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Abstract

Denoising Probabilistic Models (DPMs) represent an emerg-
ing domain of generative models that excel in generating di-
verse and high-quality images. However, most current train-
ing methods for DPMs often neglect the correlation between
timesteps, limiting the model’s performance in generating im-
ages effectively. Notably, we theoretically point out that this
issue can be caused by the cumulative estimation gap between
the predicted and the actual trajectory. To minimize that gap,
we propose a novel sequence-aware loss that aims to reduce
the estimation gap to enhance the sampling quality. Further-
more, we theoretically show that our proposed loss function
is a tighter upper bound of the estimation loss in comparison
with the conventional loss in DPMs. Experimental results on
several benchmark datasets including CIFAR10, CelebA, and
CelebA-HQ consistently show a remarkable improvement
of our proposed method regarding the image generalization
quality measured by FID and Inception Score compared to
several DPM baselines. Our code and pre-trained checkpoints
are available at https://github.com/VinAIResearch/SA-DPM.

Introduction
Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein
et al. 2015), inspired by statistical physics, have been shown
to be more effective generative models than prior ones. Typ-
ically, a DPM consists of two processes: a forward process
that gradually adds noise to the original data distribution
and a reverse process that learns to iteratively reconstruct
a data instance from the noises. As a progress of that idea,
(Ho, Jain, and Abbeel 2020) proposes Denoising Diffusion
Probabilistic Models (DDPMs) which exploit the knowl-
edge about the transition distribution to derive the loss func-
tion and guide the training process. Parallel to that work,
(Song and Ermon 2019) uses the score-based model to train
a similar model. More recently, (Song et al. 2021) inter-
prets those two works under the lens of stochastic differen-
tial equations. This class of models outperforms prior ones
in terms of generated images’ quality and distribution cover-
age. While other likelihood-based generative models require
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unique assumptions on data (Germain et al. 2015; Van den
Oord et al. 2016) or constraints in model architecture (Dinh,
Sohl-Dickstein, and Bengio 2017; Papamakarios, Pavlakou,
and Murray 2017; Kingma and Dhariwal 2018; Ho et al.
2019) to perform well, DPMs do not hold any of that re-
quirements. Moreover, compared with Generative Adversar-
ial Networks, Diffusion Models do not require adversarial
training thus making the learning process easy and stable.

Although DPMs have been shown to achieve state-of-the-
art results in various data generation tasks since their debut,
these models often suffer from slow sampling speed, which
may require thousands of model feeds to achieve high sam-
ple quality. To address this issue, many researchers have fo-
cused on accelerating the generating process. For example,
(Song, Meng, and Ermon 2021; Kong and Ping 2021) pro-
pose non-Markovian diffusion processes, which allow tak-
ing multiple steps at once to accelerate the sampling time.
Several works explore finding short sampling trajectories by
applying search algorithms, e.g., grid search (Chen et al.
2021), dynamic programming (Watson et al. 2021), and dif-
ferentiable search (Watson et al. 2022). (Salimans and Ho
2022; Song et al. 2023) propose to boost the sampling pro-
cess via knowledge distillation with the core idea of distill-
ing a multi-step process into a single step.

(Song et al. 2021) establishes a connection between the
denoising process and solving ordinary differential equa-
tions (ODE). Such a connection enables the use of numer-
ical methods of differential equations to accelerate the de-
noising process. While (Song et al. 2021) proposes the use
of higher-order solvers such as Runge-Kutta methods, (Liu
et al. 2022) proposes pseudo-numerical methods to generate
samples along a specific manifold. Another approach pro-
posed by (Karras et al. 2022) is to use Heun’s second-order
method to solve the probability flow ODE.

Some recent attempts aim to refine inefficient sampling
trajectories due to the approximation and optimization er-
rors in training. (Bao et al. 2022b,a) propose to estimate the
optimal variance to correct the potential bias caused by the
imperfect mean estimation. Meanwhile, (Zhang, Niwa, and
Kleijn 2023) introduces an extrapolation operation on two
consecutive sampling steps to make the sampling trajectory
closer to the direction of the real-data point.

One main drawback of those works is that they mostly
focus on sampling efficiency by, for instance, making mod-
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ifications in only the sampling process, or fine-tuning pre-
trained DPMs, without training DPMs from scratch. In par-
ticular, we find out that most existing DPMs are often trained
in a timestep-independence paradigm, which often ignores
the sequential nature of DPMs in both forward and back-
ward processes. We view the sampling trajectory at a global
scale and derive the estimation gap of a noise predictor. That
gap indicates how far the predicted trajectory is from the ac-
tual one. From that observation, we propose a new training
objective, termed the Sequence-Aware (SA) loss, that con-
strains directly the gap. Our contributions are summarized
below:
• We point out the estimation gap between the predicted

and actual sampling trajectory and analyze its effect on
the data generation quality of DPMs.

• We propose a novel sequence-aware loss and an induced
training algorithm to minimize the estimation gap.

• We theoretically show that our loss function is a tighter
upper bound of the estimation gap in comparison with
the conventional loss function.

• We employ that loss in multiple DPM baselines. Empiri-
cal results illustrate significant improvements in FID and
Inception Score compared to several current DPM base-
lines.

Background
Diffusion Probabilistic Models (Sohl-Dickstein et al. 2015)
are comprised of two fundamental components, including
the forward process and the reverse process. The former
gradually diffuses each input x0, following a data distri-
bution q(x0), into a standard Gaussian noise through T
timesteps, i.e., xT ∼ N (0, I), where I is the identity ma-
trix, N (·, ·) represents the normal distribution. The reverse
process starts from xT and then interactively denoises to get
an original image. We recap the background of DPMs fol-
lowing the idea of DDPM (Ho, Jain, and Abbeel 2020).

Forward Process
Given an original data distribution q(x0), the forward pro-
cess can be presented as follows:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1),

where q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) and an in-

creasing noise scheduling sequence βt ∈ (0, 1], which de-
scribes the amount of noise added at each timestep t. De-
noting αt = 1 − βt and ᾱt =

∏t
s=1 αs, the distribution of

diffused image xt at timestep t has a closed form as:
q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I).

By applying the reparameterization trick (Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014), we
can sample the data at each time step t by:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, (1)

where ϵt ∼ N (0, I). The noise scheduler β1:T is designed
in such a way that ᾱ1:T is a decreasing array and ᾱT ≈ 0.
That means at the end of the forward process, xT is likely
sampled from the standard Gaussian distribution N (0, I).

Algorithm 1: Conventional training

Require: Empirical data distribution q, number T of
timesteps, the noise predictor fθ, learning rate η.
repeat

x0 ∼ q(x0)
t ∼ Uniform({1, . . . , T})
ϵ ∼ N (0, I)
xt =

√
ᾱtx0 +

√
1− ᾱtϵ

Lsimple = ∥fθ(xt, t)− ϵt∥2
θ ← θ − η▽θ Lsimple

until converged

Algorithm 2: Sampling

xT ∼ N (0, I)
x̄T = xT

for t = T, . . . , 1 do
z ∼ N (0, I) if t > 1, else z = 0
x̄t−1 = 1√

αt
(x̄t − 1−αt√

1−ᾱt
fθ(x̄t, t)) + σtz

end for
return x̄0

Reverse Process
At each step of the forward diffusion process, only a small
amount of Gaussian noise is added to the data. Therefore,
the reverse conditional distribution q(xt−1|xt) can be ap-
proximated by a Gaussian conditional distribution

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI),

where β̃t =
1−ᾱt−1

1−ᾱt
βt and

µ̃t(xt,x0) = γ1,tx0 + γ2,txt, (2)

γ1,t =

√
ᾱt−1βt

1− ᾱt
, γ2,t =

√
αt(1− ᾱt−1)

1− ᾱt
.

Therefore, the trained denoising process pθ(xt−1|xt) to ap-
proximate q(xt−1|xt,x0) can be parameterized by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I),

where µθ(xt, t) and σ2
t I are the mean and covariance matrix

of the parametric denoising model, respectively.
The training objective is then to maximize a variational

lower bound on the log-likelihood of the original x0, which
can be simplified (by excluding an additional term that is
irrelevant to the training) as minimizing the loss:

L(θ) = − log pθ(x0|x1)

+
∑

t DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)).

The mean µθ(xt, t) predicted by the denoising model at
each step can be reparameterized as a neural network that
predicts the true x0. Alternately, following (Ho, Jain, and
Abbeel 2020), one can use a noise prediction model fθ that
predicts the noise ϵt added to x0 to construct xt. This al-
lows training by simply minimizing the mean squared er-
ror between the predicted noise fθ(xt, t) and the true added
Gaussian noise ϵt (detailed in Algorithm 1):

Lsimple = Et,x0,ϵt [∥fθ(xt, t)− ϵt∥2]. (3)
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(a) Large estimation gap d̄θ (b) Small estimation gap d̄θ

Figure 1: 1-D example of sampling trajectory. Under the assumption that the error at each timestep is similar: (a) the cumulative
error by steps is large while (b) the cumulative error by steps is small. This behavior is due to the correlation between neighbor
timesteps.

After training, new samples can be generated by first sam-
pling Gaussian noise xT ∼ N (0, I) and then passing this
noise through the trained model’s iterative denoising proce-
dure over T timesteps, ultimately outputting a new sample
x0, detailed in Algorithm 2.

Methodology
In the sampling phase, a small amount of error may be in-
troduced in each denoising iteration due to the imperfect
learning process. Note that the inference process often re-
quires many iterations to produce high-quality images, lead-
ing to the accumulation of these errors. In this section, we
first point out the estimation gap between the predicted and
ground-truth noises in the sampling process of DPMs and
show its importance in the training phase to mitigate this
accumulation and improve the quality of generated images.
Based on that gap, we introduce a novel loss function that is
proven to be tighter than Lsimple commonly used in DPMs.

Estimation Gap
The data generation process in Diffusion Models is per-
formed by iteratively sampling a datapoint from the pre-
dicted distribution of q(xt−1|xt,x0). To interpret the work-
ing principle of the global trajectory, we take a further
derivation on q(xt−1|xT ,x0), detailed in Appendix A, to
obtain

q(xt−1|xT ,x0) = N (xt−1;µ
′

t, β
′

tI),

where µ
′

t =
√
ᾱt−1x0 +

√
ᾱT (1− ᾱt−1)√
ᾱt−1(1− ᾱT )

ϵT .

Here, we can ignore the variance term since it is fixed in ba-
sic settings. We define dreverse,t =

√
ᾱT (1−ᾱt−1)√
ᾱt−1(1−ᾱT )

ϵT as the

reverse gap term. As
√
ᾱT (1−ᾱt−1)√
ᾱt−1(1−ᾱT )

decreases to 0 when t

comes to the first step, the mean µ
′

t converges to x0 natu-
rally. In many real-life applications, at each timestep t, the

sampling phase of DPMs aims to provide an approximation
x
(t)
θ,0 of the true value x0 and the corresponding vector error

(x
(t)
θ,0 − x0) is then expected to be sufficiently close to 0.
Technically, according to (2), the mean of the posterior

distribution q(xt−1|xt,x0) at each timestep t is defined as:
µ̃t = γ1,tx0 + γ2,txt. Note that xt does not depend on
the prediction x

(t)
θ,0. Given the true noise ϵ1:T added to x0,

according to (1), the gap incurred by the noise predictor
fθ(xt, t) at step t is defined as:

dθ,t = γ1,t(x
(t)
θ,0 − x0) = γ1,t

√
1− ᾱt√
ᾱt

(fθ(xt, t)− ϵt).

(4)

Now we can formally point out the gap between the true
noises and predictions by a model.

Theorem 1 (Estimation gap) Let fθ(xs, s) be a noise pre-
dictor with parameter θ. Its total gap from step 2 to T , for
each x0, is

dθ(x0) =
T∑

i=2

τi(fθ(xi, i)− ϵi), (5)

where τi =
√
ᾱi−1(1−ᾱ1)√
α1(1−ᾱi−1)

γ1,i
√
1−ᾱi√
ᾱi

. Furthermore, the total
loss of fθ is Lθ = Ex0,ϵ∥dθ(x0)∥2.

Proof sketch. Denote d̄θ,T = dθ,T and define d̄θ,t =
dθ,t+γ2,td̄θ,t+1 to be the gap at an arbitrary timestep t < T .
By induction (Appendix B), we have

d̄θ,t = dθ,t +
T∑

i=t+1

[
i−1∏
s=t

γ2,s

]
dθ,i

= dθ,t +
T∑

i=t+1

[√
ᾱi−1(1− ᾱt−1)√
ᾱt−1(1− ᾱi−1)

]
dθ,i.
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At the end of the trajectory, the estimation gap is

dθ = d̄θ,2 =
T∑

i=3

[√
ᾱi−1(1− ᾱ1)√
α1(1− ᾱi−1)

]
dθ,i + dθ,2.

The proof is completed by using (4). ⊡
The term dθ(x0) can be considered as the estimation gap

of the model for each example x0, while Lθ represents
the overall estimation error which is critical for the train-
ing process. In typical DPMs, the training process is of-
ten performed by minimizing the conventional square loss
Lsimple,t = ∥fθ(xt, t)− ϵt∥2 at each step t, which may not
necessarily minimize Lθ. It means that minimizing Lsimple

can produce multiple small gaps dθ,t. In the worst case,
those small gaps can lead to a non-trivial total gap dθ as
visualized by a 1-D example in Figure 1a. Therefore, a bet-
ter way to train a DPM is to directly minimize the total
gap dθ, instead of trying to minimize each independent term
Lsimple,t. That scenario can be intuitively illustrated in Fig-
ure 1b.

Minimizing directly the whole dθ is challenging due to
the requirement of a large number of timesteps, which often
leads to a significant memory and computation capability in
the training phase. From that observation, we propose a new
training loss that aims to minimize the gap term in a slice of
trajectory. We name it sequence-aware loss based on the idea
of considering the error amount of surrounding timesteps. In
the next section, we introduce the new training loss and the
training algorithm. We also theoretically show that any vari-
ants (based on the number of consecutive steps) of that loss
function are a tighter upper bound of the estimation error
compared to the conventional loss. Finally, we employ that
loss function in multiple DPM frameworks and demonstrate
its effectiveness on image generation quality.

Sequence-aware Training
Minimizing the mean squared error ||fθ(xt, t) − ϵt||2 may
lead to small gap value at each timestep. However, one crit-
ical issue of this approach is that it ignores the relationship
between timesteps, which may cause a large total gap dθ at
the end of the trajectory. Instead of optimizing each individ-
ual term, minimizing the dθ should guarantee a good approx-
imation pθ(x0|xT ) of the distribution q(x0|xT ). Neverthe-
less, that approach often requires a large amount of com-
putation and memory. To address that issue, we propose to
minimize the local gap that connects K consecutive steps
(for K > 1):

dKθ,t =
t+K−1∑
s=t

τs(fθ(xs, s)− ϵs).

The sequence-aware (SA) loss function for training is:

Lsa = Et,x0,ϵt:t+K−1

∥∥∥∥∥ 1

K

t+K−1∑
s=t

τs(fθ(xs, s)− ϵs)

∥∥∥∥∥
2

,

where t ∈ {1−K, ..., T} and τs = 0 for any s /∈ {2, ..., T}.
This training objective enforces the stability in the chain of

Algorithm 3: Sequence-aware training

Require: Data distribution q, number of timesteps T , the
noise predictor fθ, number of consecutive steps K,
hyper-parameter λ, learning rate η.
repeat

x0 ∼ q(x0)
t ∼ Uniform({1, . . . , T})
for k ∈ {0, . . . ,K − 1} do

ϵt+k ∼ N (0, I)
xt+k =

√
ᾱt+kx0 +

√
1− ᾱt+kϵt+k

end for
Lsimple = ∥fθ(xt, t)− ϵt∥2

Lsa = 1
K2 ∥

∑t+K−1
s=t τs(fθ(xs, s)− ϵs)∥2

L = Lsimple + λLsa

θ ← θ − η▽θ L
until converged

K consecutive sampling steps. However, we found that op-
timizing that function independently makes the training er-
ror at each timestep quite large, since this SA loss does not
strongly constrain the error at individual steps. Therefore,
we suggest optimizing Lsa jointly with Lsimple to exploit
their advantages, resulting in the following total loss func-
tion for training DPMs:

L = Lsimple + λLsa, (6)

where λ ≥ 0 is a hyper-parameter that indicates how much
we constrain the sampling trajectory. Optimizing the new
loss term involves the direction of error at each step. Algo-
rithm 3 represents the training procedure. In practice, we can
ignore constants τs in Lsa since they are often comparable
and empirically do not significantly change sample quality.

Bounding the Estimation Gap
We have presented the new loss which incorporates more
information of the sequential nature of DPMs. We next the-
oretically show that this loss is tighter than the vanilla loss.

Theorem 2 Let fθ(xs, s) be any noise predictor with pa-
rameter θ. Consider the weighted conventional loss function
Lτ
simple := Et,x0,ϵt

[
τ2t ∥fθ(xt, t)− ϵt∥2

]
, where τt is de-

fined in Theorem 1 and t ∈ {2, ..., T}. Then

T − 1

T +K
Lτ
simple ≥ Lsa ≥

1

(T +K)2
Lθ. (7)

Proof. By definition, τs = 0 for any s /∈ {2, ..., T}. We
observe that:
(T − 1)Lτ

simple

=(T − 1)Et∈{2,...,T},x0,ϵt

[
τ2t ∥fθ(xt, t)− ϵt∥2

]
=

T∑
t=2

Ex0,ϵt

[
τ2t ∥fθ(xt, t)− ϵt∥2

]
=

T∑
t=1−K

Ex0,ϵt:t+K−1

[
1

K

t+K−1∑
s=t

τ2s ∥fθ(xs, s)− ϵs∥2
]
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Dataset T
Method

DDPM DDIM
B SA B SA

CelebA-HQ
10 54.19 53.23 39.29 37.66
50 29.04 26.73 23.04 20.20

100 22.85 20.66 22.19 18.98

256 × 256 200 18.71 16.63 22.52 19.27
1000 16.03 15.32 24.10 20.11

Table 1: FID score (↓). The results are reported under dif-
ferent number T of timesteps. Here B and SA denote the
baseline and our proposed loss.

Jensen’s inequality suggests that

1

K

∑
s

τ2s ∥fθ(xs, s)− ϵs∥2

≥

∥∥∥∥∥ 1

K

∑
s

τs(fθ(xs, s)− ϵs)

∥∥∥∥∥
2

.

Therefore, we have

(T − 1)Lτ
simple

≥
T∑

t=1−K

Ex0,ϵt:t+K−1

∥∥∥∥∥ 1

K

t+K−1∑
s=t

τs(fθ(xs, s)− ϵs)

∥∥∥∥∥
2

=(T +K)Lsa.

Similarly, by using Jensen’s inequality, we can show that

(T +K)Lsa

=
T∑

t=1−K

Ex0,ϵt:t+K−1

∥∥∥∥∥ 1

K

t+K−1∑
s=t

τs(fθ(xs, s)− ϵs)

∥∥∥∥∥
2

≥ 1

T +K
Ex0,ϵ

∥∥∥∥∥
T∑

s=2

τs(fθ(xs, s)− ϵs)

∥∥∥∥∥
2

=
1

T +K
Lθ

completing the proof. ⊡

This theorem provides a comparison between our loss and
Lτ
simple which is the weighted conventional loss. Since con-

stants τi naturally come from the model formulation and the
commonly used lossLsimple ignores those constants, we use
the weighted loss for a fair comparison. By using similar ar-
guments with the above proof, it is easy to show that our loss
is still tighter than Lsimple even when setting every τi = 1.
This holds for any K > 1.

Figure 2: Qualitative results of CelebA-HQ 256 × 256.

Experiments
Image Generation
Experimental setup: In this experiment, we apply the
proposed loss to the vanilla DPM, referred to as SA-
K-DPM, where K denotes the number of consecutive
steps. We evaluate the SA-2-DPM (which we will call SA-
DPM for brevity) both individually and in combination
with covariance estimation methods, including Analytic-
DPM (Bao et al. 2022b), NPR-DPM and SN-DPM (Bao
et al. 2022a). All settings and hyperparameters are kept un-
changed from (Song, Meng, and Ermon 2021). In partic-
ular, the experiments are conducted on: CIFAR10 32×32
(Krizhevsky 2012), CelebA 64×64 (Liu et al. 2015) and
one higher-resolution dataset CelebA-HQ 256×256 (Karras
et al. 2018). For CIFAR10, the models are trained with two
different forward noise schedules: the linear schedule (LS)
(Ho, Jain, and Abbeel 2020) and the cosine schedule (CS)
(Nichol and Dhariwal 2021). The sampling timesteps for all
the datasets are set to {10, 50, 100, 200, 1000}. For the eval-
uation, we compute the FID between 50k generated images
and the pre-computed statistics of the datasets. See more de-
tails in Appendix C.1.

Performance Comparison: The summary of sampling
performance for CIFAR10 and CelebA is presented in Ta-
ble 2 and 3. Table 1 presents the results for the remain-
ing dataset CelebA-HQ. Evidently, SA-DPM exhibits a sub-
stantial performance improvement over the original DPM,
regardless of whether the number of timesteps is small or
large. With a large number of timesteps, the original DPM
can fully leverage gradient guidance from the denoising
model across finer sampling iterations to generate higher-
quality samples. However, as the number of timesteps is
reduced from 1000 down to 10, the performance gains of
our SA-DPM become more pronounced. As observed from
those tables, for many settings, 50 or 100 timesteps are suffi-
cient for our method to achieve a similar FID level with prior
methods which use 1000 timesteps. This suggests a signifi-
cant advantage of our new loss to improve both training and
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(a) CIFAR10 32 × 32 (b) CelebA 64 × 64

Figure 3: Qualitative results of (a) CIFAR10 32 × 32. (b) CelebA 64 × 64.

Dataset # timesteps T Method
B SA B+A SA+A B+NPR SA+NPR B+SN SA+SN

CIFAR10 32×32
10 41.41 30.51 34.19 21.66 32.35 21.10 24.06 19.53
50 15.98 9.24 7.20 4.20 6.18 3.90 4.63 3.61
100 11.79 6.73 5.31 3.43 4.52 3.25 3.67 3.10

DDPM (LS) 200 9.15 5.47 3.92 3.28 3.57 3.16 3.31 3.06
1000 5.92 4.33 3.98 3.72 4.10 3.84 3.65 3.56

CIFAR10 32×32
10 34.98 24.59 23.41 16.66 19.94 14.77 16.33 17.23
50 11.05 6.27 5.42 3.78 5.31 3.67 4.17 3.97
100 8.25 4.98 4.45 3.53 4.52 3.51 3.83 3.64

DDPM (CS) 200 6.69 4.40 4.04 3.53 4.10 3.54 3.72 3.61
1000 4.95 4.05 4.26 3.84 4.27 3.87 4.07 3.83

CelebA 64×64
10 36.69 32.15 28.99 27.08 28.37 26.73 20.60 26.22
50 18.96 17.59 11.23 9.43 10.89 9.42 7.88 7.01
100 14.31 12.77 8.08 6.53 8.23 6.84 5.89 5.18

DDPM 200 10.48 9.14 6.51 5.02 7.03 5.49 5.02 4.04
1000 5.95 4.69 5.21 3.99 5.33 4.00 4.42 3.56

CelebA 64×64
10 20.54 12.88 15.62 10.52 14.98 10.48 10.20 19.29
50 9.33 7.01 6.13 4.18 6.04 4.25 3.83 3.19
100 6.60 4.81 4.29 3.02 4.27 3.13 3.04 2.62

DDIM 200 4.96 3.69 3.46 2.61 3.59 2.76 2.85 2.49
1000 3.40 2.98 3.13 2.74 3.15 2.78 2.90 2.66

Table 2: FID score (↓). The results are reported under different numbers of timesteps T . Here B and SA denote the baseline and
our proposed method. A, NPR, and SN denote Analytic-DPM, NPR-DPM, and SN-DPM, respectively.

Dataset # timesteps T Method
B SA B+A SA+A B+NPR SA+NPR B+SN SA+SN

CIFAR10 32×32
10 6.93 7.55 8.05 8.50 8.17 8.53 8.10 8.42
50 8.34 8.82 9.53 9.62 9.51 9.63 9.49 9.65
100 8.59 9.04 9.59 9.74 9.55 9.70 9.47 9.73

DDPM (LS) 200 8.81 9.15 9.59 9.72 9.49 9.62 9.50 9.65
1000 9.03 9.24 9.17 9.37 9.18 9.35 9.24 9.41

CIFAR10 32×32
10 7.48 7.97 8.05 8.37 8.21 8.49 8.47 8.48
50 8.53 9.09 8.97 9.43 9.02 9.45 9.10 9.46
100 8.71 9.20 9.07 9.52 9.09 9.53 9.16 9.54

DDPM (CS) 200 8.84 9.31 9.14 9.55 9.15 9.54 9.18 9.54
1000 8.94 9.45 9.04 9.52 9.04 9.52 9.06 9.54

Table 3: IS metric (↑). The results are reported under different numbers of timesteps T . Here B and SA denote the baseline and
our proposed method. A, NPR, and SN denote Analytic-DPM, NPR-DPM, and SN-DPM, respectively.
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Method λ
# timesteps T

10 50 100 200 1000
DDPM 0 41.41 15.98 11.79 9.15 5.92

SA-2-DPM
0.5 35.39 12.09 8.52 6.56 5.25
1.0 30.51 9.24 6.73 5.47 4.33
2.0 19.14 10.59 11.21 12.34 14.20

SA-3-DPM
0.3 30.49 10.27 7.63 6.44 5.47
0.6 23.71 9.07 7.96 7.77 8.06
1.5 15.59 11.76 13.90 16.34 19.49

SA-4-DPM 0.2 32.93 10.78 7.78 6.17 4.73
0.4 26.68 9.33 7.53 7.00 6.95

Table 4: FID of CIFAR10 dataset under different weight λ
of Lsa. We use the sampling type of DDPM to synthesize.

inference in DPMs. For qualitative results, we provide the
generated samples of our SA-DPM in Figure 2 and 3.

In addition, we also combine our proposed loss with
the three covariance estimation methods (Analytic-DPM,
NPR-DPM, and SN-DPM) on two datasets: CIFAR10 and
CelebA. Table 2 and 3 show that our loss can boost signifi-
cantly the image quality. This could be attributed to the capa-
bility of our loss to enhance the estimation of the mean of the
backward Gaussian distributions in the sampling procedure.
So when incorporating the additional covariance estimation
methods, the generated image quality is further improved.
We further provide synthesized samples in Appendix C.3.

Ablation Study on the Weight λ
In the previous subsection, we used the SA-2-DPM with
the weight λ of Lsa set to 1, which resulted in substantial
performance improvements when considering small sam-
pling timesteps as compared to the original DPM. Next, we
consider the variations in FID scores for CIFAR10 dataset
across different configurations of weight λ ∈ {0.5, 1, 2}
for SA-2-DPM, λ ∈ {0.3, 0.6, 1.5} for SA-3-DPM and
λ ∈ {0.2, 0.4} for SA-4-DPM. In this experiment, the sam-
pling type of DDPM is used for evaluation. As presented
in Table 4, all the tested SA-K-DPM methods yield better
results compared to the vanilla DPM. With different num-
bers of consecutive steps, the weight λ plays a crucial role.
Specifically, SA-2-DPM (λ = 1), SA-3-DPM (λ = 0.3),
and SA-4-DPM (λ = 0.2) consistently outperform DPM
for all numbers of sampling timesteps. However, when the
weight λ is set much higher, the quality of generated images
will degrade slightly when using a large number of timesteps
(e.g., 1000), even though it will be significantly better when
using a small number of timesteps.

Evaluation on the Estimation Gap
In this experiment, we evaluate the total gap term d̄θ,t of
each trained model during sampling. Because d̄θ,t contains
the weighted sum of the difference between the noise target
fθ(xt, t) and the actual noise ϵt, however, during the sam-
pling process starting from Gaussian noise xT ∼ N (0, I),
we cannot know the actual noise due to the unknown in-
put image x0. Therefore, to assess the quantity d̄θ,t effec-
tively, we take around 2000 input images from the dataset
and add noise to them up to time t = 300 in order to

Figure 4: Total gap term d̄θ,t when sampling image starting
from x300 on CIFAR10 dataset.

avoid completely destroying x0. Then, these images x300

are used as starting points for the denoising process. At each
time step t, we calculate the noise target using the formula
ϵt =

xt−
√
ᾱtx0√

1−ᾱt
, and then we can compute the gap d̄θ,t.

Figure 4 illustrates d̄θ,t of the sampling process of four
trained models on CIFAR10 dataset: vanilla DPM, SA-2-
DPM, SA-3-DPM and SA-4-DPM. It can be observed that
when training with more consecutive timesteps K in Lsa,
the total gap term is more effectively minimized during the
sampling process. Specifically, with SA-2-DPM, at the fi-
nal timestep of the denoising process, the total gap term is
reduced by approximately 2.5 times compared to the base
model. We provide more results in Appendix C.2.

Conclusion
In this work, we examine the estimation gap between the
ground truth and predicted trajectory in the sampling process
of DPMs. We then propose a sequence-aware loss, that opti-
mizes multiple timesteps jointly to leverage their sequential
relationship. We theoretically prove that our proposed loss is
a tighter upper bound of the estimation gap than the vanilla
loss. Our experimental results verify that our loss reduces
the estimation gap and enhances the sample quality. More-
over, when combining our loss with advanced techniques,
we achieve a significant improvement over the baselines.
Therefore, with our new loss, we provide a new benchmark
for future research on DPMs. This new loss represents the
true loss of a sampling step and therefore may facilitate fu-
ture deeper understandings of DPMs, such as generalization
ability and optimality. One limitation of this work is that our
new loss requires the calculation of the network’s output at
many timesteps, which makes the training time longer com-
pared to the vanilla loss.
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