The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Open-Vocabulary Video Relation Extraction

Wentao Tian!, Zheng Wang’ *, Yuqian Fu', Jingjing Chen'’, Lechao Cheng?

! Shanghai Key Lab of Intell. Info. Processing, School of CS, Fudan University
2 College of Computer Science and Technology, Zhejiang University of Technology
3 Zhejiang Lab
{wttian22 @m., fuyq20@, chenjingjing @ }fudan.edu.cn, zhengwang @zjut.edu.cn, chenlc @zhejianglab.com

Abstract

A comprehensive understanding of videos is inseparable from
describing the action with its contextual action-object interac-
tions. However, many current video understanding tasks pri-
oritize general action classification and overlook the actors
and relationships that shape the nature of the action, result-
ing in a superficial understanding of the action. Motivated
by this, we introduce Open-vocabulary Video Relation Ex-
traction (OVRE), a novel task that views action understand-
ing through the lens of action-centric relation triplets. OVRE
focuses on pairwise relations that take part in the action
and describes these relation triplets with natural languages.
Moreover, we curate the Moments-OVRE dataset, which
comprises 180K videos with action-centric relation triplets,
sourced from a multi-label action classification dataset. With
Moments-OVRE, we further propose a cross-modal mapping
model to generate relation triplets as a sequence. Finally, we
benchmark existing cross-modal generation models on the
new task of OVRE. Our code and dataset are available at
https://github.com/Iriya99/OVRE.

Introduction

Videos contain abundant semantic information, including
action, actors (e.g. humans, animals, objects, and other en-
tities), and relationships between actors. To comprehend
the dynamic and complex real-world situations depicted in
videos, researchers have investigated a wide range of video
comprehension tasks. These endeavors allow for the tran-
sition of understanding video content from broad semantic
concepts to more detailed ones. Despite the variations, all of
these tasks converge on a pivotal aspect : extracting seman-
tic information within the videos and constructing a higher-
level representation to facilitate comprehension.
Foundational tasks, such as action classification (Kong
and Fu 2022) and temporal action localization (Xia and
Zhan 2020), primarily center on recognizing broad-level ac-
tions within videos, yet they often overlook the specific sce-
nario in which these actions unfold. Consequently, these
tasks often struggle to offer a profound understanding of
the context and the specific actors that are part of actions.
In essence, they concentrate solely on deciphering “what”
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Figure 1: Open-vocabulary Video Relation Extraction en-
ables a contextual-level comprehension of video content,
bridging the gap between general action classification and
precise language description.

action is transpiring and “when” it takes place, omitting the
“who” and “how” aspects. On the other hand, video caption-
ing (Chen, Yao, and Jiang 2019), video grounding (Chen and
Jiang 2019; Wang, Chen, and Jiang 2021), and video-text
retrieval (Song, Chen, and Jiang 2023) strive to encapsulate
the videos’ essence through textual descriptions by mapping
them into a joint semantic space. Nevertheless, these tex-
tual descriptions often provide a detailed-level overview of
the action context, lacking a nuanced comprehension of re-
lations.

To achieve a comprehensive comprehension of visual
content, researchers have introduced Video Visual Rela-
tion Detection (VidVRD) tasks (Shang et al. 2017, 2019)
specifically designed for video analysis. VidVRD tasks are
geared toward identifying objects and the relations be-
tween them within videos. For instance, VidVRD (Shang
et al. 2017) employs available video object detection data
to non-exclusively label various simplistic relationships be-
tween objects. As depicted in Figure 2 (a), relationships like
touch and watch are inherently object-centric relation-
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Figure 2: Two falling videos depicted in VidVRD and
OVRE diverse in (a) salient objects interconnected through-
out frames are exhaustively annotated with diverse relations
in VidVRD; (b) OVRE builds a relation graph with various
actors and relations that closely related to the falling action.

ships with limited implications for the falling action.
Notably, Action Genome (Ji et al. 2019) is distinct in its ded-
ication to an action-centric understanding of videos. It dis-
sects actions into spatio-temporal scene graphs. However, it
still grapples with a challenge shared by VidVRD - the con-
straint of a fixed vocabulary range. Consider the scenario
shown in Figure 2 (a) involving a bicyclist falling from a
steep bridge. Due to the vocabulary limitations, the descrip-
tion fails to encompass the bridge and its relationship with
the biker, which is an essential element in understanding the
falling action.

To mitigate the aforementioned limitations of VidVRD,
we introduce Open-vocabulary Video Relation Extraction
(OVRE). OVRE extracts all action-centric relation triplets
from videos with language descriptions. Take Figure 2 (b) as
an example: OVRE dissects the falling action into mul-
tiple relation components, such as <cat, push, monitor
>and <monitor, smashed on, man>. Departing from
VidVRD (Shang et al. 2017) that confined objects and rela-
tions to limited categories, we harness the immense potential
of large Language Models (LLMs) to articulate action-aware
relations using natural language. In essence, we undertake
a two-fold process: first, using CLIP visual encoder to en-
capsulate video semantics; second, mapping these seman-
tics into the linguistic realm for generating relation triplets
through a pre-trained LLM. Employing this straightforward
baseline, we achieve the ability to articulate relation triplets
with unconstrained vocabularies.

To study OVRE, we present Moments-OVRE, an exten-
sive dataset encompassing over 180K diverse videos. These
videos are sourced from a subset of Multi-Moments in
Time (Monfort et al. 2021)(M-MiT), a multi-label video
dataset with an average video duration of three seconds. In
Moments-OVRE, we annotate both actors and relations as
relation triplets that are most relevant to the action labels
without vocabulary limitations. Note that “actor” does not
refer only to human individuals but can also refer to objects,
animals, or any entities that are actively involved in an ac-
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tion. Moments-OVRE confers several advantages: (I) Un-
restricted Vocabulary Annotations: Moments-OVRE bene-
fits from an expansive vocabulary encompassing diverse ac-
tors and relations, offering a more accurate portrayal of real-
world scenarios. (II) Emphasis on Action-Centric Annota-
tions: Our annotations exclusively focus on relation triplets
related to actions/events depicted in the video. (III) Ample
Dataset Scale: Moments-OVRE contains over 180K videos,
establishing itself as the most extensive video relation ex-
traction dataset known to date.

The main contributions are as follows:

* We introduce the novel Open-vocabulary Video Rela-
tion Extraction task, aiming to extract action-centric rela-
tions within videos.

* To foster ongoing research, we curate Moments-OVRE,
an expansive dataset for video action comprehension. Com-
prising over 180k videos, Moments-OVRE is enriched with
comprehensive open-vocabulary relationship annotations.

e We build a simple pipeline designed for generating
action-centric relation triplets from raw videos. Extensive
experimentation is conducted to validate assorted design
considerations employed within the pipeline.

Related Works

Video understanding has long been an active research area
in computer vision, encompassing a wide range of diverse
aspects. Action recognition (Kay et al. 2017; Goyal et al.
2017; Monfort et al. 2019) categorizes the video content
into a predefined set of action classes, temporal action lo-
calization (Heilbron et al. 2015; Liu et al. 2022) further em-
phasizes the specific time points at which these actions oc-
cur. Tasks such as video captioning (Chen, Yao, and Jiang
2019), video question answering (Qian et al. 2023), and
video-text retrieval (Song et al. 2021) are dedicated to learn-
ing a detailed representation of semantic information. In the
spectrum of these tasks resides an intermediary domain re-
ferred to as relation understanding, dedicated to capturing
the diverse relations among objects. This contextual domain
provides semantically rich intermediate representations for
videos, crucial for comprehending interactions and behav-
iors depicted within them. VidVRD (Shang et al. 2017)
and VidOR (Shang et al. 2019) are representative bench-
marks for relation understanding, with finite object and pred-
icate sets. Recently proposed task Open-VidVRD (Gao et al.
2023) manually splits the finite object and predicate sets
into base and novel categories and builds the novel pre-
diction setting. However, these existing VRD tasks focus
on object-centric relation detection and struggle to bridge
the gap between closed-label sets and natural languages,
prompting us to propose video relationship extraction under
open-vocabulary scenarios. Moreover, we aim to identify in-
formative triplets that portray various actions in the video.

Contextual-level Visual Comprehension has been mainly
explored in the image domain, including scene graph gener-
ation (Ji et al. 2019), visual semantic role labeling (Yatskar,
Zettlemoyer, and Farhadi 2016; Sadhu et al. 2021), and
human-object interaction (Li et al. 2022; Gkioxari et al.
2018). These tasks have also been extended to the video
domain, which requires information aggregation across
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Dataset Task Annotation #Subject/Object  #Predicate  #Video
Kinetics400 . . . . . - - 306,245
Videol T Action Classification Action Categories ] ] 256218
MSR-VTT L . . - - 7,180
VATEX Captioning, Retrieval Textual Descriptions ) ) 41,269
VidVRD . . . . . 35 132 1,000
Action Genome Video Relation Detection BBoxes, Relation Triplets 35 25 10,000
VidSitu Semantic Role Labeling Verbs, SRLs, Event Relations Open Open 29,220
Moments-OVRE Video Relation Extraction Relation Triplets Open Open 186,943

Table 1: Representative video understanding datasets.

frames. Existing works often treat video relation detec-
tion as a multi-stage pipeline, including object tracking,
tracklet pair generation, and relation classification. These
works focus on improving relation classification by lever-
aging contextual knowledge (Qian et al. 2019) or adding ad-
ditional modules to enhance predicate representation (Gao
et al. 2021) with generated tracklets. Recent trends lean to-
wards one-stage models like VRDFormer (Zheng, Chen, and
Jin 2022), employing various queries to integrate spatio-
temporal information, facilitating tracklet pair generation
and relation classification concurrently. However, their scal-
ability and generalization are hampered by datasets contain-
ing a restricted size of objects and relationships. Video cap-
tioning, aimed at generating open-ended descriptions, typi-
cally uses an encoder-decoder architecture. Over time, this
setup has advanced to more sophisticated models (Zhang
et al. 2019; Tang et al. 2021; Lin et al. 2022). Recent
strides in visual-language representation learning have led to
models pre-trained on extensive paired data demonstrating
promise in fine-tuning for various multi-modal tasks (Wang
et al. 2022; Xu et al. 2023; Chen et al. 2023). Building on the
progress in video captioning, we seek to leverage generative
models for our OVRE task.

Datasets for video understanding have been introduced for
multiple tasks over the past years. Kinetics400 (Kay et al.
2017) is a widely adopted category-balanced classification
dataset. VideoLT (Zhang et al. 2021), in opposition, follows
a naturally long-tailed distribution for action recognition.
MSR-VTT (Xu et al. 2016) is a widely adopted dataset for
video captioning and retrieval that includes video clips from
different domains, each annotated with approximately 20
natural sentences. Recently introduced VATEX (Wang et al.
2019) is a large-scale multilingual video description dataset.
VidVRD (Shang et al. 2017) and VidOR (Shang et al. 2019)
densely annotate objects and most basic relations. Action
Genome (Ji et al. 2019) focuses on action understanding by
decomposing them into different relationships and ignoring
other relations irrelevant to actions. VidVRD datasets have
restricted their objects and relations to a fixed label set and
thus are far away from reflecting diverse real-world rela-
tions. VidSRL (Sadhu et al. 2021) presents the sole open-
vocabulary relation understanding task, while primarily fo-
cusing on events. In contrast, OVRE places greater emphasis
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on actions, which is a fundamental ability for event compre-
hension. Detailed statistics are listed in Table 1.

Video Relation Extraction Benchmark

Task Formulation Given a raw video input V', OVRE tar-
gets inferring its corresponding visual relationships R. Here,
V € RTXHXWXC denotes its frame sequence, where 7', H,
W, and C represent the number of frames, width, height, and
channels respectively. The relation triplets are represented as
R = {ry, - ,rk}, and each relation r is structured as a
triplet: <subject, relation, object>.

Given that actions depicted in videos can encompass
a wide spectrum of interactions, and distinct interactions
might be common across various actions, our objective is to
systematically extract all relationships associated with ac-
tions within the video context. Each r; consists of a se-
quence of words w {wy,ws, ..., wn}. These individ-
ual r; are then concatenated to form a token sequence
R = wi,wa,...,wys, which serves as a representation of
a sequence of relation triplets, collectively portraying all
the action-centric relationships. The training objective is to
maximize the likelihood of generating R given the video V:

max log po(R|V),

where 6 denotes the model’s trainable parameters. Our key
idea is to leverage the powerful capability of generative
models to address the OVRE problem. Consequently, the re-
vised training objective can be formulated as follows:

M
1 iV, wi—1)-
mgxxz og po(w; |V, wi_1)

i=1

OVRE involves generating relationships using nature lan-
guage, rendering common metrics wildly used VidVRD
metrics such as Precision@K and Recall @K unsuitable for
our task. Inspired by the evaluation metrics in image cap-
tioning, we advocate for assessing the quality of generated
triplets using Bleu, CIDEr, and METEOR scores. For the
Bleu metric, we only consider B@1, B@2, and B@3, as
each triplet contains at least three words. These metrics face
challenges when applied directly to evaluating the overall
relation triplets since the generated triplet sequence can be
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Figure 3: Counts of top 25 relationships in Moments-OVRE.

regarded as an unordered set, whose alignment with the
ground truth triplets is unknown.

To match the generated triplet set with the ground truth,
we first utilize a sentence embedding model SimCSE (Gao,
Yao, and Chen 2021) to quantify the text similarity between
the generated and ground truth triplet set. Then we use these
embeddings to acquire a similarity matrix .S, where S;; de-
notes the cosine similarity score of generated triplet 7; and
ground truth triplet ;. After obtaining S, we use the Hun-
garian algorithm to establish one-to-one matches between
the triplets and apply the aforementioned metrics to these
paired triplets. Note that the number of generated triplets
may differ from that of ground truth triplets. When fewer
triplets are generated, unmatched ground truth triplets re-
ceive zero scores.

Dataset Construction

We present the Moments-OVRE dataset tailored for OVRE.
Notably, Moments-OVRE boasts distinct attributes such as
diverse video content, an extensive compilation of video-
triplet pairs, annotations embracing open vocabulary, and
a focus on action-centric relationships. In this section, we
will detail how we select representative videos, annotate
relations, and devise data splits. Additionally, we thor-
oughly explore and analyze the statistical insights within the
Moments-OVRE dataset.

Video Selection Since our task focuses on action-centric
relationships, several requirements are posed for the selec-
tion of videos. First, we prefer videos with multiple actions.
Second, videos should contain rich information, involving
different scenes, objects, and events in the real world. We
choose to annotate videos from Multi Moments in Time
(M-MiT) (Monfort et al. 2021) due to its multi-label na-
ture, which allows a more nuanced comprehension of ac-
tions within intricate contexts. M-MiT offers several distinct
advantages: (I) Unlike commonly utilized action datasets
like Kinetics, M-MiT exhibits substantial intra-class diver-
sity. This highlights the necessity of providing more intri-
cate descriptions of relationships to capture variations be-
tween videos of the same action labels. (II) A majority of M-
MiT videos have a duration of only 3 seconds. This tempo-
ral brevity encourages annotators to focus primarily on por-
traying the action itself, as opposed to the temporal context
which is more prevalent in longer videos, such as those in
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Figure 4: A weighted bipartite mapping of the top 12 most
frequent relations in eat ing videos.

YouCook and Howto100M datasets. Considering the long-
tail distribution of action categories in M-MiT, we attempt to
relatively balanced sampling videos from all classes. M-MiT
has 292 action categories, we sample at least 660 videos per
class and additionally select other random videos as some
videos may be discarded during annotation.

Annotation Pipeline We ask annotators to perform an
action-centric relation triplet annotation, which follows
these steps: Given the potentially noisy nature of the large-
scale M-MiT dataset, annotators first verify the correctness
of the action labels. Videos with incorrect labeling are sub-
sequently excluded. To perform action-centric annotation,
both the video and the corresponding action labels are pre-
sented to the annotators. They first identify and annotate all
pertinent objects, and then articulate the associated relation-
ships among these objects. Annotators are instructed to pro-
vide descriptions for relation triplets solely when these re-
lationships are relevant to the action labels. To illustrate, re-
fer to Figure 1 (b): the annotation <monitor, smashed
on, man >is required, whereas the annotation <guitar,
placed on, ground >is invalid, as the latter constitutes
background information rather than being directly tied to
the falling action. Besides, we also manually review and
correct the low-quality annotations.

Dataset splits The data is partitioned into training and
testing sets, resulting in 178,480 and 8,463 videos respec-
tively. To ensure maximum consistency with the original
splitting, all videos are selected exclusively from their des-
ignated sets within the M-MiT collection.
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Figure 5: Overview of our model architecture, enabling simple relation generation with the powerful vision-language pre-trained
model CLIP-ViT as the video encoder and the large language model GPT-2 as the text decoder.

Dataset Analysis and Statistics

Overall, Moments-OVRE offers open-vocabulary annota-
tions for 186,943 videos, encompassing a sum of 399,576
relation triplets. As shown in Figure 3, the distribution of the
top 25 most frequent relations follows a natural long-tailed
distribution. Furthermore, Figure 4 shows frequently de-
scribed relation triplets of eat ing videos. Note that hold
is a prevalent visual relation shared by various kinds of
videos, such as painting, and drinking videos. A clue
from this observation is that merely relying on a single re-
lation is insufficient to infer the action categories from the
videos, and a comprehensive understanding requires recog-
nition of combinations of diverse relations.

Method

Overview The overall framework is illustrated in Figure 5,
which mainly includes a Video Encoder, an Attentional
Pooler, and a Text Decoder. The video encoder transforms
the video into a feature sequence, which is further condensed
into prefix information by the attentional pooler and is then
fed into the text decoder for relation triplet generation.

Video Encoder To extract visual features from a video,
we leverage the visual encoder of a pre-trained CLIP (Rad-
ford et al. 2021) model. Previous research has demonstrated
its exceptional performance across various open-vocabulary
recognition tasks (Ni et al. 2022; Tang et al. 2021; Luo et al.
2022). We choose CLIP-ViT (Radford et al. 2021) to extract
visual features, which utilizes ViT(Dosovitskiy et al. 2020)
to translate video frames into sequences of patches. These
visual patches capture finer-grained information, making
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them an optimal fit for OVRE. The video encoder translates
avideoV €

Prefix Strategies With the features from V', our focus
shifts towards transmitting them into the textual domain for
relation generation. A simple solution is to directly feed
all patches into the decoder, while the excessive number
of patches not only leads to additional computational costs
but also introduces a lot of redundant information. In light
of this, we utilize an attentional pooler denoted as F'(-),
which employs a predetermined number of queries to extract
meaningful features from all video patches: qi, ..., qm
F(p1,--yPn,q1, - Gm ), Which aggregates spatial-temporal
features into a more concise representation.

Attentional Pooler Drawing inspiration from VideoCoCa
(Yan et al. 2023), we incorporate the Attentional Pooler,
which takes learnable queries and patch features as its in-
put, facilitating cross-attention between them. The optimiza-
tion of both the parameters of the Attentional Pooler and the
queries enables the queries to gradually refine their ability
to extract significant relationships from the patches. This de-
sign proves well-suited to the demands of OVRE. Remark-
ably, even with a single-layer transformer, our model can
generate a diverse set of meaningful visual relationships.

Text Decoder We employ GPT-2 (Radford et al. 2019) for
text generation. Accordingly, all relation triplets of a video
are simply concatenated into a text sequence by a separation
token. Then, we map all the words into their corresponding
tokens and pad them to the maximum length M to obtain a
sequence of embeddings.
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Method B@l B@2 B@3 CIDEr METEOR
ClipCap 29.75 1632 948 125.45 19.25
GIT 35.19 20.12 1190 155.38 23.06
Ours 3727 2192 1390 17447 25.07

Table 2: Baseline comparison on Moments-OVRE.

CLIP GPT2 CIDEr METEOR
X X 131.85 19.84
X 4 165.67 24.12
4 v 174.47 25.07

Table 3: Study on vision and language model fine-tuning.
The v mark means fine-tuning the corresponding module.

Experiments
Experiments Settings

Video and Text Preprocessing. For each input video, we
first resize it to 224 x 224 and then extract 16 frames using
uniform sampling, resulting in 786 patches for each video.
We utilize RandAugment (Cubuk et al. 2019) as our data
augmentation strategy. For the paired relation triplets, we
concatenate the unordered relation triplets into a sequence
using the special token <triplet>.

Training Setting. We train the generation model using
cross-entropy loss and employ teacher forcing to acceler-
ate the training process. All models are optimized using
AdamW optimizer, with 51 = 0.9, G2 = 0.999, a batch size
of 16, and weight decay of le-3. The initial learning rate is
set to 1e-6 for CLIP, 2e-5 for GPT-2, and 1e-3 for Attention-
Pooler. We applied learning rate warm-up during the early
5% training steps followed by cosine decay. We trained the
networks for 50 epochs on 8 Nvidia V100 GPUs and chose
the model with the highest CIDEr score as the final model.

Main Results

Baselines models. Previous VidVRD methods focused on
predicting relationships over detected objects, which is es-
sentially a classification task and thus cannot be applied to
OVRE. Therefore, we introduce several generative models
as baseline models.

¢ ClipCap (Mokady, Hertz, and Bermano 2021) is an im-
age captioning model that utilizes the same visual encoder
and text decoder as we do. It uses a mapping network to con-
vert CLIP embeddings into GPT-2 prefixes. To apply Clip-
Cap for videos, we follow the most common strategy that
treats each video frame as an individual image and then per-
forms a mean pooling layer along the temporal dimension to
obtain a global video representation.

* GIT (Wang et al. 2022) stands as a vision-language gen-
erative model, demonstrating strong performance across nu-
merous generation tasks. This achievement is attributed to
its effective optimization of the language model loss during
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Features CIDEr METEOR
Region  77.38 13.14
Frame 115.85 18.11
Patch 165.67 24.12

Table 4: Comparisons with different visual features (w/o
fine-tuning visual encoder).

25
160

0 0
2 4 8 16 32 64

Query Number

N

o
N
o (&} o
H¥o3Lan

(8]

Figure 6: Impact of the query numbers on the performance.
For each query number, we report CIDEr (blue) and ME-
TEOR scores (red) over the Moments-OVRE test set.

pre-training, involving a substantial collection of image-text
pairs. We directly fine-tune GITg to generate relation triplets
without making further modifications.

Result and Analysis. We present our results on Moments-
OVRE in Table 2 and compare our approach with baseline
methods trained under the same training settings. Our ap-
proach outperforms baseline generative methods, achieving
a higher METEOR score (+6.22) than ClipCap and (+2.01)
than GIT. We find that although GIT was pre-trained on 0.8B
image-text pairs and achieved impressive performance on
video captioning datasets, it did not perform as well as our
approach on the OVRE task. This could be attributed to the
fact that the image-text generative pre-training does not di-
rectly facilitate the understanding of fine-grained informa-
tion such as relationships in videos.

Ablation Study

The Impact of Query Numbers. We first investigate the
impact of query numbers. Specifically, we experiment with
query number=2, 4, 8, 16, 32, and 64. Figure 6 shows that an
extremely small number of queries will yield inferior gen-
eration results since the limited queries are insufficient to
extract the content in video patches. As the number grows
from 2 to 8, the generated results show significant improve-
ment. Subsequently, when the number of queries continues
to double, the performance of the model gradually becomes
saturated. We choose query number=64 as it demonstrated
the best performance across all metrics.

Exploration of Vision and Language Model Fine-tuning.
Recent research (Rasheed et al. 2023) has shown that fully
fine-tuned CLIP can effectively bridge the modality gap in
the video domain. As shown in Table 3, though the train-
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Figure 7: Comparisons of generated triplets across diverse OVRE methods. The illustration highlights accurately described
triplets in light green, triplets with semantic correlation in light blue, and irrelevant triplets in light red.

able parameters increased, fine-tuning the CLIP-ViT can im-
prove the CIDEr score by 8.8. Additionally, we delve into
the outcomes of fine-tuning the text decoder. Experiments
reveal that freezing GPT-2’s parameters results in a notable
reduction in the CIDEr score. We attribute this decline to
that GPT-2 is primarily good at generating natural language
rather than triplets. Therefore, fine-tuning becomes impera-
tive to improve its ability to generate rare triplet sequences.

The Effect of Different Visual Features. Our experimen-
tal investigations involve ablations on different granularity
of visual features. Within our proposed framework, we em-
ploy patch features extracted from videos as prefixes for the
text decoder. Furthermore, we explore two alternative rep-
resentations as inputs to the attentional pooler: (I) Region
features: Following the common VidVRD practice, we ex-
tract a sequence of objects and subsequently employ a track-
ing algorithm to obtain 5 tracklet features per video. These
features replace patch features as input to the model. Specifi-
cally, we utilize RegionCLIP (Zhong et al. 2021) pre-trained
from LVIS to crop bounding boxes and seqNMS (Han et al.
2016) for object tracking. (II) Frame features: We directly
utilize features extracted from individual frames using CLIP,
concatenating them to form a representation of frame-level
features. As depicted in Table 4, both frame features and
region features exhibit poor performance. Notably, frame
features capture the overall visual content of an image but
overlook finer details such as objects and relationships. Sur-
prisingly, region features perform worse than frame features,
which we attribute to the limited generalization capability of
existing object detectors.
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Conclusion

In this paper, we introduce a new task named OVRE, where
the model is required to generate all relationship triplets as-
sociated with the video actions. Concurrently, we present
the corresponding Moments-OVRE dataset, which encom-
passes a diverse set of videos along with annotated rela-
tionships. We conduct extensive experiments on Moments-
OVRE and demonstrated the superiority of our proposed ap-
proach over other baseline methods. We hope that our task
and dataset will inspire more intricate and generalizable re-
search in the realm of video understanding.

Limitations: (I) This version of Moment-OVRE has cur-
rently omitted BBox annotation due to the high cost of
annotation. We are committed to progressively enhancing
this dataset and intend to introduce BBox annotations in
upcoming versions of Moments-OVRE. (II) For extracting
action-centric relations, leveraging commonsense among ac-
tion categories and relations (Yang et al. 2018) or implicit
knowledge-driven representation learning methods (Li et al.
2023; Li, Tang, and Mei 2018) have shown promise. We will
consider these knowledge-driven methods in future work.
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