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Abstract

Communication plays a crucial role in information sharing
within the field of multi-agent reinforcement learning (MARL).
However, how to transmit information that meets individual
needs remains a long-standing challenge. Some existing work
focus on using a common channel for information transfer,
which limits the capability for local communication. Mean-
while, other work attempt to establish peer-to-peer communi-
cation topologies but suffer from quadratic complexity. In this
paper, we propose Personalized Multi-Agent Communication
(PMAC), which enables the formation of peer-to-peer com-
munication topologies, personalized message sending, and
personalized message receiving. All these modules in PMAC
are performed using only multilayer perceptrons (MLPs) with
linear computational complexity. Empirically, we show the
strength of personalized communication in a variety of co-
operative scenarios. Our approach exhibits competitive per-
formance compared to existing methods while maintaining
notable computational efficiency.

Introduction
Multi-agent reinforcement learning (MARL) (Busoniu,
Babuska, and De Schutter 2008) has emerged as a powerful
paradigm for modeling and solving complex problems in var-
ious domains, such as robotics, autonomous systems (Zhou
et al. 2020), game AI (Berner et al. 2019), and social networks
(Leibo et al. 2017). But coordination among agents is always
challenging, especially when it lacks access to the environ-
ment state or other useful information. As communication
serves as a common mechanism for sharing information, re-
cently, multi-agent reinforcement learning with communica-
tion (Comm-MARL) has been receiving increasing attention.
Previous work (Foerster et al. 2016; Sukhbaatar, Szlam, and
Fergus 2016; Peng et al. 2017) focus on differential commu-
nication channels for agents to exchange information during
both training and execution. However, these work equally
value all agents and overlook the potential benefits of person-
alized communication.

Just as there are no two identical leaves in the world, hu-
man cooperation often involves personalized communication
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in which each one plays a distinct role. Typically, we send dif-
ferent messages to different receivers based on their specific
needs, and we process messages differently depending on
where they come from. Moreover, not everyone needs to par-
ticipate in every communication, as some information may
be irrelevant to certain individuals. Therefore, the consid-
eration of personalized communication is of great practical
significance.

In terms of communication messages, to the best of our
knowledge, there has been no specific discussion on how to
send different messages to meet the needs of the receivers.
On the contrary, various approaches have been proposed to
get weights of received messages, assigning the contribu-
tions of different senders. For example, TarMAC (Das et al.
2019) employs message signatures and utilizes soft attention
(Vaswani et al. 2017) to assign weights to incoming mes-
sages. Similarly, DGN (Jiang et al. 2020) and MAGIC (Niu,
Paleja, and Gombolay 2021) employ multi-head attention
(Vaswani et al. 2017) and graph attention (Veličković et al.
2017), respectively, for communication message aggregation.
However, these methods primarily focus on personalized mes-
sage aggregation at the receiving end. Furthermore, the use
of attention introduces computational complexity of O(n2),
which is unbearable when dealing with a large number of
agents.

In terms of communication topology, (Jiang and Lu 2018;
Jiang et al. 2020; Ding, Huang, and Lu 2020) predefine com-
munication range based on the observation field. However,
nearby agents often have similar observations, which limits
the information gain from communication. Moreover, this ap-
proach may not be suitable for certain environments with lim-
ited observation fields or where agents are not included in the
observation definition. Considering building adaptive com-
munication topologies through learning methods, IC3NET
(Singh, Jain, and Sukhbaatar 2018) and Gated-ACML (Mao
et al. 2020) employ gating networks to determine whether
an agent needs to send messages to others at a given time
step. DC2Net (Meng and Tan 2023) employs an independent
group channel for information integration. SchedNet (Kim
et al. 2019) trains a scheduler using DDPG (Lillicrap et al.
2015) to select the top-K most relevant agents for commu-
nication. These approaches use a public channel to receive
messages, but they do not establish peer-to-peer communica-
tion topologies between agents, missing out on the potential
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for personalized communication.
To build personalized communication, recent work uti-

lize graphs to model peer-to-peer communication topologies,
as graphs provide a flexible representation of global rela-
tionships among agents. G2ANet (Liu et al. 2020) employs
hard attention to model undirected communication topologies
between agents. FlowComm (Du et al. 2021) and MAGIC
(Niu, Paleja, and Gombolay 2021) use directed graphs for
more detailed communication topology modeling. However,
both G2ANet and MAGIC build graphs based on the hid-
den states of agent pairs, resulting in O(n2) computational
complexity, and FlowComm employs coupling flow to model
the adjacency of a directed graph, which is also computa-
tionally complex. Although using directed graphs to model
communication relationships is an ideal solution, the high
computational complexity is still an unsolved problem.

Overall, in terms of communication messages, personal-
ization is restricted to the receiver side, while in terms of
communication topologies, modeling personalized communi-
cation topologies by directed graphs is a potential way, but
suffers from high computational complexity. To tackle these
difficulties, in this paper, we propose Personalized Multi-
Agent Communication (PMAC), which consists of three mod-
ules: personalized communication topology, personalized
message sending, and personalized message receiving. Un-
like existing approaches, PMAC uses simple multilayer per-
ceptron (MLPs) and learns personalized communication in
linear time, reducing computational costs. Experimental re-
sults demonstrate that our approach can achieve better infor-
mation sharing through personalized communication while
maintaining computational efficiency.

Problem Formulation
In this section, we first introduce preliminaries and notations
of our work. Secondly, we present propositions for person-
alized multi-agent communication. Finally, we define the
directed communication graph and communication matrix,
which will be utilized in constructing the peer-to-peer com-
munication topology.

Dec-POMDP. We consider a fully cooperative MARL task
that can be modeled as a Decentralized Partially Observ-
able Markov Decision Process (Dec-POMDP) (Oliehoek
and Amato 2016). The Dec-POMDP consists of a tuple
⟨S,A, P,R,O,Ω,N , γ⟩. N = {1, 2, ..., n} is set of agents.
s ∈ S is the true state of the environment. Each agent i
has a partial observation oi ∈ Ω according to the obser-
vation function O(s, i): S × N → Ω and chooses an ac-
tion ai ∈ A based on the oi. A joint action a is formed
by a = [ai] ∈ An. After taking the joint action a, the
transition probability function P : S × An × S → [0, 1]
causes the transition on the environment and leads to the
global reward r ∈ R (s, a): S × An → R. The formal
objective is to maximize the expected cumulative reward
Es,a[

∑T
t=0 γ

tR (s, a) |s0 = s, a0 = a], in which γ ∈ [0, 1]
is the discount factor. In this work, we adopt a central-
ized training with decentralized execution (CTDE) paradigm
(Kraemer and Banerjee 2016), and further relax it by in-
corporating communication among agents. In the execution

process, each agent can condition its actions on its local
observation history and communication messages it received.
Proposition 1 (Personalized Communication). The person-
alized communication in our work comprises three modules:
personalized communication topology, personalized message
sending, and personalized message receiving.
• Personalized communication topology: Each agent can

choose one or more communication recipients, i.e. peer-to-
peer communication.

• Personalized message sending: Agents send different mes-
sages depending on the receiver. For instance, different
receivers may have distinct needs for information.

• Personalized message receiving: Agents process received
messages differently depending on their source. For in-
stance, messages from different senders may contain dis-
tinct information.

Proposition 2 (Communication Session). A communication
session serves as the fundamental in PMAC, encompassing
the communication topology, message sending, and message
receiving (Fig. 1).

Communication topology

Message receiving

……
Message sending

……

Figure 1: Basic steps in a communication session.

Definition 1 (Directed Communication Graph). The di-
rected communication graph is defined as a directed graph
G = (N,E), where N is the nodes set and E is the edges
set. Each node corresponds to an agent, while the directed
edge represents whether there is communication between one
agent and another.
Definition 2 (Communication Matrix). The communication
matrix is the adjacency matrix of the directed communication
graph. For a directed communication graph with a node set
N = {n1, ..., nn}, the communication matrix is a square
n × n matrix M such that its element mij

comm is one when
there is a communication from node ni to node nj , and zero
when there is no communication.

Methodology
In this section, we present Personalized Multi-Agent Commu-
nication (PMAC), which employs three modules to provide
the agents with personalized communication. Its architecture
consists of agents that condition their behavior on several
communication sessions. Fig. 2 illustrates the complete setup
for PMAC.
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For each agent i, we first employ an encoding network that
represents agents’ hidden state at timestep t as hi(1)

t (Eq. 1),
where (l) indicates the hidden state in the lth layer. There is
an MLP to receive the current individual observation oit as
input at each time step, and an LSTM to encode the temporal
state in the encoding network, where cit and h

i(l)
t are cell state

and hidden state of the LSTM, respectively. We drop time t
and layer (l) in the following notations for simplicity.

h
i(1)
t = LSTM(MLP(oit), (c

i
t−1, h

i(1)
t−1)) (1)

We adopt the directed communication graph to model the
personalized communication topologies. Unlike predefined
communication topologies, we build the corresponding com-
munication matrices adaptively through differential graph
structure learning. Specifically, we assume that the com-
munication matrix Mcomm should follow the distribution
p(Mcomm | s). Since the global state s is often unavailable,
some work (Lowe et al. 2017; Mao et al. 2020) utilize a con-
catenation of individual observations (or hidden states) to
approximate it. Then the communication matrix follows the
distribution p(Mcomm | s) ≈ p(Mcomm | o1, · · · , on) =
p(Mcomm | h1, · · · , hn). However, this approach can lead
to a significant increase in the input dimensionality as the
number of agents grows. To tackle this problem, some work
(Liu et al. 2020; Niu, Paleja, and Gombolay 2021) consider
building communication states for each pair of agents. They
assume that the communication state between two agents is
independent of others and utilize the following approxima-
tion: p(mij

comm | s) ≈ p(mij
comm | hi, hj) = p(mij

comm |
h1, ..., hn),Mcomm =

[
mij

comm

]
n×n

. Nevertheless, this ap-
proach introduces another challenge in terms of O(n2) com-
putational complexity, while building the directed commu-
nication graph. Consequently, it becomes a new challenge
to build the directed communication graph more efficiently.
Considering that the communication matrix is binary with a
substantial number of zeros representing non-communication
agent pairs, it is sparse and we introduce a low-rank approxi-
mation (Ye 2004) of the communication matrix to circumvent
the quadric complexity, which introduces 2Kn times forward
propagation with O(n) computational complexity:

p(mij
comm | hi, hj) :=

K∑
k=1

fϕk
1
(si | hi)fϕk

2
(rj | hj) (2)

where si and ri are communication signals of the sender and
receiver, respectively, while fϕk

1
and fϕk

2
are MLPs. We use

reparameterization sampling from the distribution by gumble-
softmax (Jang, Gu, and Poole 2016) to avoid the problem
that the gradient cannot be backpropagated.

m̂ij
comm = gumbel-softmax

(
p(mij

comm | hi, hj)
)

(3)

In message sending, existing work focuses on how the in-
formation is aggregated at the receiver side but ignores gen-
erating messages that meet the needs of different receivers,
which is not only impractical but also could lead to invalid
information transmission. Here, we use an MLP fs to model
the message sent to a particular recipient. Specifically, we

add a one-hot ID of the receiver to the input of fs to distin-
guish between different receivers, and the network learns the
representation of messages for different IDs:

mij
s = fs(concatenate(h

i
t, ID(j))), Ms =

[
mij

s

]
n×n

(4)
where mij

s is the message sent by agent i to agent j in terms
of personalized message sending, Ms is the sending message
matrix consists of mij

s . Although this approach allows for
the generation of personalized communication messages for
different receivers, unfortunately, it requires n2 forward prop-
agations of the network fs, which again brings a significant
computational burden. However, it can be observed that the
network inputs are similar, as they consist of the same hi

t.
Therefore, we can simplify Eq. 4 according to Theorem 1 as
follows:
Theorem 1. Suppose x = x1 = x2 = ... = xn ∈ Rd, For
a matrix X = {xi}ni=1 ∈ Rn×d, an identity matrix In =
diag(1, 1, ..., 1) ∈ Rn×n, weight matrices W ∈ R(d+n)×d,
Ŵ ∈ Rd×d, and bias matrices B = {bi}ni=1 ∈ Rn×d, b1 =
b2 = ... = bn, let M = [X, I]. Then

M · W + B = {x · Ŵ + gi}ni=1 (5)

where gi, i = 1, ..., n are n unequal vectors belongs to Rd.
Now, we can utilize a smaller network with reduced di-

mensions (parameterized by Ŵ in Theorem 1) requiring only
a single forward propagation and n vector summations to
achieve personalized information sending. Then we can prune
the messages that are not intended for communication based
on the personalized communication topology Mcomm, result-
ing in the pruned sending message matrix M′

s:

M′
s = Mcomm ⊙ Ms (6)

where ⊙ is the Hadamard product.
When an agent receives the messages sent by all other

agents, the final step of the communication session is message
receiving. Similar to the message sending, we use simple
MLPs to get the personalized received messages:

mij
r = fr(concatenate(m

′ij
s , IDj)), Mr =

[
mij

r

]
n×n

(7)
where mij

r is the message received by agent i from agent j,
and it can be summed up to obtain the aggregated message
of agent i: mi

r =
∑n

j=1 m
ij
r . However, different from the

message sending, since the networks no longer have similar
inputs, it’s hard to reduce the computational complexity while
maintaining theoretical consistency. So here, we simplify the
neural network fr to an affine transformation gr. According
to the properties of affine transformations, we can swap the
information reception and aggregation, thus reducing the
forward propagation times of gr from n to 1.∑

j

gr(concatenate(m
′ij
s , IDj)) =

gr(
∑
j

concatenate(m′ij
s , IDj))

(8)

Finally, mi
r, i = 1, ..., n is considered as the output of the

current communication session.
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Figure 2: Architecture for PMAC.

Communication Regularization
Multiple rounds of communication can enhance informa-
tion sharing, especially in complex tasks (Das et al. 2019;
Jiang et al. 2020). Based on this idea, we stack multiple
communication sessions to facilitate effective information
sharing. Drawing inspiration from CNN models (Krizhevsky,
Sutskever, and Hinton 2012; Szegedy et al. 2015) in image
feature extraction, as the network layers go deeper, the size of
the convolution kernel decreases to extract local features. We
apply a similar concept to multiple communication sessions.
As the communication session layer deepens, the number of
communications decreases to capture more important rela-
tionships. We achieve this by limiting the number of com-
munication agent pairs in the deeper communication session
layers. Formally, we introduce a communication regulariza-
tion to control the number of edges in the generated directed
graph:

Lcomm =
∑
l

log(l)
∑
i

∑
j

I{mij
comm ̸= 0} (9)

where l indicates the lth communication session. We use
actor-critic (Sutton and Barto 2018) to train our model, and
finally, our optimization objective can be written as follows:

∇θπJ (θπ) =Eo,a[Eπ [∇θπ log π(ai|oi)(Ri − V (oi))]

+ β∇θV (Ri − V (oi))
2 + η∇θπi

Lcomm]
(10)

Representational Complexity
The communication topology class representable with PMAC
includes any peer-to-peer communication topology that can
be formalized into a directed communication graph in our
problem definition. (Fig. 3.) This expands upon the com-
munication topologies that are predefined by other methods.
Specifically, when the learned communication matrix is an
identity matrix, there is no communication between agents
and each agent performs independent learning. When the

learned communication matrix is an all-ones matrix, there is a
fully connected communication topology like DIAL (Foerster
et al. 2016), CommNet (Sukhbaatar, Szlam, and Fergus 2016),
and TarMAC (Das et al. 2019). It is also possible to represent
more complex communication topologies, such as symmetric
communication: IC3Net (Singh, Jain, and Sukhbaatar 2018),
ATOC (Jiang and Lu 2018), G2ANet (Liu et al. 2020), DGN
(Jiang et al. 2020), and asymmetric communication: Sched-
Net (Kim et al. 2019), I2C (Ding, Huang, and Lu 2020),
MAGIC (Niu, Paleja, and Gombolay 2021).

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Sender

1 0 1 1 0
0 0 1 0 1
1 1 1 1 0
1 0 1 0 1
0 1 0 1 1

Receiver

1 0 1 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 0 1
0 0 1 0 1

Independent Symmetric Asymmetric 

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Full 

Figure 3: Examples of Representational Complexity.

In some algorithms, the communication process can be
more complex and more than one round of communication
may take place within a single time step. For this case, The
stacked multiple communication sessions can characterize
the features of this multi-round communication.

Experiments
We empirically evaluate PMAC on a variety of multi-agent
cooperative tasks which are hard-level Traffic Junction (hard-
TJ) (Sukhbaatar, Szlam, and Fergus 2016), Cooperative Nav-
igation (CN), and Predator-Prey (PP) in Multi-agent Particle
Environment (MPE) (Mordatch and Abbeel 2017; Lowe et al.
2017), and Google Research Football (GRF) (Kurach et al.
2020). (Fig. 4.).

• TJ We use the hard level TJ task on a 18× 18 grid (see
Fig. 4(a)). The total number of cars at any given time is
limited to N = 20.
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(a) TJ (b) CN (c) PP (d) GRF

Figure 4: Several multi-agent cooperative tasks involved in our experiments.

• CN The Cooperative Navigation task (see Fig. 4(b)) has
N agents and landmarks (N = 3 by default). Here, we
make this task harder by changing the number of agents
to N = 5 and limiting the length of each episode to 20
time steps.

• PP The Predator-Prey task (see Fig. 4(c)) has N1 preys
and N2 predators. Here, we make this task harder by
setting the number of predators and prey to 4 and 2, re-
spectively. The length T of each episode is 40 time steps.

• GRF We conducted experiments in the 3 versus 1 with
Keeper scenario from Football Academy (see Fig. 4(d)).
We use the sparse reward that +1 when a goal is scored.

Results
We conducted a study on the hard-TJ task, running the five
methods for 1,000,000 episodes and presenting the results in
Table 1. In this scenario, where each agent has a limited ob-
servation range of size 1, communication plays a crucial role
in avoiding collisions. As a communication method, PMAC
not only shows its effectiveness in information sharing within
this partially observable environment but also exhibits faster
computational efficiency. Figure 5 shows the average time (in
seconds) required to complete 1000 episodes. Under the con-
dition of 20 agents in this task, other methods consume signif-
icant time due to the quadratic complexity of their modules.
In contrast, PMAC reduces the computational complexity
of each module using an equivalent or approximate method,
achieving a success rate of 85.1% which outperforms the
other four methods.

PMAC MAGIC DGN TarMAC CommNet
100

150

200

250

300

Ti
m

e(
s)

Figure 5: Comparison of computational efficiency of the five
methods.

In the modified CN task, all agents are given a limited time
of 20 time steps to occupy the target. This task imposes a
higher demand on collaborative decision-making among the

agents. They must learn to avoid making meaningless actions
(such as wandering between two targets) and communicate
with each other to prevent collisions or occupying the same
target. The results in Fig. 6(a) indicate that PMAC achieves
higher rewards by occupying more targets. PMAC’s person-
alized communication topology allows agents to selectively
communicate with each other, enhancing communication ef-
ficiency within the limited time step. In contrast, although
MAGIC performs better in the early stage, it struggles to cap-
ture precise communication relationships in the later stage
of learning due to the complex information aggregation by
GAT.

In the modified PP task, as the prey is faster than the preda-
tor, the predators must learn to capture prey in a group of two
to accomplish this task. This task places a high demand on
coordination among the agents. The experimental results are
shown in Fig. 6(b) in terms of mean reward, averaged over
all agents and time steps. The three graph-based methods
DGN, MAGIC, and PMAC demonstrate relatively better per-
formance in this task. This can be attributed to the need for a
grouping of agents during the pursuit, making peer-to-peer
communication crucial for identifying partners. Although
PMAC initially shows lower performance compared to both
DGN and MAGIC, it gradually learns better collaboration
strategies and eventually outperforms the other methods.

0 50000 100000 150000 200000 250000
Episode

2.1

2.0

1.9

1.8

1.7
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w
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PMAC
MAGIC
DGN
TarMAC
CommNet

(a) CN

0 100000 200000 300000
Episode

1

2

3

4

5

Re
w

ar
d

 
PMAC
MAGIC
DGN
TarMAC
CommNet

(b) PP

Figure 6: Experimental results on CN and PP. Shaded regions
are standard deviations over 3 runs.

The experimental results show the overall superiority of
the PMAC (Fig. 7). Although this is a scenario with only
three agents, collaboration among the agents is also critical.
The ball carrier should strive to approach the goal and score,
while the other two teammates need to create space to re-
ceive wide passes for better goal opportunities. Each agent
has a personalized task, making personalized communication
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CommNet TarMAC DGN MAGIC PMAC

Success Rates (%) 60.6 ± 10.5 78.6 ± 2.9 79.1 ± 9.8 79.8 ± 7.7 85.1 ± 6.6

Table 1: Success rates on hard TJ.

even more important in this scenario. It can be observed that
the CommNet, which equally values all agents, achieves an
average win rate of only 40%. The other two graph-based
communication methods, MAGIC and DGN, due to the com-
plexity of their graph-building process, struggle to adapt to
the dynamic of the environment, resulting in high variance.
TarMAC is comparable, but it still has a slower convergence
rate compared to PMAC. This also demonstrates PMAC’s
strong ability to model personalized communication topolo-
gies to make proper team-decision. From the final success
rates, PMAC achieves the best performance among the five
methods.

0 100000 200000 300000 400000 500000 600000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

Ra
te

 
PMAC
MAGIC
DGN
TarMAC
CommNet

Figure 7: Experimental results on GRF. Shaded regions are
standard deviations over 5 runs.

It is worth noting that in the GRF environment, agents
have access to the global state. Generally, communication
becomes more crucial when agents have limited visibility, as
communication enables them to gain valuable information.
However, our results demonstrate that even agents with a
global view can significantly improve their performance by
sharing information through PMAC. We think that although
PMAC does not utilize attention, it implicitly assigns weights
to different information through multiple communication
sessions and personalized communication. As a result, each
agent captures the most important information in the global
state. In addition, as the actions of the agents are generated
by the policy network, the parameters of the policy network
inherently contain information about the agents’ future deci-
sions. Through communication, agents can also share their
decision-making potential, which is another explanation of
the favorable performance of PMAC in the environment with
a global view.

Ablation Study
In this section, we present ablation study and calculations on
predator-prey (PP) that complement our experimental results.

Ablation on Communication Regularization We com-
pare four different coefficients η (0.01, 0.005, 0.001, 0.001)
of communication regularization and evaluate how it affects
the performance of PMAC. Figure 8(a) shows the learning

curves in terms of rewards of different η. Notably, PMAC
demonstrates faster convergence and achieves higher rewards
when η = 0.001. It indicates that an excessive amount of
communication can lead to the failure to capture local com-
munication relationships, while insufficient communication
can result in an ineffective transfer of information.

0 50000 100000 150000 200000
Episode
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10
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d
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= 0.001
= 0.0001

(a) Regularization coefficients
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d

 
PMAC
PMAC w/o topology
PMAC w/o sending
PMAC w/o receiving

(b) Modules in PMAC

Figure 8: Ablation study on PP. Shaded regions are standard
deviations over 3 runs.

Ablation on Modules in PMAC Based on the results in
Fig. 8(a), we select η = 0.001 as the coefficient for com-
munication regularization and proceed to evaluate the im-
pact of three modules: personalized communication topology,
personalized message sending, and personalized message
receiving.

• PMAC w/o topology: Fully connected communication
topology.

• PMAC w/o sending: Sending same messages to different
receivers.

• PMAC w/o receiving: Aggregating the received messages
without considering the sender.

The results in Fig. 8(b) highlight the significant impact of per-
sonalized communication topology on overall performance.
Specifically, the absence of personalized communication
topology results in a notable drop in performance. Similarly,
the absence of personalized message reception can also de-
grade performance. Conversely, PMAC without personalized
message sending exhibits a faster convergence rate and lower
variance, but its final reward falls short of PMAC. This can
be attributed to that personalized message sending, despite
posing challenges for training during the initial stages, has a
greater potential to learn effective patterns of sending mean-
ingful messages and ultimately receive higher rewards in the
later stages.

Efficiency of Modules in PMAC We performed a com-
putational efficiency analysis for the three modules, and the
results are shown in Figure 9.
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Figure 9: Efficiency of modules in PMAC on PP.

• Topology: Building personalized communication topology
by quadratic complexity methods. (Without low-rank ap-
proximation.)

• Sending: Sending personalized messages by quadratic com-
plexity methods. (Without function equivalence.)

• Receiving: Receiving personalized messages by quadratic
complexity methods. (Without affine transformation ap-
proximation.)

Among these modules, the low-rank approximation of the
communication topology contributes most to the computa-
tional efficiency of PMAC. Additionally, there is a decrease
in computational efficiency when the equivalence and approx-
imation of personalized message sending and receiving are
not employed. By utilizing all these mechanisms to reduce
computational complexity, PMAC achieves the highest level
of computational efficiency.

Related Work
In Comm-MARL, Communication topology is crucial for
information sharing. Early work consider fully connected
communication topologies (Foerster et al. 2016; Sukhbaatar,
Szlam, and Fergus 2016; Peng et al. 2017). However, these
simple topologies not only perform poorly in complex envi-
ronments, but also incur significant communication costs. To
prune the communication messages, IC3NET (Singh, Jain,
and Sukhbaatar 2018) and Gated-ACML (Mao et al. 2020)
employ gating networks for each agent to determine whether
it is engaged in communication. SchedNet (Kim et al. 2019)
learns a scheduler module that enables agents to select a
subset of top-K agents to communicate with. In ETCNET
(Hu et al. 2021), the communication cost is penalized during
training to optimize the gating module. DC2Net (Meng and
Tan 2023) uses two independent channels for both individual
and group level communication learning, effectively reducing
communication costs. Another class of approaches focuses on
communication with nearby (or observable) agents. In ATOC
(Jiang and Lu 2018), the initiator selects collaborators within
its observation field to establish communication. DGN (Jiang
et al. 2020) introduces graph convolutional communication
within the observable field. LSC (Sheng et al. 2022) clusters
the communication group based on a predefined radius.

Considering message sending, the most common ap-
proach is to employ a simple neural network for message
encoding (Foerster et al. 2016; Sukhbaatar, Szlam, and Fer-
gus 2016; Peng et al. 2017). FCMNet (Wang and Sartoretti
2022) learns a multi-hop communication protocol based on

recurrent neural networks. However, to the best of our knowl-
edge, there has been no specific discussion on how to generate
messages on the sender side for specific receivers. More work
has focused on how to perform effective message receiving
at the receiver side. Early approaches assume that the infor-
mation from all agents has equal contributions (Sukhbaatar,
Szlam, and Fergus 2016; Singh, Jain, and Sukhbaatar 2018).
Other approaches concatenated messages for further process-
ing (Foerster et al. 2016; Kim et al. 2019; Hu et al. 2021; Kim,
Park, and Sung 2020). Currently, there is a growing focus on
treating messages received from different senders in a per-
sonalized manner. Approaches such as attention mechanisms
(Das et al. 2019; Liu et al. 2020; Ryu, Shin, and Park 2020;
Niu, Paleja, and Gombolay 2021) are used to assign weights
to the received messages, while RNNs (Peng et al. 2017;
Jiang and Lu 2018; Wang and Sartoretti 2022) are employed
to encode the sequential information of the received mes-
sages. These approaches enable agents to focus on the most
relevant information during the message receiving process,
but they also introduce higher computational complexity.

Recently, there has been a considerable amount of research
utilizing graphs to model peer-to-peer communication topolo-
gies. MAGNet (Malysheva, Kudenko, and Shpilman 2019)
trains a neural network to generate a complete graph and
learn the relative importance of each edge. GCS (Ruan et al.
2022) proposes acyclicity and depth of the graph as signals
for learning graph structures. DGN (Jiang et al. 2020) and
CCOMA (Su, Adams, and Beling 2020) employ multi-layer
graph convolution to adapt the dynamics in the multi-agent
environment. G2ANet (Liu et al. 2020) utilizes hard atten-
tion to model undirected communication topologies among
agents. FlowComm (Du et al. 2021) and MAGIC (Niu, Paleja,
and Gombolay 2021) propose similar ideas to our work in
using directed graphs to build multi-agent communication
topologies. However, their approaches differ from ours in
the following ways: (1) They do not consider sending per-
sonalized messages to different receivers. (2) They do not
consider the local communication to enhance feature extrac-
tion, which is reflected in our work through the communica-
tion regularization. (3) FlowComm employs coupling flow to
build directed communication graphs, while MAGIC builds
the graph by considering the hidden states of each pair of
agents, resulting in a computational complexity of O(n2).
Both methods incur a significant computational costs.

Conclusion and Future Work
In this paper, we propose a low computational complexity
approach PMAC to model personalized multi-agent commu-
nication. Three linear complexity modules are responsible for
personalized communication topology, personalized message
sending, and personalized message receiving, respectively.
Experimental results in several cooperative tasks demonstrate
the effectiveness of our method while maintaining high com-
putational efficiency.

The personalized communication of PMAC is built on
using IDs to identify different agents. While this represents a
simple approach to personalized communication, it will be
future work to introduce richer identification information to
model more complex personalized communication.
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