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Abstract

In the field of optimal transport, two prominent subfields
face each other: (i) unregularized optimal transport, “a-la-
Kantorovich”, which leads to extremely sparse plans but with
algorithms that scale poorly, and (ii) entropic-regularized
optimal transport, “a-la-Sinkhorn-Cuturi”, which gets near-
linear approximation algorithms but leads to maximally un-
sparse plans. In this paper, we show that an extension of
the latter to tempered exponential measures, a generalization
of exponential families with indirect measure normalization,
gets to a very convenient middle ground, with both very fast
approximation algorithms and sparsity, which is under con-
trol up to sparsity patterns. In addition, our formulation fits
naturally in the unbalanced optimal transport problem setting.

Introduction

Most loss functions used in machine learning (ML) can
be related, directly or indirectly, to a comparison of posi-
tive measures (in general, probability distributions). Histori-
cally, two broad families of distortions were mainly used: f-
divergences (Ali and Silvey 1966; Csiszar 1963) and Breg-
man divergences (Bregman 1967). Among other properties,
the former are appealing because they encapsulate the notion
of monotonicity of information (Amari 2016), while the lat-
ter are convenient because they axiomatize the expectation
as a maximum likelihood estimator (Banerjee et al. 2004).
Those properties, however, put constraints on the distribu-
tions, either on their support for the former or their analytical
form for the latter.

A third class of distortion measures has progressively
emerged later on, alleviating those constraints and with the
appealing property to meet distance axioms: Optimal Trans-
port distances (Peyré and Cuturi 2019; Villani 2009). Those
can be interesting in wide ML fields (Peyré and Cuturi
2019), but they suffer from poor scalability. A trick of bal-
ancing the metric cost with an entropic regularizer (Cuturi
2013) substantially improves scalability to near-optimality
but blurs the frontiers with other distortion measures (Cuturi
2013; Muzellec et al. 2017). Most importantly, the structure
of the unregularized OT plan is substantially altered through
regularization: its sparsity is reduced by a factor (n), n
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being the dimension of the marginals (we consider discrete
optimal transport). At the expense of an increase in com-
plexity, getting back to a user-constrained sparse solution
can be done by switching to a quadratic regularizer (Liu,
Puigcerver, and Blondel 2023), but loses an appealing struc-
ture of the entropic-regularized OT (EOT) solution, a dis-
crete exponential family with very specific features. Sparsity
is an important topic in optimal transport: both unregular-
ized and EOT plans are extremal in the sparsity scale, which
does not necessarily fit in observed patterns (Peyré and Cu-
turi 2019).

Finally and most importantly, optimal transport, regu-
larized or not, does not require normalized measures; in
fact, it can be extended to the unbalanced problem where
marginals’ total masses do not even match (Janati et al.
2020). In that last, very general case, the problem is usu-
ally cast with approximate marginal constraints and without
any constraint whatsoever on the transport plan’s total mass.

In this context, our paper introduces OT on tempered ex-
ponential measures (TEMs, a generalization of exponential
families), with a generalization of the EOT. Notable struc-
tural properties of the problem include training as fast as
Sinkhorn balancing and with guarantees on the solution’s
sparsity, also including the possibility of unbalanced optimal
transport but with tight control over total masses via their co-
densities, distributions that are used to indirectly normalize
TEMs (see Figure 1). We characterize sparsity up to spar-
sity patterns in the optimal solution and show that sparsity
with TEMs can be interpreted as balancing the classical OT
cost with an interaction term interpretable in the popular
gravity model for spatial interactions (Haynes and Fother-
ingham 1984). Interestingly, this interpretation cannot hold
anymore for the particular case of exponential families and
thus breaks for EOT.

To maximize readability, all proofs are deferred to an ap-
pendix.!

Definitions

Optimal Transport in the Simplex

In classical discrete optimal transport (OT), we are given a
cost matrix M € R™*™ (n > 1) and two probability vec-
tors 7 and column c in the simplex A, {p e R* :

'The full article is available at https://arxiv.org/abs/2309.04015.
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Figure 1: In classical optimal transport (OT, left), regular-
ized or not, marginals and the OT plan sought are in the
probability simplex; the optimal solution solely depends on
the metric properties of the supports. Entropic regularization
balances the metric cost with an entropic cost, and the opti-
mal solution has remarkable properties related to exponen-
tial families. In this paper (right), we lift the whole setting
to families of measures generalizing exponential families:
tempered exponential measures (TEMs). Specific properties
that appear include unbalancedness and sparsity of the opti-
mal solution (see text).

p=0AlTp= 1}. Usually, M satisfies the axioms of a
distance, though only non-negativity is really important for
all the results that we state. The OT problem seeks to find
dm(r, €) = minpey, (r )(P, M), where Uy (r,c) = {P €
RM*"|P1,, = r, PT1, = ¢} is the transport polytope and
{, - stands for the Frobenius dot-product. In the entropic-
regularized OT problem (Cuturi 2013) we rather seek

min (P, M>+ (P,log Py, A>0. (1)

(7, ¢) =
M( ’ ) PeU, (r,c)

Any discrete distribution is an exponential family (Amari
2016) but the OT plan solution to (1), say P*, has a special
form. Denote p, £ € R"™ the vectors of dual variables, cor-
responding to the row and column (respectively) marginal-
ization constraints in (1). The support of P* is [n]?, where
[n] = {1,2,...,n}. We need to express P* as

P’ = exp((©,E;;) — G(@)), )

ij
with E;; the matrix with general entry (J;56;1)x: (“0” being
Kronecker symbol). Let S = M — pul' — 1£T, which is a
strictly positive matrix. In the unregularized case, S encodes
the slack of the constraints over the dual variables (Peyré and
Cuturi 2019, Section 2.5). It follows from Cuturi (2013) that
the natural parameter of the exponential family is defined
from those slack variables:

©=-\-8,

while the cumulant or log-partition function G in (2) is,
in fact, 0 because normalization is implicitly ensured in
U, (r, c) (otherwise, the camulant would depend on the La-
grange multiplier of the normalization constraint).

Tempered Exponential Measures

Any exponential family is a probability distribution that
maximizes Shannon’s entropy subject to a constraint on its
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expectation (Amari 2016). A tempered exponential measure
(TEM) adopts a similar axiomatization but via a general-
ization of Shannon’s entropy (Tsallis entropy) and normal-
ization imposed not on the TEM itself but on a so-called
co-distribution (Amid, Nock, and Warmuth 2023). This last
constraint is a fundamental difference from previous gen-
eralizations of exponential families, g-exponential families,
and deformed exponential families (Amari 2016). Compared
to those, TEMs also have the analytical advantage of getting
a closed-form solution for the cumulant, a key ML function.
A TEM has the general form (with [z]; = max{0, z}):

) = “PACECD)  oxpy(z) = 1+ (1= 21T

where G is the cumulant and 6 denotes the natural parame-
ter. The inverse of exp, is log,(z) = (2'7"—1) /(1 —¢t),
both being continuous generalizations of exp and log for
t = 1. Both functions keep their ¢ = 1 convexity/concav-
ity properties for ¢ > 0. The tilde notation above p indicates
that normalization does not occur on the TEM, but on a co-
density defined as

p o= (=8 with et = 1/(2

_ t)) . B)

Remark 1. For a given vector p (or a matrix P) with the
tilde notatlon whenever convenient, we will use the conven-
tionp = p ( correspondingly, P = PY™ the exponent
being coordinate-wise) whenever the tilde sign is removed.

Hence, a TEM satisfies the indirect normalization
§p°71dg = fpd¢ = 1.

Remark 2. In this paper, we assume t € [0, 1], though some
of our results are valid for a broader range (discussed in
context).

In the same way, as KL divergence is the canonical diver-
gence for exponential families (Amari and Nagaoka 2000),
the same happens for a generalization in TEMs. Given two
non-negative vectors u, v € R™, we define the generalized
tempered relative entropy as (Amid et al. 2019)

Dy (u|v) iz a; (log, @i;—log, ¥;) —log,_y @; +log,_, ¥;.
i€[n]

Just like the KL divergence (f — 1), the tempered relative
entropy is a Bregman divergence, induced by the generator
vi(z) = zlog, z — log,_;(z), which is convex for t € R.
We also have ¢} (z) = log,(z). We define the following ex-
tension of the probability simplex A,, in R™.
Definition 1. The co-simplex of R™, An is defined as An =
(peR":p=>0A1Tp"/" =1L

Note that i)l/t* =peA,iff p e @n and A, > A,
when ¢ — 1. Similarly, given 7, ¢ € A,,, we define their
corresponding co-polytope in R} ™.
Definition 2. The co-polyhedral set of n_x n non-negative
matrices with co-marginals 7,¢ € A, is defined as
U,(7,8) = {P e RV PYF1 = /1% PUFTY -
ety
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Likewise, U, (#,&) — U, (r,¢) (the transport polytope)
in the limit ¢ — 1. More importantly, using our notation
convention,

P e U,(r,c) iff PeU,(+¢&).

Related Work

From an ML standpoint, there are two key components to
optimal transport (OT): the problem structure and its solv-
ing algorithms. While historically focused on the former
(Monge 1781; Kantorovich 1958), the field then became
substantially “algorithm-aware”, indirectly first via linear
programming (Dantzig 1949) and then specifically because
of its wide applicability in ML (Cuturi 2013). The entropic-
regularized OT (EOT) mixes metric and entropic terms in the
cost function but can also be viewed as an approximation of
OT in a Kullback-Leibler ball centered at the independence
plan, which is, in fact, a metric (Cuturi 2013). The resolu-
tion of the EOT problem can be obtained via Sinkhorn’s al-
gorithm (Sinkhorn and Knopp 1967; Franklin and Lorenz
1989; Knight 2008) (see Algorithm 1), which corresponds
to iterative Bregman projections onto the affine constraint
sets (one for the rows and another for the columns). The
algorithm requires matrix-vector multiplication and can be
easily implemented in a few lines of code, making it ideal
for a wide range of ML applications. However, alternative
implementations of the algorithm via the dual formulation
prove to be more numerically stable and better suited for
high-dimensional settings (Peyré and Cuturi 2019).

The structure of the solution — the transportation plan — is
also important, and some features have become prominent
in ML, like the sparsity of the solution (Liu, Puigcerver, and
Blondel 2023). Sinkhorn iteration can be fine-tuned to lead
to near-optimal complexity (Altschuler, Weed, and Rigol-
let 2017), but entropic regularization suffers a substantial
structural downside: the solution is maximally un-sparse,
which contrasts with the sparsity of the unregularized so-
lution (Peyré and Cuturi 2019). Sparsity is a modern instan-
tiation of ML’s early constraint on the model’s simplicity,
otherwise known as Ockham’s razor (Blumer et al. 1987).
It has been known for a long time that “extreme” simplic-
ity constraints lead to intractability for linear programming
(Karp 1972), so sparsity in OT is desirable — and not just
for the sake of Ockham’s razor (Blondel, Seguy, and Rolet
2018) — but it is non-trivial and various notions of tractable
sparsity can be sought, from a general objective (Blondel,
Seguy, and Rolet 2018; Muzellec et al. 2017) down to ex-
ante node specifics like transport obstruction (Dessein, Pa-
padakis, and Rouas 2018) or limiting the transport degree
(Liu, Puigcerver, and Blondel 2023). Sparsity makes it con-
venient to train from general optimizers (Liu, Puigcerver,
and Blondel 2023). This comes, however, at the expense of
losing an appealing probabilistic structure of the EOT so-
lution, a discrete exponential family with very specific fea-
tures, and eventually loses as well the near-optimal algorith-

2Numgquam ponenda est pluralitas sine necessitate, “plurality
should never be imposed without necessity”, William of Ockham,
XIV!" century.
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mic convenience that fine-tuning Sinkhorn offers for training
(Altschuler, Weed, and Rigollet 2017).

Taking EOT as a starting point, two different directions
can be sought for generalization. The first consists in re-
placing the entropic term with a more general one, such as
Tsallis entropy (still on the simplex), which was introduced
in Muzellec et al. (2017); the second consists in alleviating
the condition of identical marginal masses, which is touched
upon in Janati et al. (2020) and was initially proposed with-
out regularization by Benamou (2003).

In work predating the focus on optimal transport (Helm-
bold and Warmuth 2009), the same relative entropy regular-
ized optimal transport problem was used to develop online
algorithms for learning permutations that predict close to the
best permutation chosen in hindsight. See a recent result in
Ballu and Berthet (2023) on mirror Sinkhorn algorithms.

Beyond Sinkhorn Distances With TEMs
OT Costs With TEMs

Since tempered exponential measures involve two distinct
sets (the probability simplex and the co-simplex), we can
naturally define two unregularized OT objectives given a
cost matrix M € R"*". The first is the classical OT cost;
we denote it as the expected cost,

dy(7,¢) = min (P, M)
PeU,, (7,¢)

4)

(with our notations, note that the constraint is equivalent to
P € U, (r, ¢)). Instead of embedding the cost matrix on the
probability simplex, we can put it directly on the co-simplex,
which leads to the measured cost:

~min (P,M).
PeU, (7,¢)

dyy (7, €) =

(&)

db; is a distance if M is a metric matrix. dy; is trivially
non-negative, symmetric, and meets the identity of indis-
cernibles. However, it seems to only satisfy a slightly dif-
ferent version of the triangle inequality, which converges to
the triangle inequality as ¢ — 1.

Proposition 1. If M is a distance matrix and t <
L (@@ 2) 7 < M (d(@,9) + dig(8.2)),
V&, y,z € A, where M = Zij M;;.

Factor M~ is somehow necessary to prevent vacuity of
the inequality: scaling a cost matrix by a constant x > 0 does
not change the OT optimal plan, but scales the OT cost by &;
in this case, the LHS scales by x2~* and the RHS scales by
x1~t.k = k2~ as well. Note that it can be the case that M <
1 so the RHS can be smaller than the triangle inequality’s
counterpart — yet we would not necessarily get an inequality
tighter than the triangle inequality because, in this case, it is
easy to show that the LHS would also be smaller than the
triangle inequality’s counterpart.

OT Costs in a Ball

This problem is an intermediary that grounds a particular
metric structure of EOT. This constrained problem seeks the
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optimal transport plan in an information ball — a KL ball
— centered at the independence plan. Using our generalized
tempered relative entropy, this set can be generalized as:

U5 (7,€) = {P e Un(7,0)| Di(P[7e") <€)}, (6)
where ¢ is the radius of this ball. It turns out that when ¢t =
1, minimizing the OT cost subject to being in this ball also
yields a distance, called a Sinkhorn distance — if, of course,
M is a metric matrix (Cuturi 2013). For a more general ¢,

we can first remark that
1

1—t¢’

so that we can consider that

D (P|re") < VP e A, un, V7,6 € A,

(N

for the ball constraint not to be vacuous. #¢' € U, (¥, &) is
the independence table with co-marginals 7 and ¢. When
e — o, we have UZ(#,¢) — U,(7,¢). When t — 1,
Ue(7,¢e) — UE(r,c), the subset of the transport polytope
with bounded KL divergence to the independence table (Cu-
turi 2013). ~

Notably, the generalization of the ball UZ(#, ¢) for t # 1
loses the convexity of the ball itself — while the divergence
D, remains convex. However, the domain keeps an impor-
tant property: it is 1/t*-power convex.

Proposition 2. For any P, Q € U (7, &) and any te R-{2},
(BPYT + (1= 5) QYY) e U (7,€), Y8 € [0,1].

Regularized OT Costs

in the case of entropic regularization, the OT cost is replaced
by (P, M) + (1/X) - D1 (P|rc"). In the case of TEMs, we
can formulate two types of regularized OT costs generaliz-
ing this expression, the regularized expected cost

diM#,e) = min  (P,M) +

1 ~
— - Dy(P|7e"), (8)
Pel, (7,2) A

for A > 0 and the regularized measured cost

_ min
PeU,, (7,¢)

- 1 -
(P, M)+ + -Dy(P|Fe"). (9

The raison d’étre of entropic regularization is the algorith-
mic efficiency of its approximation. As we shall see, this
stands for TEMs as well. In the case of TEMs, the question
remains: what is the structure of the regularized problem? In
the case of EOT (¢ = 1), the answer is simple, as the OT
costs in a ball bring the metric foundation of regularized OT,
since the regularized cost is just the Lagrangian of the OT
in a ball problem. Of course, the downside is that parameter
A in the regularized cost comes from a Lagrange multiplier,
which is unknown in general, but at least a connection does
exist with the metric structure of the unregularized OT prob-
lem — assuming, again, that M is a metric matrix.

As we highlight in Proposition 1, the measured cost only
meets an approximate version of the triangle inequality, so
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a metric connection holds only in a weaker sense for ¢ # 1.
However, as we now show, when t # 1, there happens to be
a direct connection with the unregularized OT costs them-
selves (expected and measured), the connection to which is
blurred when ¢ = 1 and sheds light on the algorithms we
use.

Proposition 3. For any TEM P € A, .., any t € [0,1) and
0<e<1/(1—t), letting M, = (7&")'~t, we have

(e).

The proof is immediate once we remark that on the co-
simplex, the generalized tempered relative entropy simpli-
fies for ¢ # 1 as:

1-t

Di(P|re’) <e <« (P,M;) > exp, (10)

1

1—1
Interestingly, this simplification does not happen for ¢ = 1,
a case for which we keep Shannon’s entropy in the equation
and thus get an expression not as “clean” as (11). Though
M; does not define a metric, it is useful to think of (10) as
giving an equivalence of being in the generalized tempered
relative entropy ball to the independence plan (a fact rele-
vant to information theory) and having a large OT cost with
respect to a cost matrix defined from the independence plan
(a fact relevant to OT). For ¢t # 1, the constrained OT prob-
lem becomes solving one OT problem subject to a constraint
on another one.

D,(P|7e’) = -(1—<P,Mt>>. (11)

Regularized OT Costs With TEMs Implies Sparsity

The regularized problem becomes even ‘“cleaner” for the
regularized measured cost (9) as it becomes an unregular-
ized measured cost® (5) over a fixed cost matrix.

Proposition 4. For any t € [0, 1), the regularized measured
cost (9) can be written as

1

Aodgg(7,8) = ——+ _ min (P,M), (12)
11—t PeU,, (7,¢)
M = A-M—%~Mt7 (13)

with M, defined in Proposition 3.

(Proof straightforward) This formulation shows that reg-
ularized OT with TEMs for ¢t # 1 can achieve something
that classical EOT (¢ = 1) cannot: getting sparse OT plans.
Indeed, as the next theorem shows, specific sparsity patterns
happen in any configuration of two sources ¢ # k and two
destinations [ # j containing two distinct paths of negative
costs and at least one of positive cost.

Theorem 1. Let P be the optimal solution to the regularized
measured cost (9). Let S be the support indicator matrix of
P, defined by the general term S;; = 1 lfﬁ)?] > 0 (and 0
otherwise). The following properties hold:

1. For any coordinates (i, j), if M]; < 0 then S;; = 1;

3A similar discussion, albeit more involved, holds for the ex-
pected cost. We omit it due to the lack of space.
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Figure 2: Illustration of Theorem 1. Negative costs of matrix
M’ in the regularized measured cost (13) are in blue, and
those positive are in red. The sparsity results of the theorem
are shown, where no arrow means no transport and a dashed
arrow means a transport necessarily “small” (see text).

positive —
negative

For any coordinates i # k and j # I, suppose we have
the following configuration (Figure 2): Ml’7 > 0,M], <
0, M,’Cj < 0. Then we have the following

* if M}, > 0, then S;; = 0 or (non exclusive) Sg; = 0;
* if Mj, < 0and S;j =1 then necessarily

- M| .. .
Pt < | My -max{P;;, Py, Py;}* "
MO ML+ [ M)+ | M| R

Theorem 1 is illustrated in Figure 2. Interpretations of the
result in terms of transport follow: if we have a negative cost
between i, and j, k, then “some” transport necessarily hap-
pens in both directions; furthermore, if the cost between i, j
is positive, then sparsity patterns happen:

« if the other cost k, [ is also positive, then we do not trans-
port between i, j or (non exclusive) k, [;

« if the other cost k,[ is negative, then either we do not
transport between ¢, j, or the transport between k,! is
“small”.

What is most interesting is that negative coordinates in M’
are under tight control by the user, and they enforce non-zero
transport, so the flexibility of the design of M’, via tuning
the strength of the regularization A and the TEMs family via
t, can allow to tightly design transport patterns.

Interpretation of Matrix M’

Coordinate (4, j) is M]; = AM;; — (7:¢;)' ' /(1 —t). Quite
remarkably, the term (7;¢;)' 7! /(1—t) happens to be equiva-
lent, up to the exponent itself, to an interaction in the gravity
model if distances are constant (Haynes and Fotheringham
1984). If the original cost M factors the distance, then we
can get the full interaction term with the distance via its fac-
torization. Hence, we can abstract any coordinate in M’ as:

M;j; oc original cost(i, j) — interaction(s, j). (14)

One would then expect that OT with TEMs reflects the mix-
ture of both terms: having a large cost wrt interaction should
not encourage transport, while having a large interaction wrt
cost might just encourage transport. This is, in essence, the
basis of Theorem 1.
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Algorithm 1: Sinkhorn(K,r,c)
Input: K e R?*", 7, ce A,
Output: P € U, (7, ¢)
Ip—1, &1,

2: while not converged do

3 p—r/(KE)

4 & c/(K'p)
5
6

: end while
: return diag(p) K diag(€)

Algorithm 2: Regularized Optimal Transport with TEMs

Input: Cost matrix M € R}™", r, ¢ € A,,, Regularizer
Output: P € U, (7, ¢)

I: K « Ke or Km

2: P — Sinkhorn(K,r,¢) (K =K")

3: return P**

Algorithms for Regularized OT With TEMs

We show the analytic form of the solutions to (8) and (9)
and explain how to solve the corresponding problems using
an iterative procedure based on alternating Bregman projec-
tions. We then show the reduction of the iterative process to
the Sinkhorn algorithm via a simple reparameterization.

Regularized Expected Cost

The following theorem characterizes the form of the solu-
tion, i.e., the transport plan for the regularized expected cost
OT with TEMs.

Theorem 2. A solution of (8) can be written in the form

7ié;

exp, (v; + 75 + AM;;)’

15)

where v; and ~y; are chosen s.t. P € U, (¥, &).

Regularized Measured Cost

The solution of the regularized measured cost OT with
TEMs is characterized next.

Theorem 3. A solution of (9) can be written in the form

Pyj = exp, ((logy(7i¢;) — A M;j) © (vi +5)) ,  (16)

where a ©, b = (a — b)/(1 + (1 — t)b) and v; and ~y; are
chosen s.t. P € U, (7, ¢).

Approximation via Alternating Projections

The Lagrange multipliers v; and +y; in the solutions (15) and
(16) no longer act as separate scaling factors for the rows
and the columns because exp,(a + b) # exp,(a) - exp,(b)
(yet, an efficient approximation is possible, Cf below). Con-
sequently, the solutions are not diagonally equivalent to their
corresponding seed matrices (19) and (21). However, keep-
ing just one marginal constraint leads to a solution that bears
the analytical shape of Sinkhorn balancing.
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Letting P, € R%*™, the row projection and column pro-
Jection to Uy, (7, €) correspond to
_ min Dt(f’Hf’o) ,
P:

Pl,=r

(row projection)

min

- Dt(PHISO) ’
P:PT1,=c

(column projection)

in which, we use the shorthand notation P = P (simi-
larly for r and c).
Theorem 4. Given P, € R%*™, the row and column projec-
tions to U,, (T, ¢) can be performed respectively via
~ ~ - *
P = diag(#/f) P, where p= (PY/"71,)", a7
~ ~ ~ ~ ~ *
P = P, diag(¢/€), where €= (PY/771,)" . (18)
It is imperative to understand the set of solutions of
the alternating Bregman projections are of the form P =
diag(v)P, diag(), whose analytical shape is different
from that required by Theorems 2 and 3. The primary rea-
son for the solution being an approximation is the fact that

the solution set by definition is non-convex for ¢ # 1. We
empirically evaluate the quality of this approximation.

Sinkhorn Balancing for Approximating (15) & (16)
Regularized Expected Cost
We have, in general, the possible simplification

7iC;
Pij =

exp, (Vi) ®: exp, (1/*AMi;) ®: exp, v, -

Conditions for these simplifications to be valid include ¢
close enough to 1. We can define an expected seed matrix
for the problem (8) as

1
Ko=—
“ exp, (Lex A M)

= exp, (@t YD) M) , (19)

where ©;a = ﬁ (and lim;_,1 ©&a —a), and the
solution (15) can this time be approximated through a diag-
onally equivalent matrix of K. (See the preceding section
with P, = K,).

Regularized Measured Cost

We can also simplify (16) as

_expy (log,(Fi¢;) — AMi;)
exp, (v;) ®¢ exp,(7;)

ij

(20)

_1
(see the appendix) where a ®; b = [a*~* + bt — 1]}°
(and lim;_,1 a ®; b a - b). The regularizer in (9) is the
Bregman divergence to the independence table, rather than

the tempered entropy function ¢;(P); the reason being that
cross terms in the numerator of the solution (20) can no
longer be combined with the denominator, primarily because
exp, (log,(a)—b) # a exp,(—b) fort # 1. Furthermore, due
to the normalization in (20), the solution is not a diagonally
equivalent scaling of the measured seed matrix

Km = €XPy (logt (,Fé—r) - A1\/-[) )

2
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but it can be approximated by a diagonally equivalent matrix
of K,,, (See the preceding section with P, = K,,,). In terms
of sparsity patterns, the simplification (20) has the direct ef-
fect of constraining the transportation plan to the coordinates
log, (7:¢;) — AM;; > —1/(1 —t) (otherwise, (K, );; = 0).
Remark the link with M’ in (13): K,,, = [-M'], . So, the
simplification (20) prevents coordinates log, (7;¢;) — AM;;
too small so that they are < —1/(1 — t) to yield non-zero
transport, as would Theorem 1 authorize. This is not an is-
sue because, as the theorem shows, only a subset of such
coordinates would yield non-zero transport anyway, and the
approximation brings the benefit of being in position to de-
sign in a tighter way the desired sparsity patterns. One needs
to make sure that the support of K,,, is big enough to al-
low for feasible solutions — which is not also a real issue,
granted that any optimal solution to the unregularized ex-
pected cost is so sparse that it has at most 2n — 1 non-zero
values (Peyré and Cuturi 2019). Both cases (19) and (21) re-
duce to the entropic regularized seed K = exp(—AM) (up
to a diagonal scaling) when ¢ — 1. We then get the general
approach to approximating (15) and (16), which consists in a
reduction to Sinkhorn balancing with specific initializations.

Solution by Reduction to Sinkhorn Balancing

It can be simply verified that the projection steps in (17)
and (18) can be written in terms of the transport polytope
of r and ¢, when working directly with the transport plan
P = PY™ ¢ U,(r,c). Notably, the steps are identical to
the standard Sinkhorn’s iterations (i.e., scaling of the rows
and columns), which can be computed efficiently via Al-
gorithm 1. The main alterations to carry out the iterations
are: i) form the seed matrix K via (19) or (21), ii) apply
Sinkhorn’s iterations to K/ t*, iii) map the solution back to
the co-polyhedral by computing its ¢t*-th power. See Algo-
rithm 2 for the steps.

Sparsity of Approximate Solutions

Although the sparsity result of Theorem 1 is for the closed-
form solution of the regularized OT plan, the approximate
solutions via Sinkhorn may result in a sparse solution for an
appropriate choice of ¢ and for sufficiently large A.

Proposition 5. For M € R} " (assuming t < 2), the ex-
pected cost seed matrix (19) contains zero elements fort > 1
and sufficiently large ). Similarly, the measured cost seed
matrix (21) includes zero elements for t < 1 when ) is large
enough. Both matrices are positive otherwise for any A > 0.
Additionally, in both cases, for Ay < Ao, the zero elements
of the seed matrix induced by \1 are a subset of the zero
elements induced by \s.

The level of the sparsity of the solution monotonically in-
creases with A. Nonetheless, when the sparsity level is too
high (e.g., for A — o0, K — 0,,x,) the resulting seed matrix
may no longer induce a feasible solution that is diagonally
equivalent to a transport plan Pe Un(f', ¢), as stated next.

Convergence and Remarks on Feasibility
Franklin and Lorenz (1989) show the linear convergence of
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Figure 3: The expected ¢-Sinkhorn distance relative to the Sinkhorn distance for different values of t. As ¢t — 1, the approxi-
mation error due to solving the unconstrained problem via alternating Bregman projections becomes smaller and the expected
t-Sinkhorn distance converges to the Sinkhorn distance when A\ — 0.
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Figure 4: Number of iterations to converge for (a) expected and (b) measured cost OT for different values of \. Relative (to the
OT solution) expected cost for the two cases, respectively, shown in (c) and (d).

the both scaling factors p and € of Sinkhorn’s algorithm for
positive matrices. Specifically, the convergence rate is pro-
portional to the square of the contraction coefficient k(K) =

tanh(3®)/2) where 6(K) = log max; ;¢ 1o is called

the projective diameter of the linear map K.

Remark 3. When the seed matrix K in Algorithm 2 is
positive, the linear convergence is then an immediate con-
sequence of the convergence of Sinkhorn’s iteration. The
range of t for which K is a positive matrix is char-
acterized by Proposition 5 and the convergence rate is
thus proportional fto /{(Kl/t*)z. Note that for t 1,
k(diag(r) exp(—A M) diag(c)) = k(exp(—A M)) and both
seeds (21) and (19) recover the convergence rate of the EOT.

Although the convergence of Algorithm 2 is guaranteed
for positive K, we still need to specify when a solution ex-
ists for non-negative K (see the appendix for remarks on
the feasibility). Nonetheless, if a solution exists, we have the
following result in terms of the seed and transport plan.

Remark 4. The non-negative matrix K is diagonally equiv-
alent to P € Uy, (7,€) if an only if KM with t* > 0 is
diagonally equivalent to a matrix P € U, (r, ¢).
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Experiments

We provide experimental evidence to validate the results in
the paper. For each case, we sample M uniformly between
[0,1] and also sample 7 and ¢ randomly. Due to limited
space, we defer some of the results to the appendix.

t-Sinkhorn Distances

We plot the relative cost of the tempered entropic regularized
OT to the value of the unregularized (measured or expected)
cost. For the experiment, we set n = 64 and average over 20
trials. Figure 3 shows the relative expected cost for different
t and A. The relative cost decreases with larger A, and the
asymptotic value is closer to zero for ¢ is closer to one, which
is the case for the EOT.

Convergence of Tempered OT

We measure the number of steps to converge for the tem-
pered entropic regularized OT problem using Sinkhorn’s it-
erations for different values of ¢ and A\. We stop Sinkhorn’s
iterations when the maximum absolute change in each co-
ordinate of £ is less than 1e—10. For the experiment, we
set n = 64 and average over 100 trials. Figure 4 shows the
number of iterations to converge along with the relative ex-
pected cost to the solution of the unregularized OT problem.
The number of iterations to converge follows a similar pat-
tern to the contraction ratios of the seed matrices, shown in
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Figure 5: Transport plans induced by OT and the expected cost formulation for different values of ¢. The non-zero values are
marked by a square. The EOT (¢ = 1) induces a fully-dense plan. The sparsity of the solution increases by increasing 1 < ¢ < 2.

Figure 7 in the appendix, while the relative expected cost
is inversely proportional to the number of iterations. This
result highlights the trade-off between the convergence and
the (expected) transport cost.

Sparse Solutions

We analyze the sparsity of the solution of the (unregular-
ized) OT problem as well as the solutions of the regularized
expected cost problem (8) for ¢ € [1,2). Note that ¢t = 1 is
equal to the EOT problem (1). We set n = 32 and, for each
case, set A = 6.0/t* to offset the scaling factor in (19). In
Figure 5, we show the non-zero values of the transport plans
(more precisely, values larger than 1le—25). OT induces a
sparse solution with 2n — 1 63 non-zero components.
On the other hand, the EOT (¢ = 1) solution is fully dense,
with 1024 non-zero components. The sparsity increased by
increasing ¢ € [1,2). In this case, the transport plan with
t = 1.9 has only 83 non-zero values. More results for the
regularized measured cost are given in the appendix.

Conclusions

We investigated the regularized version of the optimal trans-
port problem with tempered exponential measures. The reg-
ularizations are Bregman divergences induced by the neg-
ative tempered Tsallis entropy. We studied how regulariza-
tion affects the sparsity pattern of the solution and adapted
Sinkhorn balancing to quickly approximate the solution.
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