, kernel meth-
ods rely on the pairwise similarities between datapoints,
denoted by a kernel k(x,x”). When the map k is positive
definite, k(x, x”) corresponds to the inner product between
(potentially infinite-dimensional) nonlinear transformations
of the data, and implicitly maps the data to a reproduc-
ing kernel Hilbert space (RKHS) H through a feature map
¢ : X > H that satisfies k(x, x”) = (#(x), p(x”)). Thus, any
algorithm that relies exclusively on inner products can im-
plicitly be run in H by simply evaluating the kernel k. Kernel
methods are among the most successful models in machine
learning, particularly due to their inherently non-linear and
non-parametric nature, that nonetheless allows for a sound
theoretical analysis. Kernels have been used extensively in
regression (Kimeldorf and Wahba 1971; Wahba 1990) and
classification (Cortes and Vapnik 1995; Mika et al. 1999).
Since representation learning, or finding suitable features,
is a key challenge is many scientific fields, we believe there
is considerable scope for developing such models in these
fields. The goal of this paper is to establish that one can con-
struct non-parametric representation learning models, based
on data reconstruction and contrastive losses. By reformulat-
ing the respective optimisation problems for such models
using positive definite kernels (Aronszajn 1950; Scholkopf
and Smola 2002), we implicitly make use of non-linear fea-
ture maps ¢(-). Moreover, the presented approaches do not
reduce to traditional (unsupervised) kernel methods. In the
reconstruction based setting we define a Kernel AE and also
present kernel-based self-supervised methods by consider-
ing two different contrastive loss functions. Thereby, our
work takes a significant step towards this development by
decoupling the representation learning paradigm from deep
learning. To this end, kernel methods are an ideal alternative
since (i) kernel methods are suitable for small data problems
that are prevalent in many scientific fields (Xu et al. 2023;
Todman, Bush, and Hood 2023; Chahal and Toner 2021);
(ii) kernels are non-parametric, and yet considered to be
quite interpretable (Ponte and Melko 2017; Hainmueller and
Hazlett 2014); and (iii) as we show, there is a natural trans-
lation from deep SSL to kernel SSL, without compromising
performance.

Contributions. The main contributions of this work is
the development and analysis of kernel methods for recon-
struction and contrastive SSL models. More specifically:

1. Kernel Contrastive Learning. We present kernel variants of
a single hidden layer network that minimises two popular
contrastive losses. For a simple contrastive loss (Saunshi
et al. 2019), the optimisation is closely related to a kernel
eigenvalue problem, while we show that the minimisa-
tion of spectral contrastive loss (HaoChen et al. 2021) in
the kernel setting can be rephrased as a kernel matrix
based optimisation.
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2. Kernel Autoencoder. We present a Kernel AE where the
encoder learns a low-dimensional representation. We
show that a Kernel AE can be learned by solving a kernel
matrix based optimisation problem.

3. Theory. We present an extension to the existing represen-
ter theorem under orthogonal constraints. Furthermore
we derive generalisation error bounds for the proposed
kernel models in which show that the prediction of the
model improve with increased number of unlabelled data.

4. Experiments. We empirically demonstrate that the three
proposed kernel methods perform on par or outperform
classification on the original features as well as Kernel
PCA and compare them to neural network representation
learning models.

Related Work (Johnson, Hanchi, and Maddison 2022)
show that minimising certain contrastive losses can be in-
terpreted as learning kernel functions that approximate a
fixed positive-pair kernel, and hence, propose an approach
of combining deep SSL with Kernel PCA. Closer to our work
appears to be (Kiani et al. 2022), where the neural network
is replaced by a function learned on the RKHS of a kernel.
However, their loss functions are quite different from ours.
Moreover, by generalising the representer theorem, we can
also enforce orthonormality on the embedding maps from
the RKHS itself. (Zhai et al. 2023) studies the role of augmen-
tations in SSL through the lense of the RKHS induced by an
augmentation. (Shah et al. 2022) present a margin maximi-
sation approach for contrastive learning that can be solved
using kernel support vector machines. Their approach is
close to our simple contrastive loss method (Definition 1),
but not the same as we obtain a kernel eigenvalue prob-
lem. While (Johnson, Hanchi, and Maddison 2022; Shah et al.
2022) consider specific contrastive losses, we present a wider
range of kernel SSL models, including Kernel AE, and pro-
vide generalisation error bounds for all proposed models.

Notation We denote matrices by bold capital letters A,
vectors as a, and I, for an identity matrix of size m € IN. For
a given kernel k : R? x RY - R, we denote ¢ : R H
for its canonical feature map into the associated RKHS H.
Given data xi,...,x, collected in a matrix X € R¥", we
write ® := (4(x1), ..., P(x,)) and define Hx as the finite-
dimensional subspace spanned by ®. Recall that H can be
decomposed as Hy @ Hy. We denote by K = ®'d € R™"
the kernel matrix, and define k(x’, X) = ®'¢(x”). Through-
out the paper we assume n datapoints are used to train the
representation learning model, which embeds from R? into a
h-dimensional space. On a formal level, the problem could be
stated within the generalised framework of matrix-valued
kernels K : R x R? — R"™" because the vector-valued
RKHS H(K) associated with a matrix-valued kernel K nat-
urally contains functions W that map from R? to R". For
the scope of this paper however, it is sufficient to assume
K(x,y) = Ip,-k(x, y) for some scalar kernel k(x, y) with real-
valued RKHS H. Then, the norm of any W € H(K) is simply
the Hilbert-Schmidt norm that we denote as [W| = W],
(for finite-dimensional matrices, the Frobenius norm), and
learning the embedding from R? to R" reduces to learning
h individual vectors wy, ..., w;, € H. In other words, we can
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interpret W € H(K) as a (potentially infinite-dimensional)
matrix with columns wy,...,w, € H, sometimes writing
W = (w4, ..., wp) for notational convenience. To underline
the similarity with the deep learning framework, we denote
WTh(x) = (Wi pOODIL, = (Wi(x), ... wi(x)) € R", where
we invoke the reproducing property of the RKHS H in the
last step. We denote by W* the adjoint operator of W (in a
finite-dimensional setting, W* simply becomes the transpose
WT). The constraint W*W = I}, enforces orthonormality be-
tween all pairs (w;, w;); j<n.

Representer Theorems

In principle, kernel methods minimise a loss functional £
over the entire, possibly infinite-dimensional RKHS. It is
the celebrated representer theorem (Kimeldorf and Wahba
1971; Scholkopf, Herbrich, and Smola 2001) that ensures the
practical feasibility of this approach: Under mild conditions
on the loss L, the optimiser is surely contained within the
finite-dimensional subspace Hx. For example, in standard
kernel ridge regression, the loss functional L is simply the
regularised empirical squared error

Lw) =, (wx) = y)* + Awl
i=1

The fact that all minimisers of this problem indeed lie in
Hx can be seen by simply decomposing H = Hyx & Hx,
observing that w(x;) = 0 for all w € H3, and concluding
that projecting any w onto H can only ever decrease the
functional L. This very argument can be extended to rep-
resentation learning, where regularisation is important to
avoid mode collapse. We formally state the following result.

Theorem 1. (Representer Theorem for Representation Learn-
ing) Given data x1, ..., x,, denote by Lx(wy,...,wy) a loss
functional on H" that does not change whenever wy, ..., wy
are projected onto the finite-dimensional subspace Hx spanned
by the data. Then, any minimiser of the regularised loss func-
tional

LW, ..., wn) = Lx(wi, ..., wn) + AWy
consists of wy, ..., wy, € Hy.

This justifies the use of kernel methods when the norm
of the embedding map is penalized. However, it does not
address loss functionals £ that instead impose an orthonor-
mality constraint on the embedding W' It is natural to ask

when a representer theorem exist for these settings as well.
Below, we give a necessary and sufficient condition.
Theorem 2 (Representer theorem under orthonormal-
ity constraints). Given data X and an embedding dimension
heNletl : H" > R bea loss function that vanishes on
Hy;. Assumedim(Hy ) > h. Consider the following constrained
minimisation problem over wy,...,w, € H

minimise L(w1, ..., wWp)

st. W'W =1,

Furthermore, consider the inequality-constrained problem over

Hx

(1)

. Wh)
st. WIw < I, andwy,...,wy € Hx

minimise L(w1, ...

()

11912

Then, every minimiser of (1) is contained in H" if and only if
every minimiser of (2) satisfies WIW = I,.

In practice, the conditions (2) can often be verified directly
by checking the gradient of £ on Hy, or under orthonormal-
ization (see Appendix). Together with the standard represen-
ter theorem, this guarantees that kernel methods can indeed
be extended to representation learning — without sacrific-
ing the appealing properties that the representer theorem
provides us with.

Representation Learning with Kernels

Building on this foundation, we can now formalize the pre-
viously discussed representation learning paradigms in the
kernel setting — namely SSL using contrastive loss functions,
as well as unsupervised learning through reconstruction
loss.

Simple Contrastive Loss

For convenience, we restrict ourselves to a triplet setting
with training samples (x;, x;, x;),i = 1,..., n. The idea is to
consider an anchor image x;, a positive sample x; generated
using data augmentation techniques, as well as an indepen-
dent negative sample x; . The goal is to align the anchor more
with the positive sample than with the independent negative
sample. In the following, we consider two loss functions that
implement this idea.
In both cases, we kernelize a single hidden layer, mapping
data x € R? to an embedding z € R".
xeR? ), red % zeRrn

®)

We start with a simple contrastive loss inspired by (Saun-
shi et al. 2019), with additional regularisation. Intuitively,
this loss directly compares the difference in alignment be-
tween the anchor and the positive an the anchor and the
negative sample. Formally, we define it as follows.

Definition 1 (Contrastive Kernel Learning). We learn a
representation of the form fiy(x) = WT¢(x) (see mapping
in Eq. 3) by optimising the objective function

L= Z fwGe)" (fw(x) = fwlx)))

st. W'W =1,

4

By verifying the conditions of Theorem 2, we reduce the

problem to a finite-dimensional optimisation. Theorem 3
then provides a closed from solution to the optimisation
problem in Eq. 4.
Theorem 3 (Closed Form Solution and Inference at Op-
timal parameterization). Consider the optimisation prob-
lem as stated in Definition 1. Let X, X", X~ € R denote
the data corresponding to the anchors, positive and negative
samples, respectively. Define the kernel matrices

K= [k(xi,xj)] N K_= [k(xi,x;)] y
K, = [k(xi,x;r)] y K__= [k(xi_,x-_)]i’j
K,, = [k(x;r,x;r)] K_, = [k(xf,x;r)]

i,j ij
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Furthermore, define the matrices K3 = K_ — K, as well as

K K
Ky=K _+K, —K_—K", 1<1=[K3 KZ]

KZ:—% (B+B").

B= [IEZ] [k K_--K.]

Let A, consist of the top h eigenvectors of the matrix
KII/ZKZKIW, which we assume to have h non-negative eigen-

values. Let A = KII/ZAZ. Then, at optimal parameterization,
the embedding of any x* € R? can be written in closed form as

k(x*,X)

* _ AT
F A ke X0 - kG X

Spectral Contrastive Loss

Let us now consider a kernel contrastive learning based
on an alternative, commonly used spectral contrastive loss
function (HaoChen et al. 2021).

Definition 2 (Spectral Kernel Learning). We learn a rep-
resentation of the form fiy(x) = W @(x) (see mapping in
Eq. 3) by optimising the following objective function, L:

n
L=y 2w fuled) + () fule) + AW,
i=1
For universal kernels, we can directly rewrite the loss
function using the kernel trick and optimise it using sim-
ple gradient descent. This allows us to state the following
result, which yields an optimisation directly in terms of the
embeddings z, ..., z, € R".

Theorem 4 (Gradients and Inference at Optimal Param-
eterization). Consider the optimisation problem as stated in
Definition 2, with K denoting the kernel matrix of a universal
kernel. Then, we can equivalently minimise the objective w.r.t.
the embeddings Z € R™®". Denoting by z1, ..., 23, the columns
of Z, the loss to be minimised becomes
n
min Z -2zl zjn + (ziTzi+2n)2 +A-Tr(zK'Z")

ZeRhx3n
i=1

The gradient of the loss function in terms of Z is therefore
given by
—2Ziin + 2(2] Zivon)Zivan .1 € [n]
20ZK ' + {2z, ,i€[n+1,2n]
2(2] zi—an)Zi-n ,i€[2n+1,3n]

For any new point x* € RY, the trained model maps it to
z¥ 1= ZK (X, x).

Kernel Autoencoders

In general, AE architectures involve mapping the input to a
lower dimensional latent space (encoding), and then back
to the reconstruction (decoding). In this work we propose a
Kernel AE, where both encoder and decoder correspond to
kernel machines, resulting in the mapping

xeRd¢'—O>r1eHI&zeﬂ?h&rzeHtheRd
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where typically h < d. While several materializations of this
high-level idea come to mind, we define the Kernel AE as
follows.

Definition 3 (Kernel AE). Given data X € R®" and a
regularisation parameter A > 0, define the loss functional

2
LWL W) =X - Wi, (Wig: (0)]

+ 2 (W5, + IW-l3,)
The Kernel AE corresponds to the optimisation problem

Jmin LW, W)

; , . (5)
st [Wid(x)|° =1Vie[n]

Let us justify our choice of architecture briefly. Firstly, we
include norm regularisations on both the encoder as well as
the decoder. This is motivated by the following observation:
When the feature map ¢, maps to the RKHS of a univer-
sal kernel, any choice of n distinct points z, ..., z, in the
bottleneck allows for perfect reconstruction. We therefore
encourage the Kernel AE to learn smooth maps by penal-
izing the norm in the RKHS. In addition, we include the
constraint [WT¢(x,)|> = 1V i € [n] to prevent the Kernel AE
from simply pushing the points z4, ..., z, to zero. This hap-
pens whenever the impact of rescaling z; affects the norm
of the encoder W, differently from the decoder W, (as is
the case for commonly used kernels such as Gaussian and
Laplacian). Nonetheless, we stress that other choices of reg-
ularisation are also possible, and we explore some of them
in the Appendix.

While a closed form solution of Definition 3 is difficult to
obtain, we show that for universal kernels, the optimisation
can again be rewritten in terms of kernel matrices.

Theorem 5 (Kernel formulation and inference at opti-
mal parameterization). For any bottleneck Z € R"™", define
the reconstruction

Q(Z) = X(Kz + A,) 'Kz

For universal kernels, learning the Kernel AE from Definition 3
is then equivalent to minimising the following expression over
all possible embeddings Z € R"™":

10(Z) - X|* + A Tr (ZK ' Z" + QK ;' Q")
s.t. |zil® = 1vi € [n]
Given Z, any new x* € R4 is embedded in the bottleneck as
z" = ZK'k(x*, X)
and reconstructed as
=X Kz + L) k(z",2)

Remark 1 (Connection to Kernel PCA). In light of the
known connections between linear autoencoders and stan-
dard PCA, it is natural to wonder how above Kernel AE re-
lates to Kernel PCA (Schoélkopf, Smola, and Miiller 1998). The
latter performs PCA in the RKHS H, and is hence equivalent
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to minimising the reconstruction error over all orthogonal
basis transformations W in H
n
2
LW) = Y, [¢x) = WPy W () (6)
i=1
where Py, denotes the projection onto the first h canonical
basis vectors, and we assume that the features ¢(x;) are
centered. How does the Kernel AE W1¢,(WT#,(x)) relate
to this if we replace the regularisation terms on W, W, by
an orthogonality constraint on both? For simplicity, let us

assume h = 1. The optimisation problem then essentially
becomes

L= x; = W (W, (x)I*

i=1

(7)

where W, : R? > R is a function from the RKHS over
R (with unit norm), and W, : R — R? consists of d or-
thonormal functions from the RKHS over R. Clearly, Eq. 7
evaluates the reconstruction error in the sample space, much
in contrast to the loss function in Eq. 6 which computes dis-
tances in the RKHS. Additionally, the map W7 learned in
Eq. 6 from the bottleneck back to H is given by the basis
transformation W in Kernel PCA, whereas it is fixed as the
feature map ¢ over R” in the AE setting. Kernel PCA can be
viewed as an AFE architecture that maps solely within H, via

$(x) > We(x) > PLW(x) > W' P,W(x).

Notably, the results of Kernel PCA usually do not translate
back to the sample space easily. Given a point x € R?, the
projection of ¢(x) onto the subspace spanned by Kernel PCA
is not guaranteed to have a pre-image in R?, and a direct
interpretation of the learned representations can therefore
be difficult. In contrast, our method is quite interpretable, as
it also provides an explicit formula for the reconstruction x*
of unseen data points — not just their projection onto a sub-
space in an abstract Hilbert space. In particular, by choosing
an appropriate kernel' and tuning the regularisation param-
eter A, a practitioner may directly control the complexity of
both decoder as well as the encoder.

Remark 2 (De-noising Kernel AE). In this section, we
considered the standard setting where the model learns the
reconstruction of the input data. A common extension is
the de-nosing setting (e.g. (Buades, Coll, and Morel 2005b;
Vincent et al. 2010)), which formally moves the model from
a reconstruction to a SSL setting, where we replace the input
with a noisy version of the data. The goal is now to learn a
function that removes the noise and, in the process, learns
latent representations. More formally, the mapping becomes

[210) ¢)

xeRI 2S5 reH, —zeR Z5 e H, — x e R

where X is given by X := x + ¢ with ¢ being the noise
term. A precise formulation is provided in the Appendix. We
again note that the simple extension to this setting further
distinguishes our approach from Kernel PCA, where such
augmentations are not as easily possible.

The choice of kernel could be influenced by the type of func-
tions that are considered interpretable in the domain of application.
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Generalisation Error Bounds

Kernel methods in the supervised setting are well estab-
lished and previous works offer rigorous theoretical anal-
ysis (Wahba 1990; Schélkopf and Smola 2002; Bartlett and
Mendelson 2002). In this section, we show that the proposed
kernel methods for contrastive SSL as well as for the re-
construction setting can be analysed in a similar fashion,
and we provide generalisation error bounds for each of the
proposed models.

Error Bound for Representation Learning Setting

In general we are interested in characterizing L(f) =
Ex-p [[(f(X))] where f(X) is the representation function
and I() is a loss function, which is either a contrastive loss
or based on reconstruction. However, since we do not have
access to the distribution of the data D, we can only ob-
serve the empirical (training) error, L( =13 1(f(X)),
where n is the number of unlabelled datapoints we can char-
acterise the generalisation error as

L(f) < E( f) + complexity term + slack term

The exact form of the complexity and slack term depends on
the embeddings and the loss. In the following, we precisely
characterise them for all of the proposed models.
Theorem 6 (Error Bound for Kernel Contrastive Loss).
LetF := {X > W (X) : Wy < w} be the class of em-
bedding functions we consider in the contrastive setting. Define
a = (\/hTr [Kx]+ \/hTr [Kx-]+ \/hTr [KX+]) as well as
x :=max { k(x],x]) : x| € {x;,x;,x/ Y, }. We then obtain
the generalisation error for the proposed losses as follows.

1. Simple Contrastive Loss. Let the loss be given by Defini-
tion 1. Then, for any & > 0, the following statement holds
with probability at least 1 — 6 for any f € F:

L < E(f)+o(“’2 IKE | e /1g6>

Spectral Contrastive Loss. Let the loss be given by Defi-
nition 2. Then, for any § > 0, the following statement holds
with probability at least 1 — 6 for any f € F:

R ICT
n

Similarly to the contrastive setting, we obtain a generali-
sation error bound for the Kernel AE as follows.

Theorem 7 (Error Bound for Kernel AE). Assume the
optimisation be given by Definition 3 and define the class of
encoders/decoders as

F o= {X > Wig, (Wig (X)) :
IWT gl =19 i, Wl < o1, Wy < @, )

Letr := Mw? + 3) andy = max,r {k(s,s) : [s|* =1}.
Then for any & > 0, the following statement holds with proba-
bility at least 1 — § for any f € F:

3
WKz

£(f)gE(f)+o<m2+

LAy < 45 + 0 < + wzf? + 1g5>
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The above bounds demonstrate that with increasing num-
ber of unlabelled datapoints, the complexity term in the
generalisation-error bound decreases. Thus, the proposed
models follow the general SSL paradigm of increasing the
number of unlabelled data to improve the model perfor-
mance.

Error Bound for Supervised Downstream Task

While the above bounds provide us with insights on the gen-
eralisation of the representation learning setting, in most
cases we are also interested in the performance on down-
stream tasks. Conveniently, we can use the setup presented
in (Saunshi et al. 2019) to bound the error of the supervised
downstream tasks in terms of the unsupervised loss, provid-
ing a bound of the form

Lap(f) < 1Lon(f) + ¢1 * complexity term

where c; and ¢, are data dependent constants. We present
the formal version of this statement in the supplementary
material for all presented models.

This highlights that a better representation (as given by
a smaller loss of the unsupervised task) also improves the
performance of the supervised downstream task.

Experiments

In this section we illustrate the empirical performance of the
kernel-based representation learning models introduced in
this paper. As discussed in the introduction, there is a wide
range of representation learning models, that are often quite
specific to the given task. We mainly consider classification
in a setting with only partially labelled data at our disposal,
as well as image de-noising using the Kernel AE. We state
the main setup and results in the following?.

Classification on Embedding

Data. In this section, we consider the following four datasets:
concentric circles, cubes (Pedregosa et al. 2011), Iris (Fisher
1936) and Ionosphere (Sigillito. et al. 1989). We fix the fol-
lowing data split: unlabelled = 50%, labelled = 5% and
test = 45%, and consider h = 2 as the embedding dimension.

Classification task using k nearest neighbours (k-nn)
using embedding as features. We investigate classifica-
tion as an example of a supervised downstream task. The
setting is the following: We have access to X q. and X,
datapoints, which we use to train the representation learn-
ing model without access to labels. Then, as the downstream
classification model, we consider a k-nn model (with k = 3)
learned on the embedding of X, , with corresponding labels
Y. We test on X e, Yiesr- As a benchmark, we compare to
k-nn both on the original features as well as on the embed-
dings obtained by standard Kernel PCA.

Choice of kernel and their parameterization. For
the proposed kernel methods as well as for Kernel PCA we
consider three standard kernels, Gaussian, Laplacian and

*We provide all further details (as well as experiments on addi-
tional datasets) in the arxiv version.
We provide a Python implementation on https://github.com/
pascalesser/Representation-Learning-with-Kernels.

11915

$ 1 1 I 1 l
3] ' vl I . il \ |
5 )
©0
2 11 i [
2 , i, |
=]
o
1 E
(2] Ll L A} ]
E ik Laght :
00
3 1+
5 | Y| | It ' U]
2 |
20 . : : : T
S Original Kernel SSL SSL Kernel
PCA simple spectral AE
Lin. RelLU —— Gaus. Lap.

Figure 1: From left to right: we first consider k-nn on the
original features followed by k-nn on embeddings obtained
by Kernel PCA, and the proposed methods.

linear kernels as well as a 1-layer ReLU Kernel (Bietti and
Bach 2021). For Gaussian and Laplacian kernel we choose
the bandwidth using a grid search over 15 steps spaced
logarithmically between 0.01 and 100. We perform leave-one-
out validation on X, to pick the bandwidth of the method
applied to the test set. The classification experiments on
the above listed datasets are present in Figure 1. All results
show the mean and standard deviation over five splits of
each dataset. It is apparent throughout the experiments that
the choice of kernel plays a significant role in the overall
performance of the model. This dependency is not surprising,
as the performance of a specific kernel directly links to the
underlying data-structure, and the choice of kernel is an
essential part of the model design. This is in accordance with
existing kernel methods — and an important future direction
is to analyze what kernel characteristics are beneficial in a
representation learning setting.

Comparison of supervised and representation learn-
ing. As stated in the introduction (and supported theoreti-
cally in the previous section), the main motivation for repre-
sentation learning is to take advantage of unlabelled data by
learning embeddings that outperform the original features
on downstream tasks. To evaluate this empirically for the
kernel representation learning models analyzed in this paper,
we compare k-nn on the original data to k-nn on the em-
beddings as shown in Figure 1. We observe that for Circles,
Cubes, Iris and Ionosphere there always exists an embedding
that outperforms k-nn on the original data.

Comparing different embedding methods. Having
observed that learning a representation before classification
is beneficial, we now focus on the different embedding ap-
proaches. While the performed experiments do not reveal
clear trends between different methods, we do note that the
proposed methods overall perform on par or outperform
Kernel PCA, underlining their relevance for kernel SSL.
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Figure 2: Comparison of kernel methods and neural network
models for classification.
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Figure 3: De-noising using NN AE with and Kernel AE.

Comparison to Neural Networks for
Classification and De-noising

Representation learning has mainly been established in
the context of deep neural networks. In this paper, we
make a step towards decoupling the representation learn-
ing paradigm from the widely used deep learning models.
Nonetheless, we can still compare the proposed kernel meth-
ods to neural networks. We construct the corresponding NN
model by replacing the linear function in the reproducing
kernel Hilbert space, W' $#(x) by an one-hidden layer neural
network W,o(W,x), where o(-) is a non-linear activation
function (and we still minimise a similar loss function).

Classification. We compare the performance of both
representation learning approaches in Figure 2 for datasets
CIFAR-10 (Krizhevsky, Hinton et al. 2009), as well as a subset
of the first two classes of MNIST (Deng 2012) (i.e. n = 500).
We observe that the kernel methods perform on par with,
or even outperform the neural networks. This indicates that
there is not one dominant approach but one has to choose
depending on the given task.

De-Noising. As a second task, we consider de-noising us-
ing (Kernel) AE. Data is sampled from the first five classes of
MNIST, CIFAR-10 and SVHN (Netzer et al. 2011) with n = 225
and the noisy version are generated by ¥ := x + ¢, & ~
N(0,0.1). We compare the performance of kernel-based
approaches with the neural network reconstructions in Fig-
ure 3 by plotting the mean square error on the test set be-
tween the AE output and the clean data. Kernel AE out-
performs the neural network AE in all considered settings.
Moreover, there is little variation among the different ker-
nels. This indicates that at least in the presented settings,
the proposed kernel methods pose a viable alternative to
traditional neural network based representation learning.

Formal connection between Kernel and neural net-
work model. While it is known that regression with infinite-
width networks is equivalent to kernel regression with neu-
ral tangent kernel (NTK) (Jacot, Gabriel, and Hongler 2018;
Arora et al. 2019), similar results are not known for SSL and
this brings up the question: Is kernel SSL equivalent to SSL
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with infinitely-wide neural networks? It is possible to show
that single-layer Kernel AE with NTK is the infinite-width
limit of over-parameterized AE (Nguyen, Wong, and Hegde
2021; Radhakrishnan, Belkin, and Uhler 2020). We believe
that the same equivalence also holds for kernel contrastive
learning (Definition 1) with NTK, but leave this as an open
problem. We do not know if Definition 3 with NTK is the
limit for bottleneck deep learning AE since, as we note ear-
lier, there is no unique formulation for Kernel AE.

Discussions and Outlook

In this paper, we show that new variants of representer
theorem allows one to rephrase SSL optimisation problems
or the learned representations in terms of kernel functions.
The resulting kernel SSL models provide natural tools for
theoretical analysis. We believe that presented theory and
method provide both scope for precise analysis of SSL and can
also be extended to other SSL principles, such as other pretext
tasks or joint embedding methods (Saunshi et al. 2019; Bardes,
Ponce, and LeCun 2022; Grill et al. 2020; Chen and He 2020).
We conclude with some additional discussions.

Computational limitations and small dataset setting.
Exactly computing kernel matrices is not scalable, however
random feature (RF) approximations of kernel methods are
well suited for large data (Rahimi and Recht 2007; Carratino,
Rudi, and Rosasco 2018). While one may construct scalable
kernel representation learning methods using RF, it should
be noted that RF models are lazy-trained networks (Ghorbani
et al. 2019). So fully-trained deep representation learning
models may be more suitable in such scenarios. However
representation learning is relevant in all problems with avail-
ability of partially labelled data. This does not only apply
to the big data regime where deep learning approaches are
predominantly used, but also to small data settings where ker-
nel methods are traditionally an important tool (Fernandez-
Delgado et al. 2014). The practical significance of developing
kernel approaches is to broaden the scope of the representation
learning paradigm beyond the deep learning community.

Kernel SSL vs. non-parametric data embedding. Sev-
eral non-parametric generalisations of PCA, including func-
tional PCA, kernel PCA, principle curves etc., have been
studied over decades and could be compared to Kernel AEs.
However, unlike kernel SSL, embedding methods are typi-
cally not inductive. As shown previously, the inductive rep-
resentation learning by Kernel AE and contrastive learning
make them suitable for downstream supervised tasks.

Kernel SSL vs. SSL with infinite-width neural net-
works. While it is known that regression with infinite-width
networks is equivalent to kernel regression with neural tan-
gent kernel (NTK) (Jacot, Gabriel, and Hongler 2018), similar
results are not known for SSL. We believe that a study of the
learning dynamics of neural network based SSL would show
their equivalence with our kernel contrastive models with
NTK. However, it is unclear to us whether a similar result
can exist for kernel AE, as NTK approximations typically
do not hold in the presence of bottleneck layers (Liu, Zhu,
and Belkin 2020).
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