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Abstract

Denoising Probabilistic Models (DPMs) represent an emerg-
ing domain of generative models that excel in generating di-
verse and high-quality images. However, most current train-
ing methods for DPMs often neglect the correlation between
timesteps, limiting the model’s performance in generating im-
ages effectively. Notably, we theoretically point out that this
issue can be caused by the cumulative estimation gap between
the predicted and the actual trajectory. To minimize that gap,
we propose a novel sequence-aware loss that aims to reduce
the estimation gap to enhance the sampling quality. Further-
more, we theoretically show that our proposed loss function
is a tighter upper bound of the estimation loss in comparison
with the conventional loss in DPMs. Experimental results on
several benchmark datasets including CIFAR10, CelebA, and
CelebA-HQ consistently show a remarkable improvement
of our proposed method regarding the image generalization
quality measured by FID and Inception Score compared to
several DPM baselines. Our code and pre-trained checkpoints
are available at https://github.com/VinAlIResearch/SA-DPM.

Introduction

Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein
et al. 2015), inspired by statistical physics, have been shown
to be more effective generative models than prior ones. Typ-
ically, a DPM consists of two processes: a forward process
that gradually adds noise to the original data distribution
and a reverse process that learns to iteratively reconstruct
a data instance from the noises. As a progress of that idea,
(Ho, Jain, and Abbeel 2020) proposes Denoising Diffusion
Probabilistic Models (DDPMs) which exploit the knowl-
edge about the transition distribution to derive the loss func-
tion and guide the training process. Parallel to that work,
(Song and Ermon 2019) uses the score-based model to train
a similar model. More recently, (Song et al. 2021) inter-
prets those two works under the lens of stochastic differen-
tial equations. This class of models outperforms prior ones
in terms of generated images’ quality and distribution cover-
age. While other likelihood-based generative models require
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unique assumptions on data (Germain et al. 2015; Van den
Oord et al. 2016) or constraints in model architecture (Dinh,
Sohl-Dickstein, and Bengio 2017; Papamakarios, Pavlakou,
and Murray 2017; Kingma and Dhariwal 2018; Ho et al.
2019) to perform well, DPMs do not hold any of that re-
quirements. Moreover, compared with Generative Adversar-
ial Networks, Diffusion Models do not require adversarial
training thus making the learning process easy and stable.

Although DPMs have been shown to achieve state-of-the-
art results in various data generation tasks since their debut,
these models often suffer from slow sampling speed, which
may require thousands of model feeds to achieve high sam-
ple quality. To address this issue, many researchers have fo-
cused on accelerating the generating process. For example,
(Song, Meng, and Ermon 2021; Kong and Ping 2021) pro-
pose non-Markovian diffusion processes, which allow tak-
ing multiple steps at once to accelerate the sampling time.
Several works explore finding short sampling trajectories by
applying search algorithms, e.g., grid search (Chen et al.
2021), dynamic programming (Watson et al. 2021), and dif-
ferentiable search (Watson et al. 2022). (Salimans and Ho
2022; Song et al. 2023) propose to boost the sampling pro-
cess via knowledge distillation with the core idea of distill-
ing a multi-step process into a single step.

(Song et al. 2021) establishes a connection between the
denoising process and solving ordinary differential equa-
tions (ODE). Such a connection enables the use of numer-
ical methods of differential equations to accelerate the de-
noising process. While (Song et al. 2021) proposes the use
of higher-order solvers such as Runge-Kutta methods, (Liu
et al. 2022) proposes pseudo-numerical methods to generate
samples along a specific manifold. Another approach pro-
posed by (Karras et al. 2022) is to use Heun’s second-order
method to solve the probability flow ODE.

Some recent attempts aim to refine inefficient sampling
trajectories due to the approximation and optimization er-
rors in training. (Bao et al. 2022b,a) propose to estimate the
optimal variance to correct the potential bias caused by the
imperfect mean estimation. Meanwhile, (Zhang, Niwa, and
Kleijn 2023) introduces an extrapolation operation on two
consecutive sampling steps to make the sampling trajectory
closer to the direction of the real-data point.

One main drawback of those works is that they mostly
focus on sampling efficiency by, for instance, making mod-
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ifications in only the sampling process, or fine-tuning pre-
trained DPMs, without training DPMs from scratch. In par-
ticular, we find out that most existing DPMs are often trained
in a timestep-independence paradigm, which often ignores
the sequential nature of DPMs in both forward and back-
ward processes. We view the sampling trajectory at a global
scale and derive the estimation gap of a noise predictor. That
gap indicates how far the predicted trajectory is from the ac-
tual one. From that observation, we propose a new training
objective, termed the Sequence-Aware (SA) loss, that con-
strains directly the gap. Our contributions are summarized
below:

* We point out the estimation gap between the predicted
and actual sampling trajectory and analyze its effect on
the data generation quality of DPMs.

* We propose a novel sequence-aware loss and an induced
training algorithm to minimize the estimation gap.

* We theoretically show that our loss function is a tighter

upper bound of the estimation gap in comparison with

the conventional loss function.

We employ that loss in multiple DPM baselines. Empiri-

cal results illustrate significant improvements in FID and

Inception Score compared to several current DPM base-

lines.

Background

Diffusion Probabilistic Models (Sohl-Dickstein et al. 2015)
are comprised of two fundamental components, including
the forward process and the reverse process. The former
gradually diffuses each input x(, following a data distri-
bution g(x(), into a standard Gaussian noise through T
timesteps, i.e., ©r ~ N(0,I), where I is the identity ma-
trix, NV/(-, -) represents the normal distribution. The reverse
process starts from 7 and then interactively denoises to get
an original image. We recap the background of DPMs fol-
lowing the idea of DDPM (Ho, Jain, and Abbeel 2020).

Forward Process

Given an original data distribution ¢(x), the forward pro-
cess can be presented as fOHOWS'

Hq Ty|zi—1)

where q(x¢|xi—1) = N(z4; \/1 — Bixi_1, 3I) and an in-
creasing noise scheduling sequence 3; € (0, 1], which de-
scribes the amount of noise added at each timestep ¢. De-
noting oy = 1 — fB; and @y = HZ:1 i, the distribution of
diffused image x; at timestep ¢ has a closed form as:

q(xtlxo) = N(24; Vareo, (1 — ay)T).

By applying the reparameterization trick (Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014), we
can sample the data at each time step ¢ by:

x = Vo + V1 — duey, (D
where €; ~ N(0,I). The noise scheduler 3.7 is designed
in such a way that @;.7 is a decreasing array and ar ~ 0.
That means at the end of the forward process, xr is likely
sampled from the standard Gaussian distribution N'(0, I).

561 T|Sﬂo
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Algorithm 1: Conventional training

Require: Empirical data distribution ¢, number T of
timesteps, the noise predictor f,, learning rate 7.
repeat
xo ~ q(xo)
t ~ Uniform({1, ...
e ~N(0,1)
Ty = Jauxo + /1 — age
L:simple = ||f6(wtvt) - GtH2
—0-nve Ll
until converged

T}

simple

Algorithm 2: Sampling

rr NN(O,I)
TT = T
fort=1T,...,1do

z~/\/(0 I)1ft> l,else z =10

_ 1

Ty = r(iﬂt - ﬁfe(f% t)) + ovz
end for
return I

Reverse Process

At each step of the forward diffusion process, only a small
amount of Gaussian noise is added to the data. Therefore,
the reverse conditional distribution ¢(x;_1|x;) can be ap-
proximated by a Gaussian conditional distribution

= N(wtfl; /:Lt(whwo)u BtI>7

Q(fﬂt 1|33t,w0)

10‘t1

where Bt T B and
B (T, ®0) = Y1,6%0 + V2,61, 2
TRy Vor(l— 1)
Nt =-"—"T—F7"—> Yor =-— 71—

1— oy 1— oy
Therefore, the trained denoising process pg(x;—1|x:) to ap-
proximate ¢(x;—_1|®¢, To) can be parameterized by

po(i—1|@e) = N(2p-1; pg(s, t), 071),

where py (x4, t) and 021 are the mean and covariance matrix
of the parametric den01smg model, respectively.

The training objective is then to maximize a variational
lower bound on the log-likelihood of the original x, which
can be simplified (by excluding an additional term that is
irrelevant to the training) as minimizing the loss:

£(0)

— log py(@o|z1)

+ 22 Drp(g(@e—1|ze, @o)|lpo(@i—1]:)).

The mean p, (x4, t) predicted by the denoising model at
each step can be reparameterized as a neural network that
predicts the true xo. Alternately, following (Ho, Jain, and
Abbeel 2020), one can use a noise prediction model f, that
predicts the noise €; added to x to construct x;. This al-
lows training by simply minimizing the mean squared er-
ror between the predicted noise f, (¢, t) and the true added
Gaussian noise €; (detailed in Algorithm 1):

= B [ Fo(xe,t) — €]

3)

£simple
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(a) Large estimation gap dj

(b) Small estimation gap d

Figure 1: 1-D example of sampling trajectory. Under the assumption that the error at each timestep is similar: (a) the cumulative
error by steps is large while (b) the cumulative error by steps is small. This behavior is due to the correlation between neighbor

timesteps.

After training, new samples can be generated by first sam-
pling Gaussian noise 7 ~ N(0,I) and then passing this
noise through the trained model’s iterative denoising proce-
dure over T' timesteps, ultimately outputting a new sample
Ty, detailed in Algorithm 2.

Methodology

In the sampling phase, a small amount of error may be in-
troduced in each denoising iteration due to the imperfect
learning process. Note that the inference process often re-
quires many iterations to produce high-quality images, lead-
ing to the accumulation of these errors. In this section, we
first point out the estimation gap between the predicted and
ground-truth noises in the sampling process of DPMs and
show its importance in the training phase to mitigate this
accumulation and improve the quality of generated images.
Based on that gap, we introduce a novel loss function that is
proven to be tighter than L;, e commonly used in DPMs.

Estimation Gap

The data generation process in Diffusion Models is per-
formed by iteratively sampling a datapoint from the pre-
dicted distribution of ¢(xs_1|x¢, o). To interpret the work-
ing principle of the global trajectory, we take a further
derivation on q(x;_1|xr,xo), detailed in Appendix A, to
obtain

:N(ajt—l;u;a/@;I%
ar(l — Qi
e, + Yor(l =iy

dt,1(1 — dT)

Q(xt—1|xT7x0)

’
where p, =

Here, we can ignore the variance term since it is fixed in ba-
\/&T(lf(itfl)
Var—1(l1—ar)

reverse gap term. As 7V(1(1a’1)) decreases to 0 when ¢
p—1 ar

sic settings. We define d,cyperse,t = er as the

comes to the first step, the mean ut converges to xy natu-
rally. In many real-life applications, at each timestep ¢, the
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sampling phase of DPMs aims to provide an approximation
(t)

x,  of the true value x( and the corresponding vector error
(a:(gtz) — ) is then expected to be sufficiently close to 0.

Technically, according to (2), the mean of the posterior
distribution ¢(x:—1|x+, o) at each timestep ¢ is defined as:
By = vY1,tTo + Y2,z Note that x; does not depend on

the prediction a:((, 2). Given the true noise €1.7 added to x,

according to (1), the gap incurred by the noise predictor
fo(xy, t) at step ¢ is defined as:

L% g () —

d ~ -
Ve

Et).

“4)

Now we can formally point out the gap between the true
noises and predictions by a model.

0.t = ’Yl,t(m(g% —x0) = Y1t

Theorem 1 (Estimation gap) Ler f,(xs, s) be a noise pre-
dictor with parameter 0. Its total gap from step 2 to T, for
each xg, is

T
= mil(folwi,i) —€), 5)
1=2

i—1(1 1 Vi—a;
where T; = \/a—(l(alalg’)’l i \1/57 .

loss of fgis Lo = Eqq elldo(xo)|?.

Proof slgetch. Denote ngT = dg,7 and define Jg,t =
dp.t +7v2,tdp.1+1 to be the gap at an arbitrary timestep ¢ < 7.
By induction (Appendix B), we have

T 1—1
dot = dgs + Z lH Vz,s] dg.;

Furthermore, the total

i=t+1 |s=t
ai—1(1—ay—1)
S R
i=t+1 b
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At the end of the trajectory, the estimation gap is

T
7 &i—l(l_al):|
dp=dpo =3 [VILE QU g, 4y,
=doa = 32 | T o

The proof is completed by using (4). ]

The term dg (o) can be considered as the estimation gap
of the model for each example x,, while £y represents
the overall estimation error which is critical for the train-
ing process. In typical DPMs, the training process is of-
ten performed by minimizing the conventional square loss
Lsimpier = || fo(xs,t) — €] at each step ¢, which may not
necessarily minimize Lg. It means that minimizing L;mpie
can produce multiple small gaps dg¢. In the worst case,
those small gaps can lead to a non-trivial total gap dy as
visualized by a 1-D example in Figure 1a. Therefore, a bet-
ter way to train a DPM is to directly minimize the total
gap dy, instead of trying to minimize each independent term
Lsimpie,+- That scenario can be intuitively illustrated in Fig-
ure 1b.

Minimizing directly the whole dy is challenging due to
the requirement of a large number of timesteps, which often
leads to a significant memory and computation capability in
the training phase. From that observation, we propose a new
training loss that aims to minimize the gap term in a slice of
trajectory. We name it sequence-aware loss based on the idea
of considering the error amount of surrounding timesteps. In
the next section, we introduce the new training loss and the
training algorithm. We also theoretically show that any vari-
ants (based on the number of consecutive steps) of that loss
function are a tighter upper bound of the estimation error
compared to the conventional loss. Finally, we employ that
loss function in multiple DPM frameworks and demonstrate
its effectiveness on image generation quality.

Sequence-aware Training

Minimizing the mean squared error || £, (¢, t) — €]|? may
lead to small gap value at each timestep. However, one crit-
ical issue of this approach is that it ignores the relationship
between timesteps, which may cause a large total gap dg at
the end of the trajectory. Instead of optimizing each individ-
ual term, minimizing the dy should guarantee a good approx-
imation pg (x| ) of the distribution g(xg|xr). Neverthe-
less, that approach often requires a large amount of com-
putation and memory. To address that issue, we propose to
minimize the local gap that connects K consecutive steps
(for K > 1):

tHK—1
dé{t = Z TS(fG(wSaS) - Es)-
s=t
The sequence-aware (SA) loss function for training is:
| HE 2
Lsa = Et’EOgEt:tﬁ»K—l K ; TS(.fB(msv 8) - 65) )

wheret € {1—K,...,T}and 7, = Oforany s ¢ {2,...,T}.
This training objective enforces the stability in the chain of
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Algorithm 3: Sequence-aware training

Require: Data distribution g, number of timesteps 7, the
noise predictor f,, number of consecutive steps K,
hyper-parameter A, learning rate 1.
repeat

xo ~ q(xo)
t ~ Uniform({1,...,T})
fork€{0,..., K —1} do

€tpk ™~ N(O, I)

Tk = V/Ouyk®o + 1 — pr€ipr

end for

L:simple = ||f9((11[? tl) - GtH2

Lso = %H Zi:t T Ts(fo(xs, ) — 65)”2
L= ‘Cs’i'mple + >\£sa

0—0—nveLl

until converged

K consecutive sampling steps. However, we found that op-
timizing that function independently makes the training er-
ror at each timestep quite large, since this SA loss does not
strongly constrain the error at individual steps. Therefore,
we suggest optimizing L, jointly with Lg;mpie to exploit
their advantages, resulting in the following total loss func-
tion for training DPMs:

L= »Csimple + >\£sa7 (6)

where A > 0 is a hyper-parameter that indicates how much
we constrain the sampling trajectory. Optimizing the new
loss term involves the direction of error at each step. Algo-
rithm 3 represents the training procedure. In practice, we can
ignore constants 7, in L, since they are often comparable
and empirically do not significantly change sample quality.

Bounding the Estimation Gap

We have presented the new loss which incorporates more
information of the sequential nature of DPMs. We next the-
oretically show that this loss is tighter than the vanilla loss.

Theorem 2 Let fy(xs,s) be any noise predictor with pa-
rameter 0. Consider the weighted conventional loss function
;—imple = Et@oﬁt [Tt2||f0 (wt? t) - etHQ]’ where Tt is de-

fined in Theorem 1 and t € {2,...,T}. Then

N
T+ K simple — ~sa — (T+K)2
Proof. By definition, 7, = 0 for any s ¢ {2,...,T}. We
observe that:
(T - 1) :imple
(T = DEiega,... Tymoe [Tl Fo(@ist) — €?]
T

ZEwo,et [Tt2||f9(wt7t) - €t||2]

t=2

Ly. (N

T 1 t+K—1
2
= Z EmOyst:t+K—l ? Z 7_32 ||f9(w5,8) 768“
t=1—-K s=t
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Method
Dataset T DDPM DDIM
B SA B SA

10 54.19 53.23 | 39.29 37.66

CelebA-HQ 50 29.04 26.73 | 23.04 20.20
100 | 22.85 20.66 | 22.19 18.98

200 | 18.71 16.63 | 22.52 19.27

256 x 256 1000 | 16.03 15.32 | 24.10 20.11

Table 1: FID score ({). The results are reported under dif-
ferent number 7' of timesteps. Here B and SA denote the
baseline and our proposed loss.

Jensen’s inequality suggests that

1 2
= S folws) — el
2
>

;gnm@m%%>

Therefore, we have

T

(T-1)

simple
T | R 2
2 Z Ew07€t:t+K—1 E Z Ts(f@(mms) _ES)
1-K s=t

t=
=T+ K)Lsq-

Similarly, by using Jensen’s inequality, we can show that

(T + K)Lsa
| R 2
= Z Ew07€t:t+K71 E Z Ts(f@(mms) - ES)
t=1-K s=t
1 i ’
_meo,e ;Ts(fa(xsz 5) - 63)
1
= L
T+K™°

completing the proof. [-]

This theorem provides a comparison between our loss and
L mpie Which is the weighted conventional loss. Since con-
stants 7; naturally come from the model formulation and the
commonly used 10S L;mpic ignores those constants, we use
the weighted loss for a fair comparison. By using similar ar-
guments with the above proof, it is easy to show that our loss
is still tighter than L;,,p. €ven when setting every 7; = 1.
This holds for any K > 1.
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Figure 2: Qualitative results of CelebA-HQ 256 x 256.

Experiments
Image Generation

Experimental setup: In this experiment, we apply the
proposed loss to the vanilla DPM, referred to as SA-
K-DPM, where K denotes the number of consecutive
steps. We evaluate the SA-2-DPM (which we will call SA-
DPM for brevity) both individually and in combination
with covariance estimation methods, including Analytic-
DPM (Bao et al. 2022b), NPR-DPM and SN-DPM (Bao
et al. 2022a). All settings and hyperparameters are kept un-
changed from (Song, Meng, and Ermon 2021). In partic-
ular, the experiments are conducted on: CIFAR10 32x32
(Krizhevsky 2012), CelebA 64x64 (Liu et al. 2015) and
one higher-resolution dataset CelebA-HQ 256256 (Karras
et al. 2018). For CIFAR10, the models are trained with two
different forward noise schedules: the linear schedule (LS)
(Ho, Jain, and Abbeel 2020) and the cosine schedule (CS)
(Nichol and Dhariwal 2021). The sampling timesteps for all
the datasets are set to {10, 50, 100, 200, 1000} . For the eval-
uation, we compute the FID between 50k generated images
and the pre-computed statistics of the datasets. See more de-
tails in Appendix C.1.

Performance Comparison: The summary of sampling
performance for CIFAR10 and CelebA is presented in Ta-
ble 2 and 3. Table 1 presents the results for the remain-
ing dataset CelebA-HQ. Evidently, SA-DPM exhibits a sub-
stantial performance improvement over the original DPM,
regardless of whether the number of timesteps is small or
large. With a large number of timesteps, the original DPM
can fully leverage gradient guidance from the denoising
model across finer sampling iterations to generate higher-
quality samples. However, as the number of timesteps is
reduced from 1000 down to 10, the performance gains of
our SA-DPM become more pronounced. As observed from
those tables, for many settings, 50 or 100 timesteps are suffi-
cient for our method to achieve a similar FID level with prior
methods which use 1000 timesteps. This suggests a signifi-
cant advantage of our new loss to improve both training and
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(a) CIFAR10 32 x 32

Figure 3: Qualitative results of (a) CIFAR10 32 x 32. (b) CelebA 64 x 64.

(b) CelebA 64 x 64

Dataset # timesteps T Method

B SA | BiA SA+A | BsNPR SATNPR | B+SN SATSN

T0 AT41 3051 | 3410 21.66 | 3235 2110 | 2406 1953

CIFAR10 32x32 50 1508 924 | 720 420 | 618 390 | 463  3.61
100 1179 673 | 531 343 | 452 325 367 3.10

200 9.15 547 | 392 328 | 357 3.16 331 3.06

DDPM (LS) 1000 502 433 | 398 372 | 4.10 3.84 365  3.56
T0 3403 2459 | 2341 16,66 | 1904 1477 | 1633 1723

CIFAR10 3232 50 1105 627 | 542 378 | 531 367 | 417 397
100 825 498 | 445 353 | 45 3.51 383 3.64

200 669 440 | 404 353 | 410 3.54 372 36l

DDPM (CS) 1000 495 405 | 426 384 | 427 3.87 407 383
10 3660 3215 | 2899 27.08 | 2837 2673 | 2060 2622

CelebA 6464 50 1896 17.59 | 1123 943 | 10.89 942 | 788  7.01
100 1431 1277 | 808 653 | 823 684 | 58 518

SOPM 200 1048 914 | 651 502 | 7.03 549 | 502 4.04
1000 505 469 | 521 399 | 533 400 | 442 356

0 2054 1288 | 1562 1052 | 1498 1048 | 1020 199

CelebA 64x64 50 933 701 | 613 418 | 604 4.5 383 3.19
100 660 481 | 420 302 | 427 313 304 2.62

DI 200 496 369 | 346 261 | 3.59 2.76 285 249
1000 340 298 | 313 274 | 315 278 200 2.66

Table 2: FID score (J.). The results are reported under different numbers of timesteps 7'. Here B and SA denote the baseline and

our proposed method. A, NPR, and SN denote Analytic-DPM, NPR-DPM, and SN-DPM, respectively.

Dataset # timesteps T' Method
B SA [ BfA SA+A | BsNPR SATNPR | B+SN SATSN

10 603 755 805 850 | 817 853 510 842

CIFAR10 32x32 50 834 882|953 962 | 951 9.63 949  9.65
100 859 9.04 | 959 974 | 9.55 9.70 047 973

200 881 915 | 959 972 | 949 9.62 950  9.65

DDPM (LS) 1000 903 924 | 917 937 | 9.8 9.35 924 941
10 748 797 | 805 837 | 821 8.49 8§47 848

CIFAR10 32x32 50 853 9.09 | 897 943 | 9.02 9.45 9.10  9.46
100 871 920 | 907 952 | 909 9.53 016  9.54

200 884 931|914 955 | 915 9.54 018  9.54

DDPM (CS) 1000 804 945 | 904 952 | 904 9.52 906  9.54

Table 3: IS metric (1). The results are reported under different numbers of timesteps 7'. Here B and SA denote the baseline and

our proposed method. A, NPR, and SN denote Analytic-DPM, NPR-DPM, and SN-DPM, respectively.
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# timesteps T’
Method A —5 50 100 200 1000
DDPM 0 4141 1598 1179 915 592
05 3539 1209 852 656 525
SA2DPM 1.0 3051 924 673 547 433
20 1914 1059 1121 1234 1420
03 3049 1027 7.63 644 547
SA-3-DPM 0.6 2371 907 796 777  8.06
15 1559 1176 1390 1634 19.49
02 3293 1078 7.78 617 473
SA-4-DPM 1/ 5668 933 753 700 695

Table 4: FID of CIFAR10 dataset under different weight \
of L,. We use the sampling type of DDPM to synthesize.

inference in DPMs. For qualitative results, we provide the
generated samples of our SA-DPM in Figure 2 and 3.

In addition, we also combine our proposed loss with
the three covariance estimation methods (Analytic-DPM,
NPR-DPM, and SN-DPM) on two datasets: CIFAR10 and
CelebA. Table 2 and 3 show that our loss can boost signifi-
cantly the image quality. This could be attributed to the capa-
bility of our loss to enhance the estimation of the mean of the
backward Gaussian distributions in the sampling procedure.
So when incorporating the additional covariance estimation
methods, the generated image quality is further improved.
We further provide synthesized samples in Appendix C.3.

Ablation Study on the Weight \

In the previous subsection, we used the SA-2-DPM with
the weight A of L, set to 1, which resulted in substantial
performance improvements when considering small sam-
pling timesteps as compared to the original DPM. Next, we
consider the variations in FID scores for CIFAR10 dataset
across different configurations of weight A € {0.5,1,2}
for SA-2-DPM, A € {0.3,0.6,1.5} for SA-3-DPM and
A € {0.2,0.4} for SA-4-DPM. In this experiment, the sam-
pling type of DDPM is used for evaluation. As presented
in Table 4, all the tested SA-K-DPM methods yield better
results compared to the vanilla DPM. With different num-
bers of consecutive steps, the weight \ plays a crucial role.
Specifically, SA-2-DPM (A = 1), SA-3-DPM (A = 0.3),
and SA-4-DPM (A = 0.2) consistently outperform DPM
for all numbers of sampling timesteps. However, when the
weight A is set much higher, the quality of generated images
will degrade slightly when using a large number of timesteps
(e.g., 1000), even though it will be significantly better when
using a small number of timesteps.

Evaluation on the Estimation Gap

In this experiment, we evaluate the total gap term dg; of
each trained model during sampling. Because dy ; contains
the weighted sum of the difference between the noise target
fo(xe,t) and the actual noise €;, however, during the sam-
pling process starting from Gaussian noise zr ~ A (0,I),
we cannot know the actual noise due to the unknown in-
put image xo. Therefore, to assess the quantity dg; effec-
tively, we take around 2000 input images from the dataset
and add noise to them up to time ¢ = 300 in order to
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Figure 4: Total gap term J@t when sampling image starting
from x3p9 on CIFAR10 dataset.

avoid completely destroying xo. Then, these images x3gg
are used as starting points for the denoising process. At each
time step ¢, we calculate the noise target using the formula

m”‘/_%m" and then we can compute the gap dp ;.

Vi-a,

Figure 4 illustrates dy; of the sampling process of four
trained models on CIFAR10 dataset: vanilla DPM, SA-2-
DPM, SA-3-DPM and SA-4-DPM. It can be observed that
when training with more consecutive timesteps K in L,
the total gap term is more effectively minimized during the
sampling process. Specifically, with SA-2-DPM, at the fi-
nal timestep of the denoising process, the total gap term is
reduced by approximately 2.5 times compared to the base
model. We provide more results in Appendix C.2.

€ —

Conclusion

In this work, we examine the estimation gap between the
ground truth and predicted trajectory in the sampling process
of DPMs. We then propose a sequence-aware loss, that opti-
mizes multiple timesteps jointly to leverage their sequential
relationship. We theoretically prove that our proposed loss is
a tighter upper bound of the estimation gap than the vanilla
loss. Our experimental results verify that our loss reduces
the estimation gap and enhances the sample quality. More-
over, when combining our loss with advanced techniques,
we achieve a significant improvement over the baselines.
Therefore, with our new loss, we provide a new benchmark
for future research on DPMs. This new loss represents the
true loss of a sampling step and therefore may facilitate fu-
ture deeper understandings of DPMs, such as generalization
ability and optimality. One limitation of this work is that our
new loss requires the calculation of the network’s output at
many timesteps, which makes the training time longer com-
pared to the vanilla loss.
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