The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Principal-Agent Reward Shaping in MDPs

Omer Ben-Porat!, Yishay Mansour? ?, Michal Moshkovitz*, Boaz Taitler!

! Technion—Israel Institute of Technology, Israel
2Tel Aviv University, Israel
3Google Research
“Bosch Center for Artificial Intelligence
omerbp @technion.ac.il, mansour.yishay @ gmail.com, michal.moshkovitz@mail.huji.ac.il, boaztaitler @ campus.technion.ac.il

Abstract

Principal-agent problems arise when one party acts on be-
half of another, leading to conflicts of interest. The economic
literature has extensively studied principal-agent problems,
and recent work has extended this to more complex scenar-
ios such as Markov Decision Processes (MDPs). In this pa-
per, we further explore this line of research by investigating
how reward shaping under budget constraints can improve the
principal’s utility. We study a two-player Stackelberg game
where the principal and the agent have different reward func-
tions, and the agent chooses an MDP policy for both players.
The principal offers an additional reward to the agent, and the
agent picks their policy selfishly to maximize their reward,
which is the sum of the original and the offered reward. Our
results establish the NP-hardness of the problem and offer
polynomial approximation algorithms for two classes of in-
stances: Stochastic trees and deterministic decision processes
with a finite horizon.

1 Introduction

The situation in which one party makes decisions on be-
half of another party is common. For instance, in the con-
text of investment management, an investor may hire a port-
folio manager to manage their investment portfolio with
the objective of maximizing returns. However, the portfo-
lio manager may also have their own preferences or incen-
tives, such as seeking to minimize risk or maximizing their
own compensation, which may not align with the investor’s
goals. This conflict is a classic example of principal-agent
problems, extensively investigated by economists since the
1970s (see, e.g., (Holmstrom 1979; Laffont 2003). The fun-
damental question in this line of work is how the principal
should act to mitigate incentive misalignment and achieve
their objectives (Zhang and Zenios 2008; Gan et al. 2022;
Ross 1973; Zhuang and Hadfield-Menell 2020; Hadfield-
Menell and Hadfield 2019; Xiao et al. 2020; Ho, Slivkins,
and Vaughan 2014).

While the literature on principal-agent problems is vast,
modern applications present new challenges in which rec-
ommendation systems are principals and their users are
agents. To illustrate, consider a navigation app like Waze.
While the app’s primary function is to provide users with

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9502

the fastest route to their destination, it also has internal ob-
jectives that may not align with those of its users. For exam-
ple, the app may incentivize users to explore less frequently
used roads or to drive near locations that have paid for ad-
vertising. Additionally, the app relies on user reports to iden-
tify incidents on roads, but users can be reluctant to report.
In this scenario, the navigation app is the principal, and it
can incentivize users to act in ways that align with its objec-
tives through gamification or by offering coupons for adver-
tisers’ stores, among other strategies. The transition of the
agent in the space and therefore the principal-agent interac-
tion can be modeled as a Markov decision process (MDP).
While some works consider principal-agent problems over
MDPs (Zhang and Parkes 2008; Yu and Ho 2022; Zhang,
Cheng, and Conitzer 2022a,b), the setting remains under-
explored. The fundamental question of mitigating misalign-
ment in MDP environments warrants additional research.

In this paper, we contribute to the study of this challeng-
ing setting. Specifically, we model this setting as a Stack-
elberg game between two players, Principal and Agent,'!
over a joint MDP. Principal and Agent each have a unique
reward function, denoted RY and R4, respectively, which
maps states and actions to instantaneous rewards. Principal
receives rewards based on Agent’s decision-making policy,
and thus she seeks to incentivize Agent using a bonus reward
function we denote R”. We assume that Principal has a lim-
ited budget, modeled as a constraint on the norm of RB.
Agent is self-interested and seeks a policy that maximizes
his own utility, which is the sum of his reward function RA
and the bonus reward function R? offered by Principal. By
offering bonus rewards to Agent, Principal motivates Agent
to adopt a policy that aligns better with her (Principal’s) ob-
jectives. The technical question we ask is how should Prin-
cipal structure the bonus function RP to maximize her own
utility given budget constraints?

Our Contribution This paper is the first to propose ef-
ficient, near-optimal algorithms for the principal-agent re-
ward shaping problem. This problem is considered in prior
works and has shown to be NP-hard (see elaborated discus-
sion in Subsection 1.1). Prior works therefore propose so-
lutions ranging from mixed integer linear programming to

"For ease of exposition, third-person singular pronouns are
“she” for Principal and “he” for Agent.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

differentiable heuristics. In contrast, in this paper, we iden-
tify two broad classes of instances that, despite also being
NP-hard, can be approximated efficiently.

The first class is MDPs with a tree layout, which we term
stochastic trees. In stochastic trees, every state has exactly
one parent state that leads to it, and several states can have
the same parent. We emphasize that the dynamics are not de-
terministic, and given a state and an action, the next state is a
distribution over the children of the state. Stochastic trees are
well-suited for addressing real-world scenarios that involve
sequential dependencies or hierarchical decision-making.
For example, in supply chain management, upstream deci-
sions like raw material procurement have cascading effects
on downstream activities such as manufacturing and distri-
bution. Likewise, in natural resource allocation, the initial
extraction or harvesting choices create a pathway of subse-
quent decisions.

We devise Stochastic Trees principal-Agent Reward shap-
ing algorithm (STAR), which is a fully polynomial-time ap-
proximation scheme. It uses a surprising indifference obser-
vation: Imagine two scenarios, one in which Principal grants
no bonus, and another where Principal provides an efficient
bonus, for a definition of efficiency that we describe in Sub-
section 2.3. In both cases, Agent gets the same utility if he
best responds. This allows us to adopt a bottom-up dynamic
programming approach (see Observation 1) and show that

Theorem 1 (Informal statement of Theorem 4). Let the un-
derlying MDP be a k-ary tree of depth H and let V.I' be the
optimal utility of Principal’s problem with budget B. Given
any small positive constant o, our algorithm STAR guaran-
tees a utility of at least V.E' by using a budget of B(1 + «)

and its runtime is O (|A||S|k(‘aﬂ)3)

The second class of problems is finite-horizon determin-
istic decision processes (DDP) (Castro 2020; Post and Ye
2015). Unlike stochastic trees, where uncertainty plays a
central role, DDPs involve scenarios characterized by a
clear cause-and-effect relationship between actions and out-
comes. DDPs are suitable for many real-world applications,
e.g., robotics and control systems that rely on planning. Im-
portantly, the machinery we develop for stochastic trees fails
here. We propose another technique that is based on approxi-
mating the Pareto frontier of all utility vectors. We devise the
Deterministic Finite horizon principal-Agent Reward shap-
ing algorithm (DFAR), and prove that

Theorem 2 (Informal statement of Theorem 5). Let the un-
derlying MDP be a DDP with horizon H, and let € be a
small positive constant, ¢ > 0. Our algorithm DFAR has the
following guarantees:

o (e-discrete rewards) If the reward functions of Principal
and Agent are multiples of €, DFAR outputs an optimal
solution.

o (general rewards) For general reward functions, DFAR
requires B + He budget to guarantee an additive He
approximation of Principal’s best utility with budget B.

o (runtime) In both cases, executing DFAR takes runtime
of O(ISIIAIH? [1og(1AIH [¢)).

9503

1.1 Related Work

Most related to this work are works on environment design
and policy teaching (Zhang and Parkes 2008; Yu and Ho
2022; Zhang, Parkes, and Chen 2009). These works address
scenarios in which the principal can incentivize the agent
through an external budget and adopt the same model as
we do. Zhang and Parkes (2008) propose a mixed integer
linear programming to tackle this problem, while Yu and
Ho (2022) modify the agent to have bounded rationality,
thereby obtaining a continuous optimization problem. Addi-
tionally, Zhang, Parkes, and Chen (2009) employ the same
model and study how to implement a predefined policy of
the principal. Crucially, none of these works offers efficient
approaches with provable approximation guarantees. In con-
trast, our approach targets instances where we can develop
polynomial-time approximation algorithms.

More recent works on principal-agent interactions over
MDPs include those of Zhang, Cheng, and Conitzer; Zhang,
Cheng, and Conitzer (2022b; 2022a). They consider MDPs
where the principal chooses the policy for both parties, but
the agent can stop the execution at any time. They assume
that each party has a different reward function, and thus the
principal aims at finding a utility-maximizing policy with
the constraint of a positive utility for the agent. In this pa-
per, we assume the agent chooses the policy, and not the
principal like in Zhang, Cheng, and Conitzer (2022a). In our
work, the power of the principal is to shape the agent’s re-
ward under a limited budget to improve her utility; thus, the
problems and treatment are different.

From a broader perspective, principal-agent problems
have received significant attention (Laffont 2003). By and
large, solutions are divided into monetary incentives (Zhang
and Zenios 2008; Xiao et al. 2020; Ho, Slivkins, and
Vaughan 2014) like contracts (Bolton and Dewatripont
2004; Dutting, Roughgarden, and Talgam-Cohen 2021) and
non-monetary incentives (e.g., Bayesian persuasion (Wu
et al. 2022; Kamenica 2019)). This work addresses the for-
mer, as we assume the principal can provide monetary re-
wards to the agent. The literature on monetary incentives in
such problems addresses complex settings like dynamic in-
teraction (Zhang and Zenios 2008; Battaglini 2005; Zhang
and Conitzer 2021) and learning contracts adaptively (Ho,
Slivkins, and Vaughan 2014), among others.

Our main optimization problem (that appears in Prob-
lem P1) work could be cast as both a constrained MDPs
problem (Altman 1999; Xiao et al. 2019) and a Bi-level op-
timization problems (Stadie, Zhang, and Ba 2020; Wang,
Wang, and Gong 2022; Hu et al. 2020; Chen et al. 2022,
2023; Chakraborty et al. 2023). In constrained MDP prob-
lems, the goal is to find a utility-maximizing policy under
a global constraint. In Bi-level optimizations, the problem
is typically decomposed into an inner optimization prob-
lem, the solution of which becomes a parameter for an outer
optimization problem. However, our problem cannot bene-
fit from conventional tools and techniques employed in Bi-
level optimizations, as two infinitely close bonus allocations
can result in arbitrarily different utilities for the principal.

Reward shaping (Ng, Harada, and Russell 1999;
Wiewiora, Cottrell, and Elkan 2003; Devlin and Kudenko

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2012; Grzes 2017) focuses on modifying the learner’s re-
ward function by incorporating domain knowledge. The
main goals are accelerating the learning process and guid-
ing the agent’s exploration (Ng, Harada, and Russell 1999;
Randlgv and Alstrgm 1998; Devlin and Kudenko 2012; Hu
et al. 2020). We also aim to shape a reward function but
in a way that aligns incentives, which is overlooked in that
line of work. Particularly, these works do not consider strate-
gic interaction between two entities as we do. Other related
works are papers on poisoning attacks (Banihashem et al.
2022; Rakhsha et al. 2020; Zhang, Parkes, and Chen 2009),
wherein the designer aims to manipulate the environment
to steer a learning agent from his originally optimal policy.
Finally, our optimization problem also relates to Stacklberg
games (Basar and Olsder 1998)) and inverse reinforcement
learning (Arora and Doshi 2021).

2 Model

In this section, we present the model along with several
properties. We begin by providing some background and no-
tation on Markov decision processes (MDPs) (Sutton and
Barto 2018; Mannor, Mansour, and Tamar 2022). An MDP
is a tuple (S, A, P,R, H), where S is the state space, A
is the action space where A(s) C A is the subspace of
actions available at state s. P is the transition function,
P:SxAxS — [0,1] and) g P(s,a,s") 1,
which is the probability of reaching a state s’ from a state
s by acting a, and R is the (immediate) reward function,
R:SxA — R. H is the finite horizon, and we assume
that there is a designated initial state sg. A policy 7 : S — A
is a mapping from states to actions.

Given an MDP (S,A,P,R,H) and a policy m, we
let V(n,S,A,P,R,H) denote the expected utility of
w, which is the expected sum of immediate rewards;
ie., V(m, S, A, P,R,H) = E[Y.7" R(si, 7(s:))], where
Siv1 ~ P(s;,m(s4),-). We also let V(m, S, A, P, R, H) de-
note the reward in case we start from any state s € S.
For convenience, we denote the set of optimal policies by
A(S,A,P,R,H) = argmax, V(r,S, A, P,R, H). When
the objects (S, A, P, H) are known from the context, we
drop them and denote V(m, R),V;(mw, R) and A(R). Fi-
nally, we adopt the @ function (see, e.g., (Wiering and
Van Otterlo 2012)), defined as Q7 (s,a,R) = R(s,a) +
> g P(s,a,8)Ve(m, R). The @ function describes the
utility from a state s when choosing action a and playing
policy 7 afterward.

The Principal-Agent Reward Shaping MDPs prob-
lem (PARS-MDP) is a two-player sequential game be-
tween players that we term Agent and Principal. For-
mally, an instance of the PARS-MDP is a tuple
(S, A, P,RA RT H,B), where (S, A, P, H) are the stan-
dard ingredients of MDPs as we explain above. The addi-
tional ingredients of our model are the (immediate) reward
functions R4 and R”, representing the reward functions of
Agent and Principal, respectively. These reward functions
are typically different, reflecting the different goals and pref-
erences of the two players. We assume that R and R’ are
always bounded in the [0, 1] interval. The last ingredient of

9504

our model is the budget B, B € R, which represents the
total amount of resources available to Principal to distribute
over the state-action space and is determined exogenously.
The game is played sequentially:

1. Principal picks a bonus reward function RP, where
RB . S x A — R,. Principal is restricted to non-
negative bonus functions that satisfy the budget con-
straint, namely RB(s,a) > 0 for every s € S,a € A(s)
and Y RP(s,a) < B.

Agent’s strategy space is the set of deterministic policies
that map S onto A. Agent receives the bonus function
R on top of his standard reward R*, and picks a policy
as the best response to the modified reward R4 + RE.

The policy Agent picks as a strategy determines Agent’s
and Principal’s utility. Specifically, Agent’s utility is the ex-
pected sum of rewards, with respect to R4 + R” received
by following policy 7 in the MDP (S, A, P, R* + RB, H),
taken over the distribution of states and actions induced by
policy 7.2 Principal’s utility is the expected sum of rewards
received by following the same policy 7 selected by Agent
in the MDP (S, A, P, RP'| H). Here, the reward function
used is Principal’s own reward function R”. Given a strat-
egy profile (7, RP), the utilities of Principal and Agent are
V(m, RP) and V (7, R* + RP), respectively. Both players
wish to maximize their utilities.

2.1 PARS-MDP as an Optimization Problem

We propose describing PARS-MDP as Principal’s optimiza-
tion problem instead of a game formulation. Intuitively,
Agent should best respond to the bonus function by using
A(RA 4+ RP) = argmax, V(m, R4 + RP). In case several
policies maximize V (-, RA 4+ RP), we break ties by assum-
ing that Agent selects the one that most benefits Principal.
Formally, m = arg max, ¢ 4 ga4 g5y V (T, RF). Notice that
this is with loss of generality, although we discuss a straight-
forward remedy (see the appendix). Consequently, Agent’s
action is predictable, and the main challenge in computing
equilibrium strategies is finding Principal’s optimal action.

Next, we formulate the model as an optimization problem
for Principal. Her goal is to choose the bonus function R?
such that the policy chosen by Agent, 7 € A(RA 4+ RP),
maximizes Principal’s utility. Formally,

max V (r, RY)
RB

Z RB(s,a) < B
s€S,acA
RB(s,a) > 0forevery s € S,a € A(s)

7 € A(R* + RP)

(PD)

2While the bonus function alters the environment and may
prompt Agent to adopt a different optimal policy, it does not guar-
antee that Agent will realize the full value of the additional utility
offered through the bonus. This is akin to money burning (Hartline
and Roughgarden 2008). Our machinery is also effective in case
Principal’s constraint in Problem P1 is on the realized budget. We
discuss it further in the appendix.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Clearly, without R” the optimization can be done efficiently,
selecting an optimal policy for Agent that maximizes Prin-
cipal’s expected utility (namely, using the tie-breaking in fa-
vor of the Principal). When we introduce the variable RB,
the problem becomes computationally hard. Intuitively, we
need to select both the bonus rewards RZ and Agent’s best
response policy 7 simultaneously. This correlation is at the
core of the hardness; the following Theorem 3 shows that
the problem is NP-hard.

Theorem 3. Problem P1 is NP-hard.

We sketch the proof of Theorem 3 in Example 2 below.
The proof of this theorem, as well as other missing proofs of
our formal statements, appear in the appendix.

2.2 Warmup Examples

To get the reader familiar with our notation and illustrate the
setting, we present two examples.

Example 1. Consider the example illustrated in Figure 1a.
The underlying MDP has an acyclic layout,® and the transi-
tion function is deterministic. The horizon is H = 2; there-
fore, the states sz, s4 and s; are terminal. At each non-
terminal state, Agent chooses action from {left,right}.
The rewards of Agent and Principal are colored (red for
Agent, blue for Principal) and appear next to edges, which
are pairs of (state, action). In this example, the state-action
pairs of (s1,right) and (s2,left) share the same rewards
and appear once in the figure. Furthermore, assume that the
budget is limited to 1; i.e., B = 1.

Since the transitions are deterministic and so are Agent’s
policies, each policy corresponds to a path from sy to a
leaf. For instance, the policy that always plays left corre-
sponds to the path sq, s1, s3. Itis thus convenient to have this
equivalence in mind and consider paths instead of policies.
The best path for Principal is 77 = (s, s2, 552 Wlth utll—
ities of V(78, RT) = 5 to Principal and V (7
to Agent. However, Agent has a better path If he plays
74 = (50, 51,54), he gets V (74, R4) = 8 while Principal
gets V (74, RP) = 2. Indeed, this is Agent’s optimal path.

Assume Principal picks R” such that RP(s3,left) = 1
and RB(s,a) = 0 forevery s € S\ {s3} and a € A.
This is a valid bonus function since it satisfies the budget
constraint. In this case, the path 7’ (so, $1,83) gener-
ates Agent’s utility of V (7, R* + RP) = V (7', R*) +
V(r',RB) = 7+ 1 = 8. Furthermore, Principal’s utility
under 7’ is V (7', R') = 3.5, which is better than her util-
ity under Agent’s default path, 74 (recall V (74, RT) = 2).
Therefore, since Agent’s optimal policies are 74, 7/, our tie-
breaking assumption from Subsection 2.1 suggests he plays
7'. In fact, the above R is the optimal solution to Princi-
pal’s problem in Problem (P1).

Example 2. Consider the example illustrated in Figure 1b.
From the initial state sq, the system transitions uniformly
at random to one of N gadgets and reaches the state s; with
probability 1/~ forany N € N. In the gadget associated with
si, Agent can choose deterministically whether to transition

3We use the term layout to describe the underlying structure of
the states, actions, and transition probabilities.

9505

to the leaf state s;,. or s;; by choosing right or choosing
left. The former results in a reward of zero for both play-
ers, while the latter yields a negative reward —c; for Agent
and a positive reward v; for Principal. Since all le ft actions
induce a negative reward to Agent, his default is always to
play right. To incentivize Agent to play left at s;, Prin-
cipal has to allocate her budget such that RP(s;,left) is
greater or equal to the loss Agent incurs, c;. Hence, setting
RB(s;,left) = c; suffices. Whenever B < Zf\; ¢, Princi-
pal must carefully decide which gadgets to allocate her bud-
get. This example is a reduction from the Knapsack problem
(see the proof of Theorem 3).

2.3 Implementable Policies

The following definition captures the set of feasible policies,
namely policies that Principal can induce by picking a fea-
sible bonus function.

Definition 1 (B-implementable policy). A policy m is B-
implementable if there exists R® such that dsa RB(s,a) <
Band m € A(R* + RP).

For instance, in Example 1, a policy that induces the
path 7 = (sg,s1,83) is l-implementable but not 1/2-
implementable. We further highlight the minimal implemen-
tation of a policy.

Definition 2 (Minimal implementation). Let m be any B-
implementable policy. We say that RP is the minimal imple-
mentation of if = € A(RA + RB) and for every other
bonus function R such that # € A(R* + R), it holds that

dsa RB(s,a) < > sa B(s,a).

Minimal implementations are budget efficient and refer to
the minimal bonus that still incentivizes Agent to play 7.
Importantly, as we prove in the appendix, they always exist.

3 Stochastic Trees

In this section, we focus on instances of PARS-MDP that
have a tree layout. To approximate the optimal reward, we
propose the Stochastic Trees principal-Agent Reward shap-
ing algorithm (STAR), which guarantees the optimal Princi-
pal utility assuming a budget of B+¢|S|. Here, B represents
i is the number of states, and ¢ is a
configurable discretization factor. Notably, STAR has a run-
time complexity of O(|A||S|k(B/<)?). Before proceeding,
we assert that tree-based instances can still be computation-
ally challenging even though they are a special case of the
problem. To see this, recall that we used the shallow tree in
Example 2 to prove the problem is NP-hard. Crucially, it is
worth noting that the computational challenge does not stem
from the tree structure itself but rather from the presence of
randomness. In the case of deterministic trees, the trajectory
of any policy starting from s always leads to a leaf node.
Consequently, the Principal’s task simplifies to selecting a
leaf node from at most O(|S|) leaves.

To begin, we introduce some useful notations. We adopt
the standard tree graph terminology of children and parents,
where if there is a € A such that P(s,a,s’) > 0, then s
is a parent of s/, and s’ is a child of s. For convenience,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Figure 1: Instances for Examples 1 and 2. In both figures, Agent’s (Principal’s) reward is described in red (blue) next to each
edge. Figure 1a describes an acyclic graph with deterministic transitions, and Figure 1b describes a stochastic tree of depth 2.

we define the set of children and parent states of state s as
Child(s) and Parent(s), respectively. Since the depth of
the tree is bounded by the horizon, we can use H to denote
an upper bound on the tree’s depth, which is defined as the
longest path from state sg to a leaf state. Additionally, we
denote (any arbitrary) optimal policy of Agent for B = 0,
which we denote as 74 € A(R*). This policy represents the
default actions of Agent when there are no bonus rewards.
We present STAR formally in the next subsection and
sketch the high-level intuition here. It employs a dynamic
programming approach, starting from leaf states and iterat-
ing toward the root sy, while propagating almost all seem-
ingly optimal partial solutions upstream. We use “almost”,
since it uses a form of discretization (recall that the prob-
lem is NP-hard). To explain why this dynamic program-
ming is non-trivial, fix any arbitrary internal (not a leaf)
state s € S. Assume for the moment that Principal places
no bonuses; hence, Agent chooses the action in s accord-
ing to 74(s). Due to 74’s optimality w.r.t. R*, we know

A . o e
that 7 (s) € argmax,¢ 45 Q" (s,a, R*). To incentivize
Agent to select an action @’ € A(s),a’ # 74 (s), Principal
can allocate a bonus according to

RB(s,d') = Q’TA (s,7(s), RY) — Q’TA (s,a’,RY). (1)

The term on the right-hand side of Equation (1), convention-
ally referred to as the advantage function and represented
with a minus sign, plays a significant role in reinforcement
learning (see, e.g., (Wiering and Van Otterlo 2012)). Note
that this bonus includes only the (instantaneous) reward for
the pair (s, a’). However, any dynamic programming proce-
dure propagates partial bonus allocations; thus, when con-
verting Agent from 74 (s) to a’, we must consider the bonus
allocation in s’s subtree. That is, to set R (s, a’) for convert-
ing Agent to playing a’ at s, we should consider not only R4
but also any candidate bonus function R” we propagate, and
consider Agent’s best response. This can result in a signifi-
cant runtime blowup and budget waste due to discretization.
Fortunately, we can avoid this blowup. The next Obser-
vation 1 asserts that, under minimal implementation bonus
functions, converting Agent to play another action in s at
any state s is decoupled from the allocation at s’s subtree.

Observation 1. Ler 7 be any B-implementable policy, and
let RP be its minimal implementation. For every s € S, it
holds that Vs (7#, RA) = V,(r, R* + RP).

9506

Algorithm 1: Stochastic Trees principal-Agent Reward
shaping (STAR)

Input: S, A, P,R" ,R*, H,B,¢
Output: RZ
1: let B=1{0,¢,2e¢,..., B}
forevery s € S,a € A,and b € B, set U" (s,b) < 0 and
UL (s,b) « 0
curr < Leaves(S)
while curr # 0 do
pop s < curr with the highest depth
for every a € A(s), set r(a) « Q”A (s, (s), R*) —
Q™" (s,a, R*)
forevery a € A(s)and b € B, set UL (s,b) + R (s,a)+
OCBA(s,a,b)
for every b € B, set U (s,b) « rerii(x){Uf(s,b -
mas {r})}
r<r(a)
curr < curr U Parent(s)
end while
extract RZ from U and UF
return R”

»

AN

10:
11:
12:

Observation 1 is non-intuitive at first glance. On the left-
hand side, we have V, (74, R4), which is what Agent gets
in the absence of Principal and bonus rewards. On the right-
hand side, V, (7, R* + RP) is the optimal utility of Agent
when Principal picks R”, which is a minimal implementa-
tion of the policy 7. Equating the two terms suggests that by
granting the bonus reward, Principal makes Agent indiffer-
ent between his default policy 74 and the B-implementable
one; namely, the Agent’s utility does not increase after plac-
ing the bonus reward. This is true recursively throughout the
tree. Consequently, as long as we consider minimal imple-
mentations, we can use the instantaneous bonus proposed in
Equation (1) to incentivize Agent to play a’ at s regardless
of the bonus allocation in s’s subtree.

3.1 The STAR Algorithm

STAR is implemented in Algorithm 1. It gets the instance
parameters as input, along with a discretization factor €, and
outputs an almost optimal bonus function R”. Line 1 ini-
tializes the discrete set of bonuses B, referred to as budget
units. Line 2 initializes the variables UT and UL, which we

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

use to store partial optimal solutions for Principal. We then
initialize curr to Leaves(S) in Line 3, where Leaves(S) is
the set of leaf states. The backward induction process is the
while loop in Lines 4. Throughout the execution, curr stores
the states whose subtrees were already processed in previ-
ous iterations. We iterate while curr is non-empty. Line 5,
we pop a state s from curr. In Line 6, we compute for every
action a € A(s) the minimal bonus needed to shift Agent
from playing 74 (s). According to Observation 1, this lo-
cal deviation is decoupled from partial optimal solutions we
computed for Child(s) for minimal bonus functions.

Lines 7 and 8 are the heart of the dynamic programming
process. In Line 7, we consider every action a € A(s) and
every budget unit b € B. We set U (s, b) to be the highest
(expected) utility of Principal when starting from s, assum-
ing Agent plays a and the budget is b. For that, we need
to address two terms. The first term is the local R (s, a),
the reward Principal gets if Agents plays a at s. The second
term in Line 7 is OCBA, which stands for Optimal Children
Budget Allocation and is based on inductive computation.
OCBA(s, a,b) is Principal’s optimal utility if Agent plays
action a in state s and we allocate the budget b optimally
among the subtrees of C'hild(s). OCBA(s, a, b) can be com-
puted in O(k(b/e)?) time via another (and different) dynamic
programming process. Due to space limitations, we differ
the implementation of OCBA for k-ary trees to the appendix
and explain for binary trees. Let s,., s; be the right and left
child of s, respectively. Then, OCBA(s, a, b) is

max

{P(s7 a, 5. U (s0,0') + P(s,a, s))U" (s1,b— b/)} .
b eB,b <b

Namely, we consider all possible budget allocations be-
tween the subtrees of the children s, and s;, allocating b’ to
the former and b — b’ to the latter. The second step of the
dynamic programming appears in Line 8, where we com-
pute UP(s,b) inductively. Recall that the previously com-
puted UF assumed Agent plays a for a € A(s), but did not
consider the required budget for that. To motivate Agent to
play a, we need to allocate the bonus r(a) to the pair (s, alz
(recall Line 6). Hence, U (s, b) is the maximum over U/
computed in the previous line, but considering that we must
allocate R (s,a) = r(a). Since we consider discrete bud-
get, we assume we exhaust the minimal budget unit r € B
greater than r(a), meaning we slash a slight budget portion
in the inductive process.

After the inductive computation, Line 9 updates the set
curr. Line 11 extracts the optimal bonus reward R” from
U? and UF. To that end, we use backtracking, which in-
volves tracing the actions that led to the optimal value of U”
while considering the required bonus reward for Agent’s de-
viations. The backtracking identifies the best sequence of ac-
tions and corresponding bonus rewards, which we formally
claim later are the (approximately) best B-implementable
policy and its corresponding minimal implementation. We
end this subsection with the formal guarantees of STAR.
Theorem 4. Let I = (S, A, P, R4, R”, H, B) be a k-ary
tree, and let V*P be the optimal solution for I. Further,
let I be the identical instance but with a budget B + ¢|S|

for a small constant € > 0, and let ﬁB denote the output
of STAR(I). Then, executing STAR(I) takes a run time of

9507

O (|A||S|k(B/<)?), and its output RP satisfies V(m, RF) >
VP for any m € A(R* + RP).

We note that STAR is a fully polynomial-time approxima-
tion scheme (FPTAS) despite the factor B in the runtime in
Theorem 4. Let & > 0 be any small constant. By setting
€ = %, we use a budget of B(1 4+ «) and the execution

takes O (|A\|S\k(%)3).

4 Deterministic Decision Processes with
Finite Horizon

This section addresses PARS-MDP instances with a deter-
ministic decision process layout and finite horizon. As we
show in the appendix, this class of problems is still NP-
hard. We propose the Deterministic Finite horizon principal-
Agent Reward shaping algorithm (DFAR), which is imple-
mented in Algorithm 2. In case R* and R” are e-discrete,
i.e., multiples of some small constant € > 0, DFAR pro-
vides an optimal solution to Problem (P1) and runs in
O(ISIIAIH? /- log(IAlH/.)) time, where H is the horizon. As a
corollary, we show that DFAR provides a bi-criteria approxi-
mation for general reward functions R* and R”. Namely, if
the optimal solution for a budget B is V., DFAR requires a
budget of B + He to guarantee a utility of at least V.’ — He.

For ease of readability, we limit our attention to acyclic
DDPs and explain how to extend our results to cyclic graphs
later in Subsection 4.2. Before presenting an approximation
algorithm for this class of instances, we note that the STAR
algorithm from the previous section is inappropriate for in-
stances with an acyclic layout. One of the primary chal-
lenges in STAR is allocating the budget between children
states for each action. In an acyclic layout, a state may have
multiple parent states; therefore, if we follow the same tech-
nique for non-tree layouts, the STAR algorithm would as-
sign multiple different budgets to the same state, one bud-
get from each parent. As a result, a single state-action pair
may have more than one bonus reward assigned to it. To
handle acyclic layouts, we employ different techniques. To
explain the intuition behind our algorithm, consider the set
of all utility vectors U, where II is the set of all policies and
U={(V(r,R*),V(r,RF)) e R* | m € IT}.

Every element in U/ is a two-dimensional vector, where
the entries are the utilities of Agent and Principal, respec-
tively. Ideally, we would like to find the best utility vector
in U: One that corresponds to a B-implementable policy
and maximizes Principal’s utility. However, we have two ob-
stacles. First, constructing U{ is infeasible as its size can be
exponential. We circumvent this by discretizing the reward
functions of both players to be multiples of a small €. Dis-
cretizing the reward function ensures that utilities will also
be e-discrete. Since H constitutes an upper bound on the
highest utility (recall we assume R“, R” are bounded by
1 for every state-action pair), each player can have at most
H/c different utilities; thus, the e-discrete set U can have at
most (H/<)? different vectors. The Pareto frontier, i.e., the
set of Pareto efficient utilities, contains at most 2H/c. Our al-
gorithm propagates the Pareto efficient utilities bottom-up.

The second obstacle is that the Pareto frontier we compute

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Algorithm 2: Deterministic Finite horizon principal-Agent
Reward shaping (DFAR)

Input: S, A, P,R” R4 H, B, where R” and R* are as-
sumed to be e-discrete
Output: R?
: forevery s € S, set U(s) < 0
for all s € T'erminal(S), let U(s) < {(0,0)}
Spass < Terminal(S)
while Sy, # S do
select a state s € T'erminal(S \ Spass)
forevery a € A(s), s’ € Child(s,a) and u € U(s"), set
U(s)« U(s)U ((RA(s,a),RP(s,a)) + u)
U(s) + Pareto(U(s))
SPGSS <; Spass U {s}
end while
let 7 such that u™ <

AR AT

,_
@Y

arg max V(r, RY)
uw™ €U (sp)

V(r,RY>V (x4 ,R4)-B
. extract R® from 7
12: return RP

includes utility vectors corresponding to policies that are not
B-implementable and thus infeasible. The following obser-
vation asserts that we can quickly distinguish utility vectors
belonging to B-implementable policies.

Observation 2. If the transition function is determinis-
tic, then a policy w is B-implementable if and only if
V(m, RY) > V(ra, R*) — B.

4.1 The DFAR Algorithm

The DFAR algorithm receives the instance parameters,
where we assume R“ and R are e-discrete for some con-
stant ¢ > 0 (Corollary 1 explains how to relax this assump-
tion), and outputs an optimal RZ. DFAR begins by initial-
izing the set U(s) to be the empty set for each state s in
Line 1. In Line 2, we set U (s) to include the zero vector for
every terminal state. A state is terminal if it does not allow
transitions to other states, and Terminal(S’) denotes the set
of terminal states in the induced graph with states S’ C S.
Line 3 initializes Sp,ss to the set of Terminal(S). Line 4 is
a while loop that executes until Sp,ss contains all states.

In Line 5, we pick a state s we have not processed yet,
namely, a terminal state of S \ Sp.ss. Due to the way we
process states, Child(s) C Spqss. Further, since the graph
is acyclic, such a state s must exist. In Line 6, we let
Child(s,a) denote the state we reach by acting a € A(s)
in s (this state is unique since transitions are determinis-
tic). Due to inductive arguments, U (s") encompasses all at-
tainable utilities when starting from state s, for every child
s' € Child(s). In other words, every element in U (s’) has
the form (Vi (7, R*), Vi (m, RT)) for some policy 7. We
update U (s) to contain all vectors (R4(s,a), R¥ (s,a)) +u
fora € A(s) and u € U(s), where ' = Child(s,a). Af-
ter this update, elements in U(s) represent the) function
vector (Q7 (s,a, R*), Q7 (s,a, RY)) for any a € A(s).

In Line 7, we remove Pareto inefficient utility vectors.
We show in the appendix that this can be done in linearith-
mic time. Finalizing the while loop, Line 8 updates Spqss.

9508

By the time we reach Line 10, U(sg) contains all attain-
able utility vectors, including infeasible utility vectors that
require a budget greater than B. Observation 2 assists in dis-
tinguishing utility vectors associated with B-implementable
policies. We pick the utility vector ©™ that maximizes Prin-
cipal’s utility, and work top-down to reconstruct the policy
7 that attains it. Finally, we reconstruct the minimal imple-
mentation R? that induces 7 by setting the right-hand side
of Equation (1) for every pair (s, 7(s)). Next, we present the
formal guarantees that DFAR provides.

Theorem 5. Let I = (S, A, P, R4, R" | H, B) be an acyclic
and deterministic instance, and assume the reward function
RA and RY are e-discrete for a small constant € > 0.
Further, let V*P be the optimal solution for I. Then, exe-

cuting DFAR(T) takes a run time of O (W 1og(7‘AE‘H)>’

and its output RP satisfies V(n,RY) = VI for any n €
A(RA + RP).

We also leverage Theorem 5 to treat reward functions that
are not e-discrete. According to Corollary 1 below, DFAR
provides a bi-criteria approximation for general reward func-
tions R4 and R”. Namely, it requires a budget of B + He
to provide an additive approximation of He.

Corollary 1. Let I = (S,A,P,R* RF H,B) be an
acyclic and deterministic instance, and let V.I' be the op-
timal solution for I. Let I = (S, A, P, RA R H,B+ He)
be an instance with e-discrete versions of R and RY, RA
and R, respectively, for a small constant €. If DFAF%(I~) out-
puts RB, then it holds that V(m, RY) > VP — He for any
7 € A(RA + RP).

4.2 Cyclic Deterministic Decision Processes

We develop DFAR assuming the underlying DDP has no
cycles. In this subsection, we address the case of cyclic
DDPs. Notice that any DDP with a finite horizon H can
be cast as an acyclic layer graph with |S| - H states. Due
to space limitations, we describe this construction formally
in the appendix. Crucially, the resulting DDP is acyclic
and has |S|H states, compared to |S| states in the original
DDP. Consequently, every factor |S| in the runtime guar-
antees of DFAR should be replaced with |S|H; thus, exe-
cuting DFAR on the modified acyclic DDP instance takes
O(ISIIAIH? /= log(IAIH [¢)).

5 Discussion

This paper introduces a novel approach to principal-agent
modeling over MDPs, where the principal has a limited bud-
get to shape the agent’s reward. We propose two efficient al-
gorithms designed for two broad problem classes: Stochas-
tic trees and finite-horizon DDPs. We experimentally vali-
date some of our theoretical findings via simulations in the
appendix. Further, we also study several extensions that we
relegate to the appendix in the interest of space. Future work
can include better algorithms for our classes of instances as
well as more general classes of instances. Another direction
for future work is addressing learning scenarios, i.e., when
the principal, agent or both have incomplete information.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
882396), by the Israel Science Foundation, the Yandex Ini-
tiative for Machine Learning at Tel Aviv University and a
grant from the Tel Aviv University Center for Al and Data
Science (TAD).

References

Altman, E. 1999. Constrained Markov decision processes,
volume 7. CRC press.

Arora, S.; and Doshi, P. 2021. A survey of inverse reinforce-
ment learning: Challenges, methods and progress. Artificial
Intelligence, 297: 103500.

Banihashem, K.; Singla, A.; Gan, J.; and Radanovic, G.
2022. Admissible policy teaching through reward design.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, 6037-6045.

Basar, T.; and Olsder, G. J. 1998. Dynamic noncooperative
game theory. SIAM.

Battaglini, M. 2005. Long-term contracting with Markovian
consumers. American Economic Review, 95(3): 637-658.

Bolton, P.; and Dewatripont, M. 2004. Contract theory. MIT
press.

Castro, P. S. 2020. Scalable methods for computing state
similarity in deterministic markov decision processes. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 10069-10076.

Chakraborty, S.; Bedi, A. S.; Koppel, A.; Manocha, D.;
Wang, H.; Huang, F.; and Wang, M. 2023. Aligning Agent
Policy with Externalities: Reward Design via Bilevel RL.
arXiv preprint arXiv:2308.02585.

Chen, S.; Wu, J.; Wu, Y;; and Yang, Z. 2023. Learn-
ing to Incentivize Information Acquisition: Proper Scor-
ing Rules Meet Principal-Agent Model. arXiv preprint
arXiv:2303.08613.

Chen, S.; Yang, D.; Li, J.; Wang, S.; Yang, Z.; and Wang, Z.
2022. Adaptive model design for Markov decision process.
In International Conference on Machine Learning, 3679—

3700. PMLR.

Devlin, S. M.; and Kudenko, D. 2012. Dynamic potential-
based reward shaping. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 433-440. IFAAMAS.

Dutting, P.; Roughgarden, T.; and Talgam-Cohen, 1. 2021.
The complexity of contracts. SIAM Journal on Computing,
50(1): 211-254.

Gan, J.; Han, M.; Wu, J.; and Xu, H. 2022. Optimal Coordi-
nation in Generalized Principal-Agent Problems: A Revisit
and Extensions. arXiv preprint arXiv:2209.01146.

Grzes, M. 2017. Reward shaping in episodic reinforcement
learning. In Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems, 565—
573. ACM.

9509

Hadfield-Menell, D.; and Hadfield, G. K. 2019. Incomplete
contracting and Al alignment. In Proceedings of the 2019
AAAI/ACM Conference on Al, Ethics, and Society, 417-422.

Hartline, J. D.; and Roughgarden, T. 2008. Optimal mecha-
nism design and money burning. In Proceedings of the forti-
eth annual ACM symposium on Theory of computing, 75-84.

Ho, C.-J.; Slivkins, A.; and Vaughan, J. W. 2014. Adap-
tive contract design for crowdsourcing markets: Bandit al-
gorithms for repeated principal-agent problems. In Proceed-

ings of the fifteenth ACM conference on Economics and com-
putation, 359-376.

Holmstrom, B. 1979. Moral hazard and observability. The
Bell journal of economics, 74-91.

Hu, Y.; Wang, W.; Jia, H.; Wang, Y.; Chen, Y.; Hao, J.; Wu,
F.; and Fan, C. 2020. Learning to utilize shaping rewards:
A new approach of reward shaping. Advances in Neural
Information Processing Systems, 33: 15931-15941.

Kamenica, E. 2019. Bayesian persuasion and information
design. Annual Review of Economics, 11: 249-272.

Laffont, J.-J. 2003. The principal agent model. Edward El-
gar Publishing.

Mannor, S.; Mansour, Y.; and Tamar, A. 2022. Reinforce-
ment Learning: Foundations. Online manuscript; https:
/Isites.google.com/view/rlfoundations/home. Accessed
March-05-2023.

Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, 278-287. Citeseer.

Post, I.; and Ye, Y. 2015. The simplex method is strongly
polynomial for deterministic markov decision processes.
Mathematics of Operations Research, 40(4): 859-868.

Rakhsha, A.; Radanovic, G.; Devidze, R.; Zhu, X.; and
Singla, A. 2020. Policy teaching via environment poison-
ing: Training-time adversarial attacks against reinforcement
learning. In International Conference on Machine Learning,
7974-7984. PMLR.

Randlgv, J.; and Alstrgm, P. 1998. Learning to Drive a Bicy-
cle Using Reinforcement Learning and Shaping. In ICML,
volume 98, 463—471.

Ross, S. A. 1973. The economic theory of agency: The
principal’s problem. The American economic review, 63(2):
134-139.

Stadie, B.; Zhang, L.; and Ba, J. 2020. Learning intrinsic
rewards as a bi-level optimization problem. In Conference
on Uncertainty in Artificial Intelligence, 111-120. PMLR.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition.

Wang, L.; Wang, Z.; and Gong, Q. 2022. Bi-level Optimiza-
tion Method for Automatic Reward Shaping of Reinforce-

ment Learning. In International Conference on Artificial
Neural Networks, 382-393. Springer.

Wiering, M. A.; and Van Otterlo, M. 2012. Reinforcement
learning. Adaptation, learning, and optimization, 12(3):
729.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Wiewiora, E.; Cottrell, G. W.; and Elkan, C. 2003. Prin-
cipled methods for advising reinforcement learning agents.
In Proceedings of the 20th international conference on ma-
chine learning (ICML-03), 792-799.

Wu, J.; Zhang, Z.; Feng, Z.; Wang, Z.; Yang, Z.; Jordan,
M. I.; and Xu, H. 2022. Markov Persuasion Processes and
Reinforcement Learning. In ACM Conference on Economics
and Computation.

Xiao, S.; Guo, L.; Jiang, Z.; Lv, L.; Chen, Y.; Zhu, J.; and
Yang, S. 2019. Model-based constrained MDP for budget
allocation in sequential incentive marketing. In Proceedings
of the 28th ACM International Conference on Information
and Knowledge Management, 971-980.

Xiao, S.; Wang, Z.; Chen, M.; Tang, P.; and Yang, X. 2020.
Optimal common contract with heterogeneous agents. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 7309-7316.

Yu, G.; and Ho, C.-J. 2022. Environment Design for Biased
Decision Makers. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI).

Zhang, H.; Cheng, Y.; and Conitzer, V. 2022a. Efficient
Algorithms for Planning with Participation Constraints. In
Proceedings of the 23rd ACM Conference on Economics and
Computation, 1121-1140.

Zhang, H.; Cheng, Y.; and Conitzer, V. 2022b. Planning with
Participation Constraints. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, 5260-5267.

Zhang, H.; and Conitzer, V. 2021. Automated dynamic
mechanism design. Advances in Neural Information Pro-
cessing Systems, 34: 27785-27797.

Zhang, H.; and Parkes, D. C. 2008. Value-Based Policy
Teaching with Active Indirect Elicitation. In AAAI, vol-
ume 8, 208-214.

Zhang, H.; Parkes, D. C.; and Chen, Y. 2009. Policy teaching
through reward function learning. In Proceedings of the 10th
ACM conference on Electronic commerce, 295-304.

Zhang, H.; and Zenios, S. 2008. A dynamic principal-
agent model with hidden information: Sequential optimal-
ity through truthful state revelation. Operations Research,
56(3): 681-696.

Zhuang, S.; and Hadfield-Menell, D. 2020. Consequences of

misaligned Al. Advances in Neural Information Processing
Systems, 33: 15763—-15773.

9510

