
On the Expressivity of Recurrent Neural Cascades

Nadezda Alexandrovna Knorozova1, Alessandro Ronca2

1RelationalAI
2University of Oxford

nadezda.knorozova@relational.ai, alessandro.ronca@cs.ox.ac.uk

Abstract

Recurrent Neural Cascades (RNCs) are the recurrent neural
networks with no cyclic dependencies among recurrent neu-
rons. This class of recurrent networks has received a lot of
attention in practice. Besides training methods for a fixed ar-
chitecture such as backpropagation, the cascade architecture
naturally allows for constructive learning methods, where re-
current nodes are added incrementally one at a time, often
yielding smaller networks. Furthermore, acyclicity amounts
to a structural prior that even for the same number of neurons
yields a more favourable sample complexity compared to a
fully-connected architecture.
A central question is whether the advantages of the cascade
architecture come at the cost of a reduced expressivity. We
provide new insights into this question. We show that the reg-
ular languages captured by RNCs with sign and tanh acti-
vation with positive recurrent weights are the star-free reg-
ular languages. In order to establish our results we develop
a novel framework where capabilities of RNCs are assessed
by analysing which semigroups and groups a single neuron is
able to implement. A notable implication of our framework
is that RNCs can achieve the expressivity of all regular lan-
guages by introducing neurons that can implement groups.

Introduction
Recurrent Neural Cascades (RNCs) are a class of recurrent
networks that has been successfully applied in many differ-
ent areas, including information diffusion in social networks
(Wang et al. 2017), geological hazard predictions (Zhu et al.
2020), automated image annotation (Shin et al. 2016), brain-
computer inference (Zhang et al. 2018), and optics (Xu et al.
2020). In the cascade architecture neurons can be layed out
into a sequence so that every neuron has access to the out-
put of all preceding neurons as well as to the external input;
and at the same time, it has no dependency on the subse-
quent neurons. Compared to fully-connected networks, the
cascade architecture has half of the connections. It imme-
diately implies that RNCs have a more favourable sample
complexity, or dually better generalisation capabilities. This
is evident from the fact that the VC dimension of recurrent
networks depends directly on the number of connections
(Koiran and Sontag 1998).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The acyclic structure of the cascade architecture nat-
urally allows for so-called constructive learning meth-
ods, cf. (Fahlman 1990; Reed and Marks II 1999). These
methods construct the network architecture dynamically
during the training, often yielding smaller networks, faster
training and improved generalisation. One such method is
recurrent cascade correlation, which builds the architec-
ture incrementally adding one recurrent neuron at a time
(Fahlman 1990). RNCs emerge naturally here from the fact
that existing nodes will not depend on nodes added later.
RNCs also admit learning methods for fixed architectures,
such as backpropagation through time, cf. (Werbos 1990),
where only the weights are learned. For these methods the
advantage of the cascade architecture comes from the re-
duced number of weights.

A central question is whether the advantages of the cas-
cade architecture come at the cost of a reduced expressiv-
ity compared to the fully-connected architecture. The stud-
ies so far have shown that there exist regular languages that
are not captured by RNCs with monotone activation such as
tanh (Giles et al. 1995). However, an exact characterisation
of their expressitivity is still missing. Furthermore, it is un-
clear whether the inability to capture all regular languages
is a limitation of the cascade architecture, or rather of the
considered activation functions. We continue this investiga-
tion and provide new insights in the capabilities of RNCs to
capture regular languages.

Our contribution. We develop an analysis of the capabil-
ities of RNCs establishing the following expressivity results.

• RNCs with sign or tanh activations capture the star-free
regular languages. The expressivity result already holds
when recurrent weights are restricted to be positive.

• RNCs with sign or tanh activations and positive recurrent
weights do not capture any regular language that is not
star-free.

• Allowing for negative recurrent weights properly extends
the expressivity of RNCs with sign and tanh activations
beyond the star-free regular languages.

• We show that in principle the expressivity of RNCs can
be extended to all regular languages. It suffices to iden-
tify appropriate recurrent neurons. In particular, neurons
that can implement finite simple groups. As a first step,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10589



we show that second-order sign and tanh neurons can im-
plement the cyclic group of order two.

Our expressivity results establish an important connec-
tion between recurrent neural networks and the wide range
of formalisms whose expressivity is the star-free regular
languages. Such formalisms include star-free regular ex-
pressions from where they take their name, cf. (Ginzburg
1968), Monadic First-order Logic on finite linearly-ordered
domains, cf. (McNaughton and Papert 1971), Past Tempo-
ral Logic, cf. (Manna and Pnueli 1991), and Linear Tem-
poral Logic on finite traces (De Giacomo and Vardi 2013).
They are also the languages recognised by counter-free au-
tomata as well as group-free automata, cf. (Schützenberger
1965; Ginzburg 1968; McNaughton and Papert 1971). On
one hand, our results introduce an opportunity of employing
RNCs for learning targets that one would describe in any
of the above formalisms. For such targets, RNCs are suffi-
ciently expressive and, compared to fully-connected recur-
rent neural networks, offer a more favorable sample com-
plexity along with a wider range of learning algorithms. On
the other hand, it places RNCs alongside well-understood
formalisms with the possibility of establishing further con-
nections and leveraging many existing fundamental results.

As a result of our investigation we develop a novel frame-
work where recurrent neural networks are analysed through
the lens of Semigroup and Group Theory. We establish a
formal correspondence between continuous systems such as
recurrent neural networks and discrete abstract objects such
as semigroups and groups. Effectively we bridge RNCs with
Algebraic Automata Theory, two fields that developed inde-
pendently, and so far have not been considered to have any
interaction. Specifically, our framework allows for establish-
ing the expressivity of RNCs by analysing the capabilities of
a single neuron from the point of view of which semigroups
and groups it can implement. If a neuron can implement the
so-called flip-flop monoid, then cascades of such neurons
capture the star-free regular languages. To go beyond that,
it is sufficient to introduce neurons that implement groups.
Our framework can be readily used to analyse the expres-
sivity of RNCs with neurons that have not been considered
in this work. In particular, we introduce abstract flip-flop
and group neurons, which are the neural counterpart of the
flip-flop monoid and of any given group. To show expressiv-
ity results, it is sufficient to instantiate our abstract neurons.
Specifically in this work we show how to instantiate flip-flop
neurons with (first-order) sign and tanh, as well as a family
of grouplike neurons with second-order sign and tanh. In a
similar way, other results can be obtained by instantiating
the abstract neurons with different activation functions.

The extended version of this paper provides proofs of all
our results, a more extensive background on the required no-
tions from semigroup and group theory, and examples of
star-free regular languages as found in two different appli-
cations (Knorozova and Ronca 2023).

Part I: Background
We introduce the necessary background.

Dynamical Systems
Dynamical systems provide us with a formalism where to
cast both neural networks and automata. The kind of dy-
namical systems relevant to us are described next. They
are discrete-time, and they have some continuity properties.
Specifically, a dynamical system S is a tuple

S = ⟨U,X, f, xinit, Y, h⟩,
where U is a set of elements called inputs, X is a set of ele-
ments called states, f : X×U → X is called dynamics func-
tion, xinit ∈ X is called initial state, Y is a set of elements
called outputs, and h : X×U → Y is called output function;
furthermore, sets U,X, Y are metric spaces, and functions
f, h are continuous. At every time point t = 1, 2, . . . , the
system receives an input ut ∈ U . The state xt of the system
at time t is defined as follows. At time t = 0, before receiv-
ing any input, the system is in state x0 = xinit. Then, the
state xt and output yt are determined by the previous state
xt−1 and the current input ut as

xt = f(xt−1, ut), yt = h(xt−1, ut).

The dynamics of S are the tuple D = ⟨U,X, f⟩. Subdy-
namics of D are any tuple ⟨U ′, X ′, f⟩ such that U ′ ⊆ U ,
X ′ ⊆ X , and f(X ′, U ′) ⊆ X ′. Note that f(X ′, U ′) =
{f(x, u) | x ∈ X ′, u ∈ U ′}. The function implemented
by system S is the function that maps every input se-
quence u1, . . . , uℓ to the output sequence y1, . . . , yℓ. We
write S(u1, . . . , uℓ) = y1, . . . , yℓ. Two systems are equiv-
alent if they implement the same function.

Architectures. A network is a dynamical system N with
a factored state space X = X1 × · · · × Xd and dynamics
function of the form

f(x, u) = ⟨f1(x, u), . . . , fd(x, u)⟩,
where x = ⟨x1, . . . , xd⟩.

Note that fi determines the i-th component of the state by
reading the entire state vector and the input. A network can
be expressed in a modular way by expressing the dynamics
function as

f(x, u) = ⟨f1(x1, u1), . . . , fd(xd, ud)⟩,
where ui = ⟨u, x1, . . . , xi−1, xi+1, . . . , xd⟩.

It is a modular view because now the dynamics of N can be
seen as made of the d dynamics of the form

Di =
〈
(U×X1×· · ·×Xi−1×Xi+1×· · ·×Xd), Xi, fi

〉
.

We call every Di a component of the dynamics of N . When
there are no cyclic dependencies among the components of
N , the network can be expressed as a cascade, where the
dynamics function is of the form

f(x, u) = ⟨f1(x1, u1), . . . , fd(xd, ud)⟩,
where ui = ⟨u, x1, . . . , xi−1⟩.

In a cascade, every component has access to the state of the
preceding components, in addition to the external input. Dif-
ferently, in a network, every component has access to the
state of all components, in addition to the external input.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10590



Recurrent Neural Cascades and Networks
A core recurrent neuron is a triple N = ⟨V,X, f⟩ where
V ⊆ R is the input domain, X ⊆ R are the states, and
function f is of the form

f(x, u) = α((w · x)⊕ v),

with w ∈ R called weight, ⊕ a binary operator over R, and
α : R → R called activation function. A recurrent neuron is
the composition of a core recurrent neuron N with an input
function β : U ⊆ Ra → V that can be implemented by a
feedforward neural network. Namely, it is a triple ⟨U,X, fβ⟩
where fβ(x, u) = f(x, β(u)).

We often omit the term ‘recurrent’ as it is the only kind
of neuron we consider explicitly. By default we will assume
that the operator ⊕ is addition. We will also consider the
case where ⊕ is product; in this case we refer to the neuron
as a second-order neuron.

A neuron is a form of dynamics, so the notions introduced
for dynamical systems apply. A Recurrent Neural Cascade
(RNC) is a cascade whose components are recurrent neurons
and whose output function is a feedforward neural network.
A Recurrent Neural Network (RNN) is a network whose
components are recurrent neurons and whose output func-
tion is a feedforward neural network.

Automata
Automata are dynamical systems with a finite input domain,
a finite set of states, and a finite output domain. The termi-
nology used for automata is different from the one used for
dynamical systems.

The input and output domains are called alphabets, and
their elements are called letters. Input and output sequences
are seen as strings, where a string σ1 . . . σℓ is simply a con-
catenation of letters. The set of all strings over an alphabet
Σ is written as Σ∗.

An automaton is a tuple A = ⟨Σ, Q, δ, qinit,Γ, θ⟩ where
Σ is called input alphabet (rather than input domain), Q is
the set of states, δ : Q×Σ → Q is called transition function
(rather than dynamics function), qinit ∈ Q is the initial state,
Γ is called output alphabet (rather than output domain), and
θ : Q×Σ → Γ is the output function. Again, the requirement
is that Σ, Q,Γ are finite. The tuple D = ⟨Σ, Q, δ⟩ is called
a semiautomaton, rather than dynamics.

In order to analyse automata, it is convenient to introduce
the notion of state transformation. A state transformation is
a function τ : Q → Q from states to states, and it is called:
(i) a permutation if τ(Q) = Q, (ii) a reset if τ(Q) = {q} for
some q ∈ Q, (iii) an identity if τ(q) = q for every q ∈ Q.
Note that an identity transformation is, in particular, a per-
mutation transformation. Every input letter σ ∈ Σ induces
the state transformation δσ(q) = δ(q, σ). Such state trans-
formation δσ describes all state updates triggered by the in-
put letter σ. The set of state transformations of semiautoma-
ton D is {δσ | σ ∈ Σ}. Any two letters that induce the same
state transformations are equivalent for the semiautomaton,
in the sense that they trigger the same state updates. Such
equivalence can be made explicit by writing a semiautoma-
ton as consisting of two components. The first component is

an input function that translates input letters into letters of an
internal alphabet Π, where each letter represents an equiv-
alence class of inputs. The second component is a semiau-
tomaton operating on the internal alphabet Π. This way, the
internal letters induce distinct state transformations.

Definition 1. Given a function ϕ : Σ → Π, and a semiau-
tomaton ⟨Π, Q, δ⟩ their composition is the semiautomaton
⟨Σ, Q, δϕ⟩ where δϕ is defined as δϕ(q, σ) = δ(q, ϕ(σ)). We
call ϕ the input function of the resulting semiautomaton, and
we call Π its internal alphabet.

We will often write semiautomata with an explicit input
function—w.l.o.g. since we can always choose identity.

Fundamentals of Algebraic Automata Theory
Semiautomata can be represented as networks or cascades.
This is a structured alternative to state diagrams—the un-
structured representation of transitions as a labelled graph.
For the cascade architecture, the fundamental theorem by
Krohn and Rhodes shows that every semiautomaton can be
expressed as a cascade of so-called prime semiautomata
(Krohn and Rhodes 1965). Moreover, using only some prime
semiautomata, one obtains specialised expressivity results.
Prime semiautomata can be partitioned into two classes. The
first class of prime semiautomata are flip-flops. At their core,
they have a semiautomaton that corresponds to the standard
notion of flip-flop from digital circuits, and hence they pro-
vide the fundamental functionality of storing one bit of in-
formation, with the possibility of setting and resetting.

Definition 2. Let set , reset , read , and high , low be dis-
tinguished symbols. The core flip-flop semiautomaton is the
semiautomaton ⟨Π, Q, δ⟩ where the input alphabet is Π =
{set , reset , read}, the states are Q = {high, low}, and the
identities below hold:

δ(read , q) = q, δ(set , q) = high, δ(reset , q) = low .

A flip-flop semiautomaton is the composition of an input
function with the core flip-flop semiautomaton.

Note that the state transformations of a flip-flop charac-
terise its intuitive functionalities. In particular, read induces
an identity transformation, set induces a reset to high , and
reset induces a reset to low .

The second class of prime semiautomata are the simple
grouplike semiautomata.

Definition 3. Let G = (D, ◦) be a finite group. The core
G semiautomaton is the semiautomaton ⟨D,D, δ⟩ where
δ(g, h) = g ◦ h. A G semiautomaton is the composition of
an input function with the coreG semiautomaton. A semiau-
tomaton is (simple) grouplike if it is a G semiautomaton for
some (simple) group G.

Of particular interest to us is the class of group-free semi-
automata. Intuitively, they are the semiautomata that do not
involve groups, and do not show any periodic behaviour.
The formal definition requires additional notions from semi-
group theory, and hence we defer it to the appendix.

Next we state a direct implication of the Krohn-Rhodes
decomposition theorem—see Theorem 3.1 of (Dömösi and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10591



Nehaniv 2005). The statement requires the notion of homo-
morphic representation which is given later in Definition 4,
in a more general form that applies to arbitrary dynamical
systems. Intuitively, if a semiautomaton A is homomorphi-
cally represented by a semiautomaton B, it means that the
capabilities of A are captured by the capabilities of B.

Theorem 1 (Krohn-Rhodes). Every semiautomaton is ho-
momorphically represented by a cascade of prime semiau-
tomata. Every group-free semiautomaton is homomorphi-
cally represented by a cascade of flip-flop semiautomata.

The converse of both statements in Theorem 1 holds as
well. Thus, group-free semiautomata can be characterised
as the semiautomata that are homomorphically represented
by a cascade of flip-flop semiautomata. If one allows for
cyclic dependencies, then flip-flop semiautomata suffice to
capture all semiautomata. This a direct implication of the
Letichevsky decomposition theorem—see Theorem 2.69 of
(Dömösi and Nehaniv 2005).

Theorem 2 (Letichevsky). Every semiautomaton is homo-
morphically represented by a network of flip-flop semiau-
tomata.

Classes of Languages and Functions
A language L over Σ is a subset of Σ∗. It can also be seen
the indicator function fL : Σ∗ → {0, 1} where fL(x) =
1 iff x ∈ L. In general we will be interested in functions
f : Σ∗ → Γ for Γ an arbitrary output alphabet. An acceptor
is a dynamical system whose output domain is {0, 1}. The
language recognised by an acceptor is the set of strings on
which the acceptor returns 1 as its last output.

The regular languages are the ones recognised by au-
tomaton acceptors (Kleene 1956). The group-free regular
languages are the ones recognised by automaton acceptors
with a group-free semiautomaton, and they coincide with the
star-free regular languages, cf. (Ginzburg 1968). These no-
tions can be naturally generalised to functions. The regular
functions are the ones implemented by automata. The group-
free regular functions are the ones implemented by automata
with a group-free semiautomaton.

Part II: Our Framework
In this section we present our framework for analysing
RNCs. First, we introduce a notion of homomorphism for
dynamical systems. Then, we formalise the notion of sym-
bol grounding. Finally, we introduce abstract neurons which
are the neural counterpart of prime semiautomata.

Homomorphisms for Dynamical Systems
We introduce a new notion of homomorphism which allows
us to compare systems by comparing their dynamics. Ho-
momorphisms are a standard notion in automata theory, cf.
(Arbib 1969). However, there, they do not deal with the no-
tion of continuity, which holds trivially for all functions in-
volved in automata, since they are over finite domains. Here
we introduce homomorphisms for dynamical systems, with
the requirement that they must be continuous functions. This
allows one to infer results for continuous dynamical systems

such as recurrent neural networks, as stated by our Proposi-
tions 1 and 2, which are instrumental to our results.

Definition 4. Consider two system dynamics D1 =
⟨U,X1, f1⟩ and D2 = ⟨U,X2, f2⟩. A homomorphism from
D1 to D2 is a continuous surjective function ψ : X1 → X2

satisfying the equality

ψ
(
f1(x, u)

)
= f2

(
ψ(x), u

)
for every state x ∈ X1 and every input u ∈ U . We say that
D1 homomorphically represents D2 if D1 has subdynamics
D′

1 such that there is a homomorphism from D′
1 to D2.

The relevance of the notion of homomorphic representa-
tion is made clear by the two following propositions.

Proposition 1. If dynamics D1 homomorphically represent
dynamics D2, then every system with dynamics D2 admits
an equivalent system with dynamics D1.

For the second proposition, the following notions are
needed, which are borrowed from automata theory, cf. (Ar-
bib 1969), but apply to dynamical systems as well.

Definition 5. A state x of a system S is reachable if there is
an input sequence u1, . . . , uℓ such that the system is in state
x at time ℓ. A system is connected if every state is reachable.
Given a system S and one of its states x, the system Sx is
the system obtained by setting x to be the initial state. Two
states x and x′ of S are equivalent if the systems Sx and
Sx′

are equivalent. A system is in reduced form if it has no
distinct states which are equivalent. A system is canonical if
it is connected and in reduced form.

Proposition 2. If a system S1 is equivalent to a canonical
system S2 with a discrete output domain, then the dynamics
of S1 homomorphically represent the dynamics of S2.

Symbol Grounding
Our goal is to establish expressivity results for recurrent net-
works. Given an input alphabet Σ and an output alphabet
Γ, we want to establish which functions from Σ∗ to Γ∗ can
be implemented by a recurrent network. However, recurrent
networks operate on a real-valued input domain U ⊆ Rn

and a real-valued output domain Y ⊆ Rm. In order to close
the gap, we introduce the notion of symbol grounding.

Definition 6. Given a domain Z ⊆ Rn and an alphabet Λ,
a symbol grounding from Z to Λ is a continuous surjective
function λ : Z → Λ.

Symbol groundings can be seen as connecting the subym-
bolic level Z ⊆ Rn to the symbolic level Λ. For an element
z at the subsymbolic level, the letter λ(z) is its meaning at
the symbolic level. Assuming that a symbol grounding λ is
surjective means that every letter corresponds to at least one
element z ∈ Z. The assumption is w.l.o.g. because we can
remove the letters that do not represent any element of the
subsymbolic level.

Symbol groundings can be robust to noise, when every
letter corresponds to a ball in Rn rather than to a single point,
so as to allow some tolerance—any noise that stays within
the ball does not affect the symbolic level.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10592



Definition 7. A symbol grounding λ : Z → Λ is robust
if, for every a ∈ Λ, there exists a ball B ⊆ Z of non-zero
radius such that λ(B) = {a}.

In the following sections we establish expressivity results
considering fixed, but arbitrary, input alphabet Σ, input do-
main U ⊆ Rn, input symbol grounding λΣ : U → Σ,
output alphabet Γ, output domain Y ⊆ Rm, and output
symbol grounding λΓ : Y → Γ. Whenever we relate an
RNC (or RNN) to an automaton, we mean that the RNC
(or RNN) operates at the subsymbolic level and then its
output is mapped to the symbolic level, while the automa-
ton operates entirely at the symbolic level. Formally, given
an RNC or RNN ⟨U,X, f, xinit, Y, g⟩ and an automaton
⟨Σ, Q, δ, qinit,Γ, θ⟩, we relate the corresponding dynamical
sytems ⟨U,X, f, xinit,Γ, g ◦ λΓ⟩ and ⟨U,Q, δλΣ

, qinit,Γ, θ⟩
where δλΣ

(q, u) = δ(q, λΣ(u)). Note that both systems take
inputs in U and return letters in Γ.

Assumptions. We make the mild technical assumptions
that U is a compact, and that the output symbol grounding
λΓ is robust. These assumptions, together with continuity,
allow us to make use of the Universal Approximation Theo-
rem for feedforward neural networks, cf. (Hornik 1991).

Abstract Neurons
We first introduce an abstract class of neurons that model the
behaviour of a flip-flop or grouplike semiautomaton. This al-
lows us to state general results about cascades and networks
of such abstract neurons. Then, we show that these results
will transfer to cascades and networks of any concrete in-
stantiation of such neurons.
Definition 8. A core flip-flop neuron is a core neuron
⟨V,X, f⟩ where the set V of inputs is expressed as the union
of three disjoint closed intervals Vset, Vreset, Vread of non-
zero length, the set X of states is expressed as the union of
two disjoint closed intervals Xlow, Xhigh, and the following
conditions hold:

f(X,Vset) ⊆ Xhigh,

f(X,Vreset) ⊆ Xlow,

f(Xhigh, Vread) ⊆ Xhigh,

f(Xlow, Vread) ⊆ Xlow.

A flip-flop neuron is the composition of a core flip-flop neu-
ron with an input function. The state interpretation of a flip-
flop neuron is the function ψ defined as ψ(x) = high for
x ∈ Xhigh and ψ(x) = low for x ∈ Xlow.
Definition 9. Let G = (D, ◦) be a group with D =
{1, . . . , n}. A core G neuron is a core neuron ⟨V,X, f⟩
where the set V of inputs is expressed as the union of n dis-
joint closed intervals V1, . . . , Vn of non-zero length, the set
X of states is expressed as the union of n disjoint closed
intervals X1, . . . , Xn, and the following condition holds for
every i, j ∈ D:

f(Xi, Vj) ⊆ Xi◦j .

A G neuron is the composition of a core G neuron with an
input function. The state interpretation of a G neuron is the
functionψ defined asψ(x) = i for x ∈ Xi. A neuron is (sim-
ple) grouplike if it is a G neuron for some (simple) group G.

Abstract neurons are designed to be the neural counter-
part of flip-flop and grouplike semiautomata. Specifically,
they are designed to guarantee the existence of a homomor-
phism as stated in Lemma 1 below. The lemma and all the
following results involving abstract neurons hold regardless
of the specific way the core of an abstract neuron is instan-
tiated. We highlight this aspect in the claims by referring to
an abstract neuron with arbitrary core.
Lemma 1. Every flip-flop semiautomaton is homomorphi-
cally represented by a flip-flop neuron with arbitrary core.
Similarly, every G semiautomaton is homomorphically rep-
resented by a G neuron with arbitrary core. In either case,
the homomorphism is given by the state interpretation of the
neuron.

The lemma is based on three key observations. First, the
inclusion requirements in the definition of a flip-flop neuron
determine a correspondence with transitions of a flip-flop
semiautomaton; the same holds for grouplike neurons. Sec-
ond, the fact that input intervals have non-zero length intro-
duces sufficient tolerance to approximate the input function
of a semiautomaton by a feedforward neural network mak-
ing use of Universal Approximation Theorems, cf. (Hornik
1991). Third, the fact that state partitions are closed intervals
ensures continuity of a homomorphism.

The previous lemma extends to cascades and networks.
Lemma 2. Every cascade (or network) of flip-flop or
grouplike semiautomata A1, . . . , Ad is homomorphically
represented by a cascade (network, resp.) of d neurons
N1, . . . , Nd where Ni is a flip-flop neuron if Ai is a flip-flop
semiautomaton and Ni is a G neuron if Ai is a G semiau-
tomaton.

Part III: Expressivity Results
We present our results for RNCs of sign and tanh activation.

Implementation of Flip-Flop Neurons
We give precise conditions under which neurons with sign
or tanh activation are flip-flop neurons. Following the def-
inition of the abstract flip-flop neuron the goal is to parti-
tion the state space of both sign and tanh into low and high
states and then find inputs inducing read, set and reset tran-
sitions. For sign activation the choice is simple, we interpret
−1 as the low state and +1 as the high state. Since states are
bounded, we know the maximum and minimum value that
can be achieved by w · x for any possible state x. Therefore
we can find inputs that will either maintain the sign or make
it the desired one.
Proposition 3. Let w > 0. A core neuron with sign acti-
vation and weight w is a core flip-flop neuron if its state
partition is

Xlow = {−1}, Xhigh = {+1},
for some real number a ∈ (0, 1) and its inputs partition
satisfies

Vreset ∈
(
−∞, w · (−a− 1)

]
,

Vread ∈
[
w · (a− 1), w · (1− a)

]
,

Vset ∈
[
w · (a+ 1), +∞

)
.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10593



Tanh activation requires a more careful treatment. We rep-
resent the low and the high states as closed disjoint intervals
including −1 and +1 respectively. Then using the values of
state boundaries and the monotonicity property of tanh we
can find inputs allowing for read, set and reset transitions
without violating the state boundaries.
Proposition 4. Let w > 1, and let f(x) = tanh(w · x).
A core neuron with tanh activation and weight w is a core
flip-flop neuron if its state partition is

Xlow = [−1, f(a)], Xhigh = [f(b),+1],

for some real numbers a < b satisfying a−f(a) > b−f(b),
and its input partition satisfies

Vreset ∈
(
−∞, w · (a− 1)

]
,

Vread ∈
[
w · (b− f(b)), w · (a− f(a))

]
,

Vset ∈
[
w · (b+ 1), +∞

)
.

Differently from sign activation, the low and high states
of tanh are not partitioned based on their sign. In fact, the
low states can include positive values and high states can
include negative values. This is determined entirely by the
values of a and b defining the state boundaries. We remark
that the range of valid a, b values increases with the increas-
ing value of w. The quantities a, b also determine the length
of the Vread interval, that impacts the robustness or the noise
tolerance of the neuron. It is possible to choose the values
of a and b that maximise the length of the Vread interval. In
particular, these are the points where the derivative of f(x)
is equal to one.

Expressivity of RNCs
We are now ready to present our expressivity results. We
state them in terms of the functions that can be implemented
by an RNC. The results apply to languages as well, since
they correpond to indicator functions as discussed in the
background section.

As a positive expressivity result, we show that RNCs of
flip-flop neurons can implement all group-free regular func-
tions.
Theorem 3. Every group-free regular function can be im-
plemented by an RNC of flip-flop neurons with arbitrary
core. In particular, it can be implemented by an RNC of neu-
rons with sign or tanh activation, where it is sufficient to
consider positive weights.

The result is obtained by applying results from the pre-
vious sections. We have that every group-free regular func-
tion F is implemented by a group-free automaton, whose
semiautomaton is homomorphically represented by a cas-
cade of flip-flop semiautomata (Theorem 1), which is in turn
homomorphically represented by a cascade of flip-flop neu-
rons (Lemma 2); therefore, F is implemented by a system
whose dynamics are a cascade of flip-flop neurons (Proposi-
tion 1) and whose output function is some continuous output
function; we replace the output function with a feedforward
neural network making use of the Universal Approximation
Theorem, relying on the fact that approximation will not af-
fect the result because the output symbol grounding is as-
sumed to be robust.

In the rest of this section we show that RNCs of sign or
tanh neurons with positive weight do not implement regular
functions that are not group-free. We start by establishing a
necessary condition. In order to go beyond group-free reg-
ular functions, it is necessary for the dynamics to show a
periodic, alternating behaviour.
Lemma 3. If a semiautomaton that is not group-free is ho-
momorphically represented by dynamics ⟨U,X, f⟩, with ho-
momorphism ψ, then there exist u ∈ U and x0 ∈ X such
that, for xi = f(xi−1, u), the disequality ψ(xi) ̸= ψ(xi+1)
holds for every i ≥ 0.

Then we show that, for sign or tanh neurons with posi-
tive weight, a constant input yields a convergent sequence
of states—in fact, more generally, such a sequence is con-
vergent even when the input is not constant but itself con-
vergent, and this stronger property is required in the proof of
the lemma below. Together with the lemma above, it implies
that a cascade of sign or tanh neurons with positive weight
can capture a group-free semiautomaton only at the cost of
generating a sequence of converging alternating states. This
would amount to an essential discontinuity for any candidate
homomorphism.
Lemma 4. Every semiautomaton that is not group-free is
not homomorphically represented by a cascade where each
component is a neuron with sign or tanh activation and pos-
itive weight.

Then the expressivity result follows from the lemma by
Proposition 2.
Theorem 4. For any regular function F that is not group-
free, there is no RNC implementing F whose components are
neurons with sign or tanh activation and positive weight.

In light of Theorem 3 and Theorem 4, we identify a class
of RNCs that can implement all group-free regular functions
and no other regular function.
Theorem 5. The class of regular functions that can be im-
plemented by RNCs of sign or tanh neurons with positive
weight is the group-free regular functions.

Necessary Conditions for Group-freeness
We show that both acyclicity and positive weights of sign
and tanh are necessary to stay within the group-free func-
tions. First, recurrent neural networks, with arbitrary depen-
dencies among their neurons, implement all regular func-
tions, including the ones that are not group-free.
Theorem 6. Every regular function can be implemented by
an RNN of flip-flop neurons with arbitrary core. In particu-
lar, it can be implemented by an RNN of neurons with sign
or tanh activation.

The theorem is proved similarly to Theorem 3, using The-
orem 2 in place of Theorem 1. The above Theorem 6 seems
to be folklore. However we are not aware of an existing for-
mal proof for the case of a differentiable activation function
such as tanh. We discuss it further in the related work sec-
tion.

Next we show that the restriction to positive weights is
necessary to stay within the expressivity of group-free regu-
lar functions.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10594



Theorem 7. There is an RNC consisting of a single tanh (or
sign) neuron with negative weight that implements a regular
function that is not group-free regular.

The proof amounts to showing that a tanh (or sign) neuron
with negative weight captures a semiautomaton that is not
group-free. It is a two-state semiautomaton with one non-
identity permutation transformation. We conjecture that sin-
gle sign or tanh neurons are not able to capture an actual
grouplike semiautomaton.

Implementation of Group Neurons
We give an instantiation of a group neuron as per Defini-
tion 9. In particular, we show when second-order neurons
with sign or tanh activation are instances of the C2 neuron,
the neuron implementing the cyclic group of order two.
Proposition 5. Let w, a be real numbers either satisfying
a,w > 0 or a,w < 0. A core second-order neuron with sign
activation and weight w is a core C2 neuron, if its states
partition is

X0 = {−1}, X1 = {+1},

and its input partition satisfies

V1 ∈ (−∞,−a], V0 ∈ [a,+∞), if a,w > 0,

V0 ∈ (−∞, a], V1 ∈ [−a,+∞), if a,w < 0.

Proposition 6. Let w, a be real numbers either satisfying
a,w > 0 or a,w < 0. Let f(x) = tanh(w · x). A core
second-order neuron with tanh activation and weight w is
a core C2 neuron, if its state partition is

X0 = [−1,−f(a)], X1 = [f(a),+1]

and its input partition satisfies

V1 ∈ (−∞,−a/f(a)], V0 ∈ [a/f(a),+∞) if a,w > 0,

V0 ∈ (−∞, a/f(a)], V1 ∈ [−a/f(a),+∞) if a,w < 0.

Then by Lemma 1 the above neurons homomorphically
represent C2 semiautomata. By Lemma 2 an RNC contain-
ing these neurons can homomorphically represent a cascade
of C2 semiautomata. In particular, such RNCs can recognise
languages that are not star-free, cf. (Ginzburg 1968).

Related Work
In our work, the connection between RNNs and automata
plays an important role. Interestingly, the connection ap-
pears to exist from the beginning of automata theory (Ar-
bib 1969): “In 1956 the series Automata Studies (Shannonon
and McCarthy [1956]) was published, and automata theory
emerged as a relatively autononmous discipline. [...] much
interest centered on finite-state sequential machines, which
first arose not in the abstract form [...], but in connection
with the input-output behaviour of a McCulloch-Pitts net
[...]”. The relationship between automata and the networks
by (McCulloch and Pitts 1943) is discussed both in (Kleene
1956) and (Minsky 1967). Specifically, an arbitrary automa-
ton can be captured by a McCulloch-Pitts network. Our The-
orem 6 reinforces this result, extending it to sign and tanh

activation. The extension to tanh is important because of its
differentiability, and it requires a different set of techniques
since it is not binary, but rather real-valued. Furthermore, our
results extend theirs by showing a correspondence between
RNCs and group-free automata.

The Turing-completeness of RNNs as an offline model of
computation are studied in (Siegelmann and Sontag 1995;
Kilian and Siegelmann 1996; Hobbs and Siegelmann 2015;
Chung and Siegelmann 2021). In this setting, an RNN is al-
lowed to first read the entire input sequence, and then return
the output after an arbitrary number of iterations, triggered
by blank inputs. This differs from our study, which focuses
on the capabilities of RNNs as online machines, which pro-
cess the input sequence one element at a time, outputting a
value at every step. This is the way they are used in many
practical applications such as Reinforcement Learning, cf.
(Bakker 2001; Ha and Schmidhuber 2018; Hausknecht and
Stone 2015; Kapturowski et al. 2019).

The expressivity of RNNs in terms of whether they cap-
ture all rational series or not has been analysed in (Mer-
rill et al. 2020). This is a class of functions that includes all
regular functions. Thus, it is a coarse-grained analysis com-
pared to ours, which focuses on subclasses of the regular
languages.

The problem of latching one bit of information has been
studied in (Bengio, Simard, and Frasconi 1994) and (Fras-
coni et al. 1995). This problem is related to star-free regular
languages, as it amounts to asking whether there is an au-
tomaton recognising a language of the form sr∗ where s is
a set command and r is a read command. This is a subset of
the functionalities implemented by a flip-flop semiautoma-
ton. Their work established conditions under which a tanh
neuron can latch a bit. Here we establish conditions guar-
anteeing that a tanh neuron homomorphically represents a
flip-flop semiautomaton, implying that it can latch a bit. An
architecture that amounts to a restricted class of RNCs has
been considered in (Frasconi, Gori, and Soda 1992).

Automata cascades are considered in (Ronca, Knorozova,
and De Giacomo 2023), where they are shown to yield
favourable sample complexity results for automata learning.

Conclusions and Future Work
We developed a new methodology that provides a fresh per-
spective on RNCs as systems implementing semigroups and
groups. This enabled us to establish new expressivity results
for RNCs with sign and tanh activations. We believe our
methodology has a potential that extends beyond our cur-
rent results. In particular, we believe it provides a principled
way to identify new classes of recurrent networks that incor-
porate different priors based on groups.

We have covered sign and tanh activation, postponing the
study of other activation functions such as logistic curve,
ReLU, GeLU. Beyond that, one could identify neurons that
can homomorphically represent grouplike semiautomata.
This will allow to capture specific subclasses of regular
functions that are beyond group-free. To showcase this di-
rection we have presented second-order sign and tanh neu-
rons, as instances of neurons homomorphically representing
the cyclic group of order two.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10595



Acknowledgments
Alessandro Ronca is supported by the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant agreement No.
852769, ARiAT).

References
Arbib, M. 1969. Theories of Abstract Automata. Automatic
Computation. Prentice-Hall.
Bakker, B. 2001. Reinforcement Learning with Long Short-
Term Memory. In NeurIPS.
Bengio, Y.; Simard, P. Y.; and Frasconi, P. 1994. Learn-
ing long-term dependencies with gradient descent is diffi-
cult. IEEE Trans. Neural Networks, 5(2).
Chung, S.; and Siegelmann, H. T. 2021. Turing Complete-
ness of Bounded-Precision Recurrent Neural Networks. In
NeurIPS.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI.
Dömösi, P.; and Nehaniv, C. L. 2005. Algebraic theory of
automata networks: An introduction. SIAM.
Fahlman, S. E. 1990. The Recurrent Cascade-Correlation
Architecture. In NIPS.
Frasconi, P.; Gori, M.; Maggini, M.; and Soda, G. 1995. Uni-
fied Integration of Explicit Knowledge and Learning by Ex-
ample in Recurrent Networks. IEEE Trans. Knowl. Data
Eng., 7(2).
Frasconi, P.; Gori, M.; and Soda, G. 1992. Local Feedback
Multilayered Networks. Neural Comput., 4(1).
Giles, C.; Chen, D.; Sun, G.-Z.; Chen, H.-H.; Lee, Y.-C.;
and Goudreau, M. 1995. Constructive learning of recurrent
neural networks: Limitations of recurrent cascade correla-
tion and a simple solution. IEEE Transactions on Neural
Networks, 6(4).
Ginzburg, A. 1968. Algebraic Theory of Automata. Aca-
demic Press.
Ha, D.; and Schmidhuber, J. 2018. Recurrent World Models
Facilitate Policy Evolution. In NeurIPS.
Hausknecht, M. J.; and Stone, P. 2015. Deep Recurrent Q-
Learning for Partially Observable MDPs. In AAAI Fall Sym-
posia.
Hobbs, J. N.; and Siegelmann, H. T. 2015. Implementation
of universal computation via small recurrent finite precision
neural networks. In IJCNN.
Hornik, K. 1991. Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2).
Kapturowski, S.; Ostrovski, G.; Quan, J.; Munos, R.; and
Dabney, W. 2019. Recurrent Experience Replay in Dis-
tributed Reinforcement Learning. In ICLR.
Kilian, J.; and Siegelmann, H. T. 1996. The Dynamic
Universality of Sigmoidal Neural Networks. Inf. Comput.,
128(1).
Kleene, S. C. 1956. Representation of events in nerve nets
and finite automata. Automata studies, 34.

Knorozova, N. A.; and Ronca, A. 2023. On The Expressivity
of Recurrent Neural Cascades. CoRR, abs/2312.09048.
Koiran, P.; and Sontag, E. D. 1998. Vapnik-Chervonenkis
Dimension of Recurrent Neural Networks. Discret. Appl.
Math., 86(1).
Krohn, K.; and Rhodes, J. 1965. Algebraic Theory of Ma-
chines. I. Prime Decomposition Theorem for Finite Semi-
groups and Machines. Trans. Am. Math. Soc., 116.
Manna, Z.; and Pnueli, A. 1991. Completing the Temporal
Picture. Theor. Comput. Sci., 83(1).
McCulloch, W. S.; and Pitts, W. 1943. A logical calculus
of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5(4).
McNaughton, R.; and Papert, S. A. 1971. Counter-Free Au-
tomata. The MIT Press.
Merrill, W.; Weiss, G.; Goldberg, Y.; Schwartz, R.; Smith,
N. A.; and Yahav, E. 2020. A Formal Hierarchy of RNN
Architectures. In ACL.
Minsky, M. L. 1967. Computation: Finite and Infinite Ma-
chines. Prentice-Hall.
Reed, R.; and Marks II, R. J. 1999. Neural Smithing: Super-
vised Learning in Feedforward Artificial Neural Networks.
MIT Press.
Ronca, A.; Knorozova, N. A.; and De Giacomo, G. 2023.
Sample Complexity of Automata Cascades. In AAAI.
Schützenberger, M. P. 1965. On Finite Monoids Having
Only Trivial Subgroups. Inf. Control., 8(2).
Shin, H.-C.; Roberts, K.; Lu, L.; Demner-Fushman, D.; Yao,
J.; and Summers, R. M. 2016. Learning to read chest x-
rays: Recurrent neural cascade model for automated image
annotation. In IEEE/CVF CVPR.
Siegelmann, H. T.; and Sontag, E. D. 1995. On the Compu-
tational Power of Neural Nets. J. Comput. Syst. Sci., 50(1).
Wang, J.; Zheng, V. W.; Liu, Z.; and Chang, K. C.-C. 2017.
Topological recurrent neural network for diffusion predic-
tion. In IEEE ICDM.
Werbos, P. 1990. Backpropagation through time: What it
does and how to do it. Proc. of the IEEE, 78(10).
Xu, Z.; Sun, C.; Ji, T.; Manton, J. H.; and Shieh, W. 2020.
Cascade recurrent neural network-assisted nonlinear equal-
ization for a 100 Gb/s PAM4 short-reach direct detection
system. Optics Letters, 45(15).
Zhang, D.; Yao, L.; Zhang, X.; Wang, S.; Chen, W.; Boots,
R.; and Benatallah, B. 2018. Cascade and Parallel Convolu-
tional Recurrent Neural Networks on EEG-based Intention
Recognition for Brain Computer Interface. In AAAI.
Zhu, L.; Huang, L.; Fan, L.; Huang, J.; Huang, F.; Chen, J.;
Zhang, Z.; and Wang, Y. 2020. Landslide susceptibility pre-
diction modeling based on remote sensing and a novel deep
learning algorithm of a cascade-parallel recurrent neural net-
work. Sensors, 20(6).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10596


